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Preface to the Second Edition
The Neurobehavioral Unit of the Kennedy Krieger Institute has 16 hospital beds.

Most of the patients are children who have been diagnosed with autism, and most

engage in self-injurious behavior. They engage in self-biting, self-hitting, head-

banging, and other destructive behaviors. In most cases, we do not understand the

genetic contributions to such behaviors, limiting the available strategies for treat-

ment. In my research, I am motivated to understand molecular changes that underlie

childhood brain diseases. The field of bioinformatics provides tools we can use to

understand disease processes through the analysis of molecular sequence data.

More broadly, bioinformatics facilitates our understanding of the basic aspects of

biology including development, metabolism, adaptation to the environment, gen-

etics (e.g., the basis of individual differences), and evolution.

Since the publication of the first edition of this textbook in 2003, the fields of

bioinformatics and genomics have grown explosively. In the preface to the first edition

(2003) I noted that tens of billions of base pairs (gigabases) of DNA had been depos-

ited in GenBank. Now in 2009 we are reaching tens of trillions (terabases) of DNA,

presenting us with unprecedented challenges in how to store, analyze, and interpret

sequence data. In this second edition I have made numerous changes to the content

and organization of the book. All of the chapters are rewritten, and about 90% of the

figures and tables are updated. There are two new chapters, one on functional

genomics and one on the eukaryotic chromosome. I now focus on the globins as

examples throughout the book. Globins have a special place in the history of biology,

as they were among the first proteins to be identified (in the 1830s) and sequenced (in

the 1950s and 1960s). The first protein to have its structure solved by X-ray crystal-

lography was myoglobin (Chapter 11); molecular phylogeny was applied to the glo-

bins in the 1960s (Chapter 7); and the globin gene loci were among the first to be

sequenced (in the 1980s; see Chapter 16).

The fields of bioinformatics and genomics are far too broad to be understood by

one person. Thus many textbooks are written by multiple authors, each of whom

brings a deeper knowledge of the subject matter. I hope that this book at least

offers the benefit of a single author’s vision of how to present the material. This is

essentially two textbooks: one on bioinformatics (parts I and II) and one on genomics

(part III). I feel that presenting bioinformatics on its own would be incomplete with-

out further applying those approaches to sequence analysis of genomes across the tree

of life. Similarly I feel that it is not possible to approach genomics without first treat-

ing the bioinformatics tools that are essential engines of that field.

As with the previous edition a companion website is available which provides

up-to-date web links referred to in the book and PowerPoint slides arranged by
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chapter (www.bioinfbook.org). A resource site for instructors is also available giving

detailed solutions to problems (www.wiley.com/go/pevsnerbioinformatics).

In preparing each edition of this book I read many papers and reviewed several

thousand websites. I sincerely apologize to those authors, researchers and others

whose work I did not cite. It is a great pleasure to acknowledge my colleagues who

have helped in the preparation of this book. Some read chapters including Jef

Boeke (Chapter 12), Rafael Irizarry (Chapter 9), Stuart Ray (Chapter 7), Ingo

Ruczinski (Chapter 11), and Sarah Wheelan (Chapters 3 and 5–7). I thank many

students and faculty at Johns Hopkins and elsewhere who have provided critical feed-

back, including those who have lectured in bioinformatics and genomics courses

(Judith Bender, Jef Boeke, Egbert Hoiczyk, Ingo Ruczinski, Alan Scott, David

Sullivan, David Valle, and Sarah Wheelan). Many others engaged in helpful discus-

sions including Charles D. Cohen, Bob Cole, Donald Coppock, Laurence Frelin,

Hugh Gelch, Gary W. Goldstein, Marjan Gucek, Ada Hamosh, Nathaniel Miller,

Akhilesh Pandey, Elisha Roberson, Kirby D. Smith, Jason Ting, and N. Varg.

I thank my wife Barbara for her support and love as I prepared this book.
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Preface to the First Edition

ORIGINS OF THIS BOOK

This book emerged from lecture notes I prepared several years ago for an

introductory bioinformatics and genomics course at the Johns Hopkins School of

Medicine. The first class consisted of about 70 graduate students and several hun-

dred auditors, including postdoctoral fellows, technicians, undergraduates, and fac-

ulty. Those who attended the course came from a broad variety of fields—students of

genetics, neuroscience, immunology or cell biology, clinicians interested in particular

diseases, statisticians and computer scientists, virologists and microbiologists. They

had a common interest in wanting to understand how they could apply the tools of

computer science to solve biological problems. This is the domain of bioinformatics,

which I define most simply as the interface of computer science and molecular

biology. This emerging field relies on the use of computer algorithms and computer

databases to study proteins, genes, and genomes. Functional genomics is the study of

gene function using genome-wide experimental and computational approaches.

COMPARISON

At its essence, the field of bioinformatics is about comparisons. In the first third of the

book we learn how to extract DNA or protein sequences from the databases, and then

to compare them to each other in a pairwise fashion or by searching an entire data-

base. For the student who has a gene of particular interest, a natural question is to

ask “what other genes (or proteins) are related to mine?”

In the middle third of the book, we move from DNA to RNA (gene expression)

and to proteins. We again are engaged in a series of comparisons. We compare gene

expression in two cell lines with or without drug treatment, or a wildtype mouse heart

versus a knockout mouse heart, or a frog at different stages of development. These

comparisons extend to the world of proteins, where we apply the tools of proteomics

to complex biological samples under assorted physiological conditions. The align-

ment of multiple, related DNA or protein sequences is another form of comparison.

These relationships can be visualized in a phylogenetic tree.

The last third of the book spans the tree of life, and this provides another level of

comparison. Which forms of human immunodeficiency virus threaten us, and how

can we compare the various HIV subtypes to learn how we might develop a vaccine?

How are a mosquito and a fruitfly related? What genes do vertebrates such as fish

and humans share in common, and which genes are unique to various phylogenetic

lineages?
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I believe that these various kinds of comparisons are what distinguish the newly

emerging fields of bioinformatics and genomics from traditional biology. Biology has

always concerned comparisons; in this book I quote 19th century biologists such as

Richard Owen, Ernst Haeckel, and Charles Darwin who engaged in comparative

studies at the organismal level. The problems we are trying to solve have not changed

substantially. We still seek a more complete understanding of the unifying concepts of

biology, such as the organization of life from its constituent parts (e.g., genes and pro-

teins), the behavior of complex biological systems, and the continuity of life through

evolution. What has changed is how we pursue this more complete understanding.

This book describes databases filled with raw information on genes and gene pro-

ducts and the tools that are useful to analyze these data.

THE CHALLENGE OF HUMAN DISEASE

My training is as a molecular biologist and neuroscientist. My laboratory studies the

molecular basis of childhood brain disorders such as Down syndrome, autism, and

lead poisoning. We are located at the Kennedy Krieger Institute, a hospital for chil-

dren for developmental disorders. (You can learn more about this Institute at http://

www.kennedykrieger.org.) Each year over 10,000 patients visit the Institute. The

hospital includes clinics for children with a variety of conditions including language

disorders, eating disorders, autism, mental retardation, spina bifida, and traumatic

brain injury. Some have very common disorders, such as Down syndrome (affecting

about 1:700 live births) and mental retardation. Others have rare disorders, such as

Rett syndrome or adrenoleukodystrophy.

We are at a time when the number of base pairs of DNA deposited in the world’s

public repositories has reached tens of billions, as described in Chapter 2. We have

obtained the first sequence of the human genome, and since 1995 hundreds of gen-

omes have been sequenced. Throughout the book, you can follow the progress of

science as we learn how to sequence DNA, and study its RNA and protein products.

At times the pace of progress seems dazzling.

Yet at the same time we understand so little about human disease. For thousands

of diseases, a defect in a single gene causes a pathological effect. Even as we discover

the genes that are defective in diseases such as cystic fibrosis, muscular dystrophy,

adrenoleukodystrophy, and Rett syndrome, the path to finding an effective treatment

or cure is obscure. But single gene disorders are not nearly as common as complex

diseases such as autism, depression, and mental retardation that are likely due to

mutations in multiple genes. And all genetic disease is not nearly as common as infec-

tious disease. We know little about why one strain of virus infects only humans, while

another closely related species infects only chimpanzees. We do not understand why

one bacterial strain may be pathogenic, while another is harmless. We have not

learned how to develop an effective vaccine against any eukaryotic pathogen, from

protozoa (such as Plasmodium falciparum that causes malaria) to parasitic nematodes.

The prospects for making progress in these areas are very encouraging specifi-

cally because of the recent development of new bioinformatics tools. We are only

now beginning to position ourselves to understand the genetic basis of both

disease-causing agents and the hosts that are susceptible. Our hope is that the infor-

mation so rapidly accumulating in new bioinformatics databases can be translated

through research into insights into human disease and biology in general.
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NOTE TO READERS

This book describes over 1,000 websites related to bioinformatics and functional

genomics. All of these sites evolve over time (and some become extinct). In an

effort to keep the web links up-to-date, a companion website (http://www.

bioinfbook.org) maintains essentially all of the website links, organized by chapter

of the book. We try our best to maintain this site over time. We use a program to auto-

matically scan all the links each month, and then we update them as necessary.

An additional site is available to instructors, including detailed solutions to

problems (see http://www.wiley.com).

ACKNOWLEDGMENTS

Writing this book has been a wonderful learning experience. It is a pleasure to thank

the many people who have contributed. In particular, the intellectual environment at

the Kennedy Krieger Institute and the Johns Hopkins School of Medicine has been

extraordinarily rich. These chapters were developed from lectures in an introductory

bioinformatics course. The Johns Hopkins faculty who lectured during its first three

years were Jef Boeke (yeast functional genomics), Aravinda Chakravarti (human dis-

ease), Neil Clarke (protein structure), Kyle Cunningham (yeast), Garry Cutting

(human disease), Rachel Green (RNA), Stuart Ray (molecular phylogeny), and

Roger Reeves (the human genome). I have benefited greatly from their insights

into these areas.

I gratefully acknowledge the many reviewers of this book, including a group of

anonymous reviewers who offered extremely constructive and detailed suggestions.

Those who read the book include Russ Altman, Christopher Aston, David P.

Leader, and Harold Lehmann (various chapters), Conover Talbot (Chapters 2 and

18), Edie Sears (Chapter 3), Tom Downey (Chapter 7), Jef Boeke (Chapter 8 and

various other chapters), Michelle Nihei and Daniel Yuan (Chapter 8), Mario

Amzel and Ingo Ruczinski (Chapter 9), Stuart Ray (Chapter 11), Marie Hardwick

(Chapter 13), Yukari Manabe (Chapter 14), Kyle Cunningham and Forrest

Spencer (Chapter 15), and Roger Reeves (Chapter 16). Kirby D. Smith read

Chapter 18 and provided insights into most of the other chapters as well. Each of

these colleagues offered a great deal of time and effort to help improve the content,

and each served as a mentor. Of the many students who read the chapters I mention

Rong Mao, Ok-Hee Jeon, and Vinoy Prasad. I particularly thank Mayra Garcia and

Larry Frelin who provided invaluable assistance throughout the writing process. I am

grateful to my editor at John Wiley & Sons, Luna Han, for her encouragement.

I also acknowledge Gary W. Goldstein, President of the Kennedy Krieger Insti-

tute, and Solomon H. Snyder, my chairman in the Department of Neuroscience at

Johns Hopkins. Both provided encouragement, and allowed me the opportunity to

write this book while maintaining an academic laboratory.

On a personal note, I thank my family for all their love and support, as well as N.

Varg, Kimberly Reed, and Charles Cohen. Most of all, I thank my fiancée Barbara

Reed for her patience, faith, and love.

ACKNOWLEDGMENTS xxv



Foreword

Ask 10 investigators in human genetics what resources they need most and it is highly

likely that computational skills and tools will be at the top of the list. Genomics, with

its reliance on microarrays, genotyping, high throughput sequencing and the like, is

intensely data-rich and for this reason is impossible to disentangle from bioinfor-

matics. This text, with its clear descriptions, practical examples and focus on the

overlaps and interdependence of these two fields, is thus an essential resource for

students and practitioners alike.

Interestingly, bioinformatics and genomics are both relatively recent disciplines.

Each emerged in the course of the Human Genome Project (HGP) that was con-

ceived in the mid-1980s and began officially on October 1, 1990. As the HGP

matured from its initial focus on gene maps in model organisms to the massive efforts

to produce a reference human whole genome sequence, there was an increasing need

for computational biology tools to store, analyze and disseminate large amounts of

sequence data. For this reason, genomics increasingly relied on bioinformatics

and, in turn, the field of bioinformatics flourished. Today, no serious student of geno-

mics can imagine life without bioinformatics. This interdependence continues to

grow by leaps and bounds as the questions and activities of investigators in genomics

become bolder and more expansive; consider, for example, whole genome associ-

ation studies (GWAS), the ENCODE project, the challenge of copy number variants,

the 1000 Genomes project, epigenomics, and the looming growth of personal

genome sequences and their analysis.

This textbook provides a clear and timely introduction to both bioinformatics

and genomics. It is organized so that each chapter can correspond to a lecture for a

course on bioinformatics or genomics and, indeed, we have used it this way for our

students. Also, for readers not taking courses, the book provides essential

background material. For computer scientists and biologists alike the book offers

explanations of available methods and the kinds of problems for which they can be

used. The sections on bioinformatics in the first part of the book describe many of

the basic tools that are used to analyze and compare DNA and protein sequences.

The tone is inviting as the reader is guided to learn to use different software by

example. Multiple approaches for solving particular problems, such as sequence

alignment and molecular phylogeny, are presented. The middle part of the book

introduces functional genomics. Here again the focus is on helping the reader to

learn how to do analyses (such as microarray data analysis or protein structure

prediction) in a practical way. A companion website provides many data sets, so

the student can get experience in performing analyses. Chapter 12 provides a

roadmap to the very complicated topic of functional genomics, spanning a range

of techniques and model organisms used to study gene function. The last third of
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the book provides a survey of the tree of life from a genomics perspective. There is an

attempt to be comprehensive, and at the same time, to present the material in an

interesting way, highlighting the fascinating features that make each genome unique.

Far from being a dry account of the facts of genomics and bioinformatics, the

book offers many features that highlight the vitality of this field. There are discussions

throughout about how to critically evaluate the performance of different software.

For example, there are ‘competitions’ in which different research groups perform

computational analyses on data sets that have been validated with some ‘gold stan-

dard’, allowing false positive and false negative error rates to be determined. These

competitions are described in areas such as microarray data analysis (Chapter 9),

mass spectrometry (Chapter 10), protein structure prediction (Chapter 11), or

gene prediction (Chapter 16). The book also includes descriptions of important

movements in the fields of bioinformatics and genomics, ranging from the RefSeq

project for organizing sequences to the ENCODE and HapMap projects.

Similarly, there is a rich description of the historical context for different aspects of

bioinformatics and genomics, such as Garrod’s views on disease (Chapter 20);

Ohno’s classic 1970 book on genome duplication (Chapter 17); and, the earliest

attempts to create alignments and phylogenetic trees of the globins.

Where will the fields of bioinformatics and genomics go in the next five to 10

years? The opportunities are vast and any prediction will certainly be incomplete,

but it is certain that the rapid technological advances in sequencing will provide an

unprecedented view of human genetic variation and how this relates to phenotype.

In the area of human disease studies, genome-wide association studies can be

expected to lead to the identification of hundreds of genes underlying complex dis-

orders. Finally, our understanding of evolution and its relevance to medicine will

expand dramatically. Dr Pevsner’s valuable book will help the student or researcher

access the tools and learn the principles that will enable this exciting research.

David Valle, M.D.

Henry J. Knott Professor and Director McKusick-Nathans Institute of Genetic Medicine,

Johns Hopkins University School of Medicine
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FIGURE 3.1. Three-dimensional structures of (a) myoglobin (accession 2MM1), (b) the tetrameric hemoglobin protein (2H35),
(c) the beta globin subunit of hemoglobin, and (d) myoglobin and beta globin superimposed. The images were generated with the
program Cn3D (see Chapter 11). These proteins are homologous (descended from a common ancestor), and they share very similar
three-dimensional structures. However, pairwise alignment of these proteins’ amino acid sequences reveals that the proteins share
very limited amino acid identity.



FIGURE 4.7. Middle portion of a typical blastp output provides a graphical display of the results. Database matches are color coded to
indicate relatedness (based on alignment score), and the length of each line corresponds to the region in which that sequence aligns with
the query sequence. This graphic can be useful to summarize the regions in which database matches align to the query.

FIGURE 6.10. Multiple sequence alignment of the human beta globin locus compared to other vertebrate genomic sequences. (a) A
view in the UCSC Genome Browser of the beta globin gene is indicated. Exons are represented by blocks (arrow 1) and tend to be
highly conserved among a group of vertebrate genomes. Additionally, several regions of high conservation occur in noncoding areas
(e.g., arrow 2). (b) A view of 55 base pairs at the beta globin locus. At this magnification (fewer than 30,000 base pairs), the
UCSC genome browser displays the nucleotides of genomic DNA in the multiple sequence alignment of a group of vertebrates. The
ATG codon (oriented from right to left) is indicated (three asterisks), and the human protein product is shown (amino acids from
right to left matching the start of protein NP_000509, MVHLTPEEKS).
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FIGURE 8.17. Overview of the process of generating high throughput gene expression data using microarrays. In stage 1, biological
samples are selected for a comparison of gene expression. In stage 2, RNA is isolated and labeled, often with fluorescent dyes. These
samples are hybridized to microarrays, which are solid supports containing complementary DNA or oligonucleotides corresponding
to known genes or ESTs. In stage 4, image analysis is performed to evaluate signal intensities. In stage 5, the expression data are ana-
lyzed to identify differentially regulated genes (e.g., using ANOVA [Chapter 9] and scatter plots; stage 5, at left) or clustering of genes
and/or samples (right). Based on these findings, independent confirmation of microarray-based findings is performed (stage 6). The
microarray data are deposited in a database so that large-scale analyses can be performed.

FIGURE 8.21. Microarray images. (a) A nitrocellulose filter is probed with [32P]cDNA derived from the hippocampus of a postmortem
brain of an individual with Down syndrome. There are 5000 cDNAs spotted on the array. The pattern in which genes are represented on
any array is randomized. (b) Six of the signals are visualized using NIH Image software. Image analysis software must define the prop-
erties of each signal, including the likelihood that an intense signal (lower left) will “bleed” onto a weak signal (lower right). (c) A micro-
array from NEN Perkin-Elmer (representing 2400 genes) was probed with the same Rett syndrome and control brain samples used in
Fig. 8.20. This technology employs cDNA samples that are fluorescently labeled in a competitive hybridization.
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(b) Secondary structure 

(c) Tertiary structure (d) Quaternary structure 
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FIGURE 11.1. A hierarchy of protein structure. (a) The primary structure of a protein refers to the linear polypeptide chain of amino
acids. Here, human beta globin is shown (NP_000539). (b) The secondary structure includes elements such as alpha helices and beta
sheets. Here, beta globin protein sequence was input to the POLE server for secondary structure (Q http://pbil.univ-lyon1.fr/) where
three prediction algorithms were run and a consensus was produced. Abbreviations: h, alpha helix; c, random coil; e, extended strand.
(c) The tertiary structure is the three-dimensional structure of the protein chain. Alpha helices are represented as thickened cylinders.
Arrows labeled N and C point to the amino- and carboxy-terminals, respectively. (d) The quarternary structure includes the inter-
actions of the protein with other subunits and heteroatoms. Here, the four subunits of hemoglobin are shown (with an a2b2 composition
and one beta globin chain highlighted) as well as four noncovalently attached heme groups. Panels (c) and (d) were produced using
Cn3D software from NCBI.



FIGURE 11.3. Examples of secondary structure. (a) Myoglobin (Protein Data Bank ID 2MM1) is composed of large regions of a
helices, shown as strands wrapped around barrel-shaped objects. By entering the accession 2MM1 into NCBI’s structure site, one
can view this three-dimensional structure using Cn3D software. The accompanying sequence viewer shows the primary amino acid
sequence. By clicking on a colored region (bracket) corresponding to an alpha helix, that structure is highlighted in the structure
viewer (arrow). (b) Human pepsin (PDB 1PSN) is an example of a protein primarily composed as b strands, drawn as large
arrows. Selecting a region of the primary amino acid sequence (bracket) results in a highlighting of the corresponding b strand.
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FIGURE 14.17. (a) The LANL website offers a map of HIV-1 protease mutations versus drugs. Each row represents a drug (labeled at
right). The wild-type (strain HXB2) HIV-1 protease sequence is listed at top and bottom (arrow 1). Dashes indicate wild-type amino
acid positions, while mutations that confer resistance to the drug are indicated. An example of a K-to-R (lysine-to-arginine) mutation is
indicated (arrow 2). The small number (41) indicates the “fold resistance” of that particular mutation. Mutations that have a colored
shape pointing to them are also part of a synergistic combination of mutations. (b) By clicking on the position of a mutation (arrow 2),
the map links to a detailed report of the effects of that mutation.



FIGURE 18.8. Whole genome duplication in the ciliate Paramecium tetraurelia is inferred by analysis of protein paralogs. The outer
circle displays all chromosome-sized scaffolds from the genome sequencing project. Lines link pairs of genes with a “best reciprocal hit”
match. The three interior circles show the reconstructed ancestral sequences obtained by combining the paired sequences from each
previous step. The inner circles are progressively smaller and reflect fewer conserved genes with a smaller average similarity. From
Aury et al. (2006). Used with permission.



FIGURE 18.18. Alignment of C. elegans and C. briggsae conserved syntenic regions using the synteny viewer at WormBase
(Q http://www.wormbase.org). Regions of chromosome I are aligned from C. elegans (above) and C. briggsae (below).



Part I

Analyzing DNA, RNA, and Protein
Sequences in Databases



The study of bioinformatics includes the analysis of proteins. In the first half of the nineteenth century the Dutch researcher Gerardus
Johannes Mulder (1802–1880), advised by the Swedish chemist Jöns Jacob Berzelius (1779–1848), studied the “albuminous” sub-
stances or proteins fibrin, albumin from blood, albumin from egg (ovalbumin), and the coloring matter of blood (hemoglobin).
Mulder and others extracted and purified these proteins and believed that they all shared the same elemental composition
(C400H260N100O120), with varying amounts of phosphorus and sulfur. Justus Liebig (1803–1873) believed that the composition of
protein was C48H36N6O14. This page, from Liebig’s Animal Chemistry, or Organic Chemistry in its Applications to Physiology

and Pathology (1847, p. 36), discusses albumin, fibrin, and casein (see arrowhead).
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Introduction

Bioinformatics represents a new field at the interface of the twentieth-century revolu-

tions in molecular biology and computers. A focus of this new discipline is the use of

computer databases and computer algorithms to analyze proteins, genes, and the

complete collections of deoxyribonucleic acid (DNA) that comprises an organism

(the genome). A major challenge in biology is to make sense of the enormous quan-

tities of sequence data and structural data that are generated by genome-sequencing

projects, proteomics, and other large-scale molecular biology efforts. The tools of

bioinformatics include computer programs that help to reveal fundamental mechan-

isms underlying biological problems related to the structure and function of macro-

molecules, biochemical pathways, disease processes, and evolution.

According to a National Institutes of Health (NIH) definition, bioinformatics is

“research, development, or application of computational tools and approaches for

expanding the use of biological, medical, behavioral or health data, including those

to acquire, store, organize, analyze, or visualize such data.” The related discipline

of computational biology is “the development and application of data-analytical

and theoretical methods, mathematical modeling and computational simulation

techniques to the study of biological, behavioral, and social systems.”

While the discipline of bioinformatics focuses on the analysis of molecular

sequences, genomics and functional genomics are two closely related disciplines.

The goal of genomics is to determine and analyze the complete DNA sequence of

an organism, that is, its genome. The DNA encodes genes, which can be expressed

as ribonucleic acid (RNA) transcripts and then in many cases further translated into

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner
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protein. Functional genomics describes the use of genomewide assays in the study of

gene and protein function.

The aim of this book is to explain both the theory and practice of bioinformatics

and genomics. The book is especially designed to help the biology student use com-

puter programs and databases to solve biological problems related to proteins, genes,

and genomes. Bioinformatics is an integrative discipline, and our focus on individual

proteins and genes is part of a larger effort to understand broad issues in biology, such

as the relationship of structure to function, development, and disease. For the com-

puter scientist, this book explains the motivations for creating and using algorithms

and databases.

ORGANIZATION OF THE BOOK

There are three main sections of the book. The first part (Chapters 2 to 7) explains

how to access biological sequence data, particularly DNA and protein sequences

(Chapter 2). Once sequences are obtained, we show how to compare two sequences

(pairwise alignment; Chapter 3) and how to compare multiple sequences (primarily

by the Basic Local Alignment Search Tool [BLAST]; Chapters 4 and 5). We intro-

duce multiple sequence alignment (Chapter 6) and show how multiply aligned

sequences can be visualized in phylogenetic trees (Chapter 7). Chapter 7 thus

introduces the subject of molecular evolution.

The second part of the book describes functional genomics approaches to RNA

and protein and the determination of gene function (Chapters 8 to 12). The central

dogma of biology states that DNA is transcribed into RNA then translated into protein.

We will examine bioinformatic approaches to RNA, including both noncoding and

coding RNAs. We then describe the technology of DNA microarrays and examine

microarray data analysis (Chapter 9). From RNA we turn to consider proteins from

the perspective of protein families, and the analysis of individual proteins (Chapter

10) and protein structure (Chapter 11). We conclude the middle part of the book

with an overview of the rapidly developing field of functional genomics (Chapter 12).

Since 1995, the genomes have been sequenced for several thousand viruses, pro-

karyotes (bacteria and archaea), and eukaryotes, such as fungi, animals, and plants.

The third section of the book covers genome analysis (Chapters 13 to 20). Chapter

13 provides an overview of the study of completed genomes and then descriptions of

how the tools of bioinformatics can elucidate the tree of life. We describe bioinfor-

matics resources for the study of viruses (Chapter 14) and bacteria and archaea

(Chapter 15; these are two of the three main branches of life). Next we examine

the eukaryotic chromosome (Chapter 16) and explore the genomes of a variety of

eukaryotes, including fungi (Chapter 17), organisms from parasites to primates

(Chapter 18), and then the human genome (Chapter 19). Finally, we explore bioin-

formatic approaches to human disease (Chapter 20).

BIOINFORMATICS: THE BIG PICTURE

We can summarize the fields of bioinformatics and genomics with three perspectives.

The first perspective on bioinformatics is the cell (Fig. 1.1). The central dogma of

molecular biology is that DNA is transcribed into RNA and translated into protein.

The focus of molecular biology has been on individual genes, messenger RNA
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(mRNA) transcripts as well as noncoding RNAs, and proteins. A focus of the field of

bioinformatics is the complete collection of DNA (the genome), RNA (the transcrip-

tome), and protein sequences (the proteome) that have been amassed (Henikoff,

2002). These millions of molecular sequences present both great opportunities

and great challenges. A bioinformatics approach to molecular sequence data involves

the application of computer algorithms and computer databases to molecular and

Central dogma of molecular biology

Central dogma of genomics

DNA RNA protein

cellular
phenotypegenome transcriptome proteome

cellular
phenotype

RNA proteinDNA

FIGURE 1.1. The first perspective
of the field of bioinformatics is the
cell. Bioinformatics has emerged as
a discipline as biology has become
transformed by the emergence of
molecular sequence data. Databases
such as the European Molecular
Biology Laboratory (EMBL),
GenBank, and the DNA Database
of Japan (DDBJ) serve as reposi-
tories for hundreds of billions of
nucleotides of DNA sequence data
(see Chapter 2). Corresponding data-
bases of expressed genes (RNA) and
protein have been established. A
main focus of the field of bioinfor-
matics is to study molecular sequence
data to gain insight into a broad
range of biological problems.

time of
development

region of
body

physiological or
pathological state

FIGURE 1.2. The second perspec-
tive of bioinformatics is the organ-
ism. Broadening our view from
the level of the cell to the organism,
we can consider the individual’s
genome (collection of genes),
including the genes that are
expressed as RNA transcripts and
the protein products. Thus, for an
individual organism bioinfor-
matics tools can be applied to
describe changes through develop-
mental time, changes across body
regions, and changes in a variety
of physiological or pathological
states.
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cellular biology. Such an approach is sometimes referred to as functional genomics.

This typifies the essential nature of bioinformatics: biological questions can be

approached from levels ranging from single genes and proteins to cellular pathways

and networks or even whole genomic responses (Ideker et al., 2001). Our goals are

to understand how to study both individual genes and proteins and collections of

thousands of genes or proteins.

From the cell we can focus on individual organisms, which represents a second

perspective of the field of bioinformatics (Fig. 1.2). Each organism changes across

different stages of development and (for multicellular organisms) across different

regions of the body. For example, while we may sometimes think of genes as static

entities that specify features such as eye color or height, they are in fact dynamically

regulated across time and region and in response to physiological state. Gene

expression varies in disease states or in response to a variety of signals, both intrinsic

and environmental. Many bioinformatics tools are available to study the broad bio-

logical questions relevant to the individual: there are many databases of expressed

FIGURE 1.3. The third perspec-
tive of the field of bioinformatics is
represented by the tree of life. The
scope of bioinformatics includes
all of life on Earth, including the
three major branches of bacteria,
archaea, and eukaryotes. Viruses,
which exist on the borderline of
the definition of life, are not
depicted here. For all species, the
collection and analysis of molecu-
lar sequence data allow us to
describe the complete collection of
DNA that comprises each organism
(the genome). We can further
learn the variations that occur
between species and among mem-
bers of a species, and we can
deduce the evolutionary history of
life on Earth. (After Barns et al.,
1996 and Pace, 1997.) Used with
permission.
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genes and proteins derived from different tissues and conditions. One of the most

powerful applications of functional genomics is the use of DNA microarrays to

measure the expression of thousands of genes in biological samples.

At the largest scale is the tree of life (Fig. 1.3) (Chapter 13). There are many

millions of species alive today, and they can be grouped into the three major branches

of bacteria, archaea (single-celled microbes that tend to live in extreme environ-

ments), and eukaryotes. Molecular sequence databases currently hold DNA

sequences from over 150,000 different organisms. The complete genome sequences

of thousands of organisms are now available, including organellar and viral genomes.

One of the main lessons we are learning is the fundamental unity of life at the

molecular level. We are also coming to appreciate the power of comparative geno-

mics, in which genomes are compared. Through DNA sequence analysis we are

learning how chromosomes evolve and are sculpted through processes such as

chromosomal duplications, deletions, and rearrangements, as well as through

whole genome duplications (Chapters 16 to 18).

Figure 1.4 presents the contents of this book in the context of these three per-

spectives of bioinformatics.

RNA proteinDNA

Part 1: Analyzing DNA, RNA, and protein sequences

Chapter 1: Introduction
Chapter 2: How to obtain sequences
Chapter 3: How to compare two sequences
Chapters 4 and 5: How to compare a sequence 
 to all other sequences in databases
Chapter 6: How to multiply align sequences
Chapter 7: How to view multiply aligned sequences
 as phylogenetic trees

Part 3: Genome analysis

Chapter 13: The tree of life
Chapter 14: Viruses
Chapter 15: Prokaryotes
Chapter 16: The eukaryotic chromosome
Chapter 17: The fungi
Chapter 18: Eukaryotes from parasites to plants to primates
Chapter 19: The human genome
Chapter 20: Human disease

Part 2: Genome-wide analysis of RNA and protein

Chapter 8: Bioinformatics approaches to RNA
Chapter 9: Microarray data analysis
Chapter 10: Protein analysis and protein families
Chapter 11: Protein structure
Chapter 12: Functional genomics

Molecular sequence
database

FIGURE 1.4. Overview of the
chapters in this book.
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A CONSISTENT EXAMPLE: HEMOGLOBIN

Throughout this book, we will focus on the globin gene family to provide a consistent

example of bioinformatics and genomics concepts. The globin family is one of the

best characterized in biology.

† Historically, hemoglobin was one of the first proteins to be studied, having

been described in the 1830s and 1840s by Mulder, Liebig, and others.

† Myoglobin, a globin that binds oxygen in the muscle tissue, was the first

protein to have its structure solved by x-ray crystallography (Chapter 11).

† Hemoglobin, a tetramer of four globin subunits (principally a2b2 in adults), is

the main oxygen carrier in blood of vertebrates. Its structure was also one of the

earliest to be described. The comparison of myoglobin, alpha globin, and beta

globin protein sequences represents one of the earliest applications of multiple

sequence alignment (Chapter 6), and led to the development of amino acid

substitution matrices used to score protein relatedness (Chapter 3).

† In the 1980s as DNA sequencing technology emerged, the globin loci on

human chromosomes 16 (for a globin) and 11 (for b globin) were among

the first to be sequenced and analyzed. The globin genes are exquisitely regu-

lated across time (switching from embryonic to fetal to adult forms) and with

tissue-specific gene expression. We will discuss these loci in the description of

the control of gene expression (Chapter 16).

† While hemoglobin and myoglobin remain the best-characterized globins, the

family of homologous proteins extends to two separate classes of plant globins,

invertebrate hemoglobins (some of which contain multiple globin domains

within one protein molecule), bacterial homodimeric hemoglobins (consist-

ing of two globin subunits), and flavohemoglobins that occur in bacteria,

archaea, and fungi. Thus the globin family is useful as we survey the tree of

life (Chapters 13 to 18).

Another protein we will use as an example is retinol-binding protein (RBP4),

a small, abundant secreted protein that binds retinol (vitamin A) in blood

(Newcomer and Ong, 2000). Retinol, obtained from carrots in the form of vitamin

A, is very hydrophobic. RBP4 helps transport this ligand to the eye where it is used

for vision. We will study RBP4 in detail because it has a number of interesting

features:

† There are many proteins that are homologous to RBP4 in a variety of species,

including human, mouse, and fish (“orthologs”). We will use these as

examples of how to align proteins, perform database searches, and study

phylogeny.

† There are other human proteins that are closely related to RBP4 (“paralogs”).

Altogether the family that includes RBP4 is called the lipocalins, a diverse

group of small ligand-binding proteins that tend to be secreted into extracellu-

lar spaces (Akerstrom et al., 2000; Flower et al., 2000). Other lipocalins have

fascinating functions such as apoliprotein D (which binds cholesterol), a preg-

nancy-associated lipocalin, aphrodisin (an “aphrodisiac” in hamsters), and an

odorant-binding protein in mucus.
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† There are bacterial lipocalins, which could have a role in antibiotic resistance

(Bishop, 2000). We will explore how bacterial lipocalins could be ancient

genes that entered eukaryotic genomes by a process called lateral gene transfer.

† Because the lipocalins are small, abundant, and soluble proteins, their bio-

chemical properties have been characterized in detail. The three-dimensional

protein structure has been solved for several of them by x-ray crystallography

(Chapter 11).

† Some lipocalins have been implicated in human disease.

ORGANIZATION OF THE CHAPTERS

The chapters of this book are intended to provide both the theory of bioinformatics

subjects as well as a practical guide to using computer databases and algorithms. Web

resources are provided throughout each chapter. Chapters end with brief sections

called Perspective and Pitfalls. The perspective feature describes the rate of growth

of the subject matter in each chapter. For example, a perspective on Chapter 2

(access to sequence information) is that the amount of DNA sequence data deposited

in GenBank is undergoing an explosive rate of growth. In contrast, an area such as

pairwise sequence alignment, which is fundamental to the entire field of bioinfor-

matics (Chapter 3), was firmly established in the 1970s and 1980s. But even for

fundamental operations such as multiple sequence alignment (Chapter 6) and mol-

ecular phylogeny (Chapter 7) dozens of novel, ever-improving approaches are intro-

duced at a rapid rate. For example, hidden Markov models and Bayesian approaches

are being applied to a wide range of bioinformatics problems.

The pitfalls section of each chapter describes some common difficulties encoun-

tered by biologists using bioinformatics tools. Some errors might seem trivial, such as

searching a DNA database with a protein sequence. Other pitfalls are more subtle,

such as artifacts caused by multiple sequence alignment programs depending upon

the type of paramters that are selected. Indeed, while the field of bioinformatics

depends substantially on analyzing sequence data, it is important to recognize that

there are many categories of errors associated with data generation, collection,

storage, and analysis. We address the problems of false positive and false negative

results in a variety of searches and analyses.

Each chapter offers multiple-choice quizzes, which test your understanding of

the chapter materials. There are also problems that require you to apply the concepts

presented in each chapter. These problems may form the basis of a computer labora-

tory for a bioinformatics or genomics course.

The references at the end of each chapter are accompanied by an annotated list

of recommended articles. This suggested reading section includes classic papers

that show how the principles described in each chapter were discovered. Particularly

helpful review articles and research papers are highlighted.

A TEXTBOOK FOR COURSES ON BIOINFORMATICS

AND GENOMICS

This is a textbook for two separate courses: one is an introduction to bioinformatics

(and uses Chapters 1 to 12 [Parts 1 and 2]), and one is an introduction to genomics

(and uses Chapters 13 to 20 [Part 3]). In a sense, the discipline of bioinformatics
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serves biology, facilitating ways of posing and then answering questions about pro-

teins, genes, and genomes. The third part of this book surveys the tree of life from

the perspective of genes and genomes. Progress in this field could not occur at its cur-

rent pace without the bioinformatics tools described in the first parts of the book.

Often, students have a particular research area of interest, such as a gene, a phys-

iological process, a disease, or a genome. It is hoped that in the process of studying

globins and other specific proteins and genes throughout this book, students can

also simultaneously apply the principles of bioinformatics to their own research

questions.

In teaching courses on bioinformatics and genomics at Johns Hopkins, it has

been helpful to complement lectures with computer labs. These labs and many

other resources are posted on the website for this book (Q http://www.bioinfbook.

org). That site contains many relevant URLs, organized by chapter. Each chapter

makes references to web documents posted on the site. For example, if you see a

figure of a phylogenetic tree or a sequence alignment, you can easily retrieve the

raw data and make the figure yourself.

Another feature of the Johns Hopkins bioinformatics course is that each student

is required to discover a novel gene by the last day of the course. The student must

begin with any protein sequence of interest and perform database searches to identify

genomic DNA that encodes a protein no one has described before. This problem is

described in detail in Chapter 5 (and summarized in web document 5.15 atQ http://

www.bioinfbook.org/chapter5). The student thus chooses the name of the gene and

its corresponding protein and describes information about the organism and evi-

dence that the gene has not been described before. Then, the student creates a mul-

tiple sequence alignment of the new protein (or gene) and creates a phylogenetic tree

showing its relation to other known sequences.

Each year, some beginning students are slightly apprehensive about accomplish-

ing this exercise, but in the end all of them succeed. A benefit of this exercise is that it

requires a student to actively use the principles of bioinformatics. Most students

choose a gene (or protein) relevant to their own research area, while others find

new lipocalins or globins.

For a genomics course, students select a genome of interest and describe five

aspects in depth (described at the start of Chapter 13): (1) What are the basic feature

of the genome, such as its size, number of chromosomes, and other features? (2) A

comparative genomic analysis is performed to study the relation of the species to

its neighbors. (3) The student describes biological principles that are learned through

genome analysis. (4) The human disease relevance is described. (5) Bioinformatics

aspects are described, such as key databases or algorithms used for genome analysis.

Teaching bioinformatics and genomics is notable for the diversity of students

learning this new discipline. Each chapter provides background on the subject

matter. For more advanced students, key research papers are cited at the end of

each chapter. These papers are technical, and reading them along with the chapters

will provide a deeper understanding of the material. The suggested reading section

also includes review articles.

KEY BIOINFORMATICS WEBSITES

The field of bioinformatics relies heavily on the Internet as a place to access sequence

data, to access software that is useful to analyze molecular data, and as a place to inte-

grate different kinds of resources and information relevant to biology. We will

Web material for this book is

available at Q http//www.wiley.

com/go/pevsnerbioinformatics.
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describe a variety of websites. Initially, we will focus on the three main publicly acces-

sible databases that serve as repositories for DNA and protein data. In Chapter 2

we begin with the National Center for Biotechnology Information (NCBI), which

hosts GenBank. The NCBI website offers a variety of other bioinformatics-related

tools. We will gradually introduce the European Bioinformatics Institute (EBI)

web server, which hosts a complementary DNA database (EMBL, the European

Molecular Biology Laboratory database). We will also introduce the DNA

Database of Japan (DDBJ). The research teams at GenBank, EMBL, and DDBJ

share sequence data on a daily basis. Throughout this book we will highlight the

key genome browser hosted by the University of California, Santa Cruz (UCSC).

A general theme of the discipline of bioinformatics is that many databases are closely

interconnected. Throughout the chapters of this book we will introduce over 1,000

additional websites that are relevant to bioinformatics.

SUGGESTED READING
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Chapter 2 introduces ways to access molecular data, including information about DNA and proteins. One of the first scientists to

study proteins was Iacopo Bartolomeo Beccari (1682–1776), an Italian philosopher and physician who discovered protein as a

component of vegetables. This image is from page 123 of the Bologna Commentaries, published in 1745 and written by a secretary

on the basis of a 1728 lecture by Beccari. Beccari separated gluten (plant proteins) from wheaten flour. The passage beginning

Res est parvi laboris (“it is a thing of little labor”; see solid arrowhead) is translated as follows (Beach, 1961, p. 362):

“It is a thing of little labor. Flour is taken of the best wheat, moderately ground, the bran not passing though the sieve, for it is

necessary that this be fully purged away, so that all traces of a mixture have been removed. Then it is mixed with pure water and

kneaded. What is left by this procedure, washing clarifies. Water carries off with itself all it is able to dissolve, the rest remains

untouched. After this, what the water leaves is worked with the hands, and pressed upon in the water that has stayed. Slowly

it is drawn together in a doughy mass, and beyond what is possible to be believed, tenacious, a remarkable sort of glue, and

suited to many uses; and what is especially worthy of note, it cannot any longer be mixed with water. The other particles,

which water carries away with itself, for some time float and render the water milky; but after a while they are carried to the

bottom and sink; nor in any way do they adhere to each other; but like powder they return upward on the lightest contact.

Nothing is more like this than starch, or rather this truly is starch. And these are manifestly the two sorts of bodies which

Beccari displayed through having done the work of a chemist and he distinguished them by their names, one being appropriately

called glutinous (see open arrowhead) and the other amylaceous.”

In addition to purifying gluten, Beccari identified it as an “animal substance” in contrast to starch, a “vegetable substance,”

based on differences on how they decomposed with heat or distillation. A century later Jons Jakob Berzelius proposed the word

protein, and he also posited that plants form “animal materials” that are eaten by herbivorous animals.



2

Access to Sequence Data and
Literature Information

INTRODUCTION TO BIOLOGICAL DATABASES

All living organisms are characterized by the capacity to reproduce and evolve. The

genome of an organism is defined as the collection of DNA within that organism,

including the set of genes that encode proteins. In 1995 the complete genome of a

free-living organism was sequenced for the first time, the bacterium Haemophilus

influenzae (Fleischmann et al., 1995; Chapters 13 and 15). In the few years since

then the genomes of thousands of organisms have been completely sequenced, ush-

ering in a new era of biological data acquisition and information accessibility. Publicly

available databanks now contain billions of nucleotides of DNA sequence data col-

lected from over 260,000 different organisms (Kulikova et al., 2007). The goal of

this chapter is to introduce the databases that store these data and strategies to extract

information from them.

Three publicly accessible databases store large amounts of nucleotide and

protein sequence data: GenBank at the National Center for Biotechnology Infor-

mation (NCBI) of the National Institutes of Health (NIH) in Bethesda (Benson

et al., 2009), the DNA Database of Japan (DDBJ) at the National Institute of
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Genetics in Mishima (Miyazaki et al., 2004), and the European Molecular Biology

Laboratory (EMBL) Nucleotide Sequence Database at the European Bioinformatics

Institute (EBI) in Hinxton, England (Kulikova et al., 2007). These three databases

share their sequence data daily. They are coordinated by the International Nucleotide

Sequence Database Collaboration (INSDC), which announced in August 2005 that

the total amount of sequenced DNA had reached 100 billion base pairs.

In addition to GenBank, DDBJ, and EBI, there are other categories of bioinfor-

matics databases that contain DNA and/or protein sequence data:

† Whole-genome shotgun (WGS) sequences and the Short Read Archive

(Chapter 13 and discussed below) are not formally part of GenBank, but con-

tain even more DNA sequences.

† Databases such as Ensembl, NCBI, and the genome browser at the University

of California, Santa Cruz (UCSC) provide annotation of the human genome

and other genomes (see below).

† Some contain nucleotide and/or protein sequence data that are relevant to a

particular gene or protein (such as kinases). Other databases are specific to

particular chromosomes or organelles (Chapters 16 to 18).

† Avariety of databases include information on sequences sharing common prop-

erties that have been grouped together. For example, the Protein Family (Pfam)

database consists of several thousand families of homologous proteins.

† Hundreds of databases contain sequence information related to genes that are

mutated in human disease. These databases are described in Chapter 20.

† Many specialized databases focus on particular organisms (such as yeast);

examples are listed in the section on genomes (Chapters 13 to 20).

† There are databases devoted to particular types of nucleic acids or proteins or

properties of these macromolecules. Examples are databases of gene expression

(see Chapters 8 and 9), databases of transfer RNA (tRNA) molecules, data-

bases of tissue-specific protein expression (see Chapter 10), or databases of

gene regulatory regions such as 30-untranslated regions (see Chapter 16).

Some bioinformatics databases do not contain nucleotide or protein sequence

data as their main function. Instead, they contain information that may link to

individual genes or proteins.

† Literature databases contain bibliographic references relevant to biological

research and in some cases contain links to full-length articles. We will

describe two of these databases, PubMed and the Sequence Retrieval

System (SRS), in this chapter.

† Structure databases contain information on the structure of proteins and other

macromolecules. These databases are described in Chapter 10 (on proteins)

and Chapter 11 (on protein structure).

GENBANK: DATABASE OF MOST KNOWN NUCLEOTIDE AND

PROTEIN SEQUENCES

While the sequence information underlying DDBJ, EBI, and GenBank is equivalent,

we begin our discussion with GenBank. GenBank is a database consisting of most

GenBank is at Q http://www.

ncbi.nlm.nih.gov/Genbank;

DDBJ is at Q http://www.ddbj.

nig.ac.jp/; and EMBL/EBI is at

Q http://www.ebi.ac.uk/. You can

visit the INSDC at Qhttp://www.

insdc.org/. By November 2008

the total number of sequenced

bases had passed 97 billion.

Pfam (Q http://www.sanger.ac.

uk/Software/Pfam/) and other

related databases are described in

Chapters 6 (multiple sequence

alignment) and 10 (protein

families).
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known public DNA and protein sequences (Benson et al., 2009). In addition to stor-

ing these sequences, GenBank contains bibliographic and biological annotation.

Data from GenBank are available free of charge from the National Center for

Biotechnology Information (NCBI) in the National Library of Medicine at the

NIH (Wheeler et al., 2007).

Amount of Sequence Data
GenBank currently contains about 100 billion nucleotides from 100 million

sequences (release 168). The growth of GenBank in terms of both nucleotides of

DNA and number of sequences from 1982 to 2008 is summarized in Fig. 2.1a.

Over the period 1982 to the present, the number of bases in GenBank has doubled

approximately every 18 months.

The WGS division consists of sequences generated by high throughput sequen-

cing efforts. Since 2002, WGS sequences have been available at NCBI, but they are

not considered part of the GenBank releases. As indicated in Fig. 2.1, the number of

base pairs of DNA included among WGS sequences (136 billion base pairs in release

168, October 2008) is larger than the size of GenBank.

While the amount of sequence data in GenBank has risen rapidly, the arrival of

next-generation sequencing technology, described in Chapter 13, is instantly leading
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FIGURE 2.1. (a) Growth of Gen-
Bank from release 3 (1982) to
release 168 (October 2008). Data
were plotted from the GenBank
release notes at Q http://www.ncbi.
nlm.nih.gov/Genbank/. Additional
DNA sequences from the whole
genome shotgun sequencing projects,
begun in 2002, are shown. (b) The
amount of sequenced DNA is vastly
increasing. Bar 1 indicates the
amount of DNA in GenBank plus
WGS as shown in panel (a). Bar 2
indicates the amount of DNA
sequence (492 gigabases) reported
in three research articles published
in a single issue of Nature (Bentley
et al., 2008; Wang et al., 2008; Ley
et al., 2008). Bar 3 indicates the
amount of DNA sequence (2 tera-
bases) expected to be generated by
the end of 2008 as part of the 1000
Genomes Project (Chapter 13); 1 ter-
abase was reported by the Wellcome
Trust Sanger Institute in a six-
month period in 2008. Bar 4 indi-
cates the amount of sequence data
(10 terabases) it is anticipated will
be generated in 2009 alone by a typi-
cal major genome sequencing center.

Between December 2007 and

December 2008, over 15 billion

base pairs (bp) of DNA were

added to GenBank, an average of

42 million bp per day. In com-

parison, the first eukaryotic

genome to be completed

(Saccharomyces cerevisiae; Chapter

17) is about 13 million bp in size.
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to a vast new influx of DNA sequence data (Fig. 2.1b). Next-generation sequencing

involves the generation of massive amounts of sequence data, such as 1 billion bases

(1 Gb) in a single experiment that is completed in a matter of days. In a single issue of

the journal Nature in November 2008 Bentley et al. described the sequencing of an

individual of Nigerian ancestry, Wang et al. reported the DNA sequence of an

Asian individual, and Ley et al. analyzed the genome sequence of a tumor sample.

Together, these three papers involved the generation and analysis of 492 gigabases

(Gb) of DNA sequence. By the end of 2008 the 1000 Genomes Project generated

several terabases of data. For major sequencing centers (such as those at the

Wellcome Trust Sanger Institute, Beijing Genomics Institute Shenzhen, the Broad

Institute of MIT and Harvard, Washington University School of Medicine’s

Genome Sequencing Center, and Baylor College of Medicine’s Human Genome

Sequencing Center) it is estimated that each will generate approximately 10 terabases

in the year 2009. According to a Wellcome Trust Sanger Institute press release in

2008, that center now produces as much sequence data every 2 minutes as was gen-

erated in the first five years at GenBank. Thus the amount of DNA sequence gener-

ated by next-generation sequencing technologies has already dwarfed the amount of

sequence in GenBank. Such data are available through the Trace Archive at NCBI

and the Ensembl Trace Server at EBI, including the Short Read Archive that was

initiated in 2007.

Organisms in GenBank
Over 260,000 different species are represented in GenBank, with over 1000 new

species added per month (Benson et al., 2009). The number of organisms represented

in GenBank is shown in Table 2.1. We will define the bacteria, archaea, and eukaryotes

in detail in Chapters 13 to 18. Briefly, eukaryotes have a nucleus and are often multi-

cellular, whereas bacteria do not have a nucleus. Archaea are single-celled organisms,

distinct from eukaryotes and bacteria, which constitute a third major branch of life.

Viruses, which contain nucleic acids (DNA or RNA) but can only replicate in a host

cell, exist at the borderline of the definition of living organisms.

We have seen so far that GenBank is very large and growing rapidly. From

Table 2.1 we see that the organisms in GenBank consist mostly of eukaryotes. Of

the microbes, there are currently over 25 times more bacteria than archaea

represented in GenBank.

TABLE 2-1 Taxa Represented in GenBank
Ranks: Higher Taxa Genus Species Lower Taxa Total

Archaea 89 106 502 105 802

Bacteria 996 1,857 13,973 4,973 21,799

Eukaryota 15,205 45,066 167,764 13,200 241,235

Fungi 1,096 3,307 18,699 1,058 24,160

Metazoa 11,113 27,222 73,062 6,643 118,040

Viridiplantae 1,849 12,557 69,729 4,869 89,004

Viruses 445 294 5,054 33,909 39,702

All taxa 16,756 47,331 191,956 52,217 308,260

Source: From Q http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi (November 2008).

You can download all of the

sequence data in GenBank at the

website Q ftp://ftp.ncbi.nih.gov/
genbank. For release 158.0 in

February 2007, the total size of

these files is about 250 gigabytes

(250 � 109 bytes). By comparison,

all the words in the United States

Library of Congress add up to 20

terabytes (20 � 1012 bytes; 20 tril-

lion bytes). And the particle accel-

erator used by physicists at CERN

near Geneva (Q http://public.web.

cern.ch/Public/) collects peta-

bytes of data each year (1015 bytes;

1 quadrillion bytes).
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The number of entries and bases of DNA/RNA for the 20 most sequenced

organisms in GenBank is provided in Table 2.2 (excluding chloroplast and mitochon-

drial sequences). This list includes some of the most common model organisms that

are studied in biology. Notably, the scientific community is studying a series of mam-

mals (e.g., human, mouse, cow), other vertebrates (chicken, frog), and plants (corn,

rice, bread wheat, wine grape). Different species are useful for a variety of different

studies. Bacteria, archaea, and viruses are absent from the list in Table 2.2 because

they have relatively small genomes.

To help organize the available information, each sequence name in a GenBank

record is followed by its data file division and primary accession number.

(Accession numbers are defined below.) The following codes are used to designate

the data file divisions:

1. PRI: primate sequences

2. ROD: rodent sequences

3. MAM: other mammalian sequences

4. VRT: other vertebrate sequences

5. INV: invertebrate sequences

6. PLN: plant, fungal, and algal sequences

7. BCT: bacterial sequences

8. VRL: viral sequences

9. PHG: bacteriophage sequences

TABLE 2-2 TwentyMost SequencedOrganisms in GenBank
Entries Bases Species Common Name

11,550,460 13,148,670,755 Homo sapiens Human

7,255,650 8,361,230,436 Mus musculus Mouse

1,757,685 6,060,823,765 Rattus norvegicus Rat

2,086,880 5,235,078,866 Bos taurus Cow

3,181,318 4,600,009,751 Zea mays Corn

2,489,204 3,551,438,061 Sus scrofa Pig

1,591,342 2,978,804,803 Danio rerio Zebrafish

1,205,529 1,533,859,717 Oryza sativa Rice

228,091 1,352,737,662 Strongylocentrotus purpuratus Purple sea urchin

1,673,038 1,142,531,302 Nicotiana tabacum Tobacco

1,413,112 1,088,892,839 Xenopus (Silurana) Western clawed frog

212,967 996,533,885 Pan troglodytes Chimpanzee

780,860 913,586,921 Drosophila melanogaster Fruit fly

2,211,104 912,500,625 Arabidopsis thaliana Thale cress

650,374 905,797,007 Vitis vinifera Wine grape

804,246 871,336,795 Gallus gallus Chicken

77,069 803,847,320 Macaca mulatta Rhesus macaque

1,215,319 748,031,972 Ciona intestinalis Sea squirt

1,224,224 744,373,069 Canis lupus Dog

1,725,913 680,988,452 Glycine max Soybean

Source: From Q ftp://ftp.nebinith.gov/genbank/gbrel.txt (GenBank release 168.0, October 2008).

We will discuss how genomes of

various organisms are selected

for complete sequencing in

Chapter 13.

The International Human

Genome Sequencing Consortium

adopted the Bermuda Principles

in 1996, calling for the rapid

release of raw genomic sequence

data. You can read about recent

versions of these principles at

Q http://www.genome.gov/
10506376.

The terms STS, GSS, EST, and

HTGS are defined bellow.
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10. SYN: synthetic sequences

11. UNA: unannotated sequences

12. EST: EST sequences (expressed sequence tags)

13. PAT: patent sequences

14. STS: STS sequences (sequence-tagged sites)

15. GSS: GSS sequences (genome survey sequences)

16. HTG: HTGS sequences (high throughput genomic sequences)

17. HTC: HTC sequences (high throughput cDNA sequences)

18. ENV: environmental sampling sequences

Types of Data in GenBank
There is an enormous number of molecular sequences in GenBank. We will next look

at some of the basic kinds of data present in GenBank. Afterward, we will address

strategies to extract the data you want from GenBank.

We start with an example. We want to find out the sequence of human beta

globin. A fundamental distinction is that DNA, RNA-based, and protein sequences

are stored in discrete databases. Furthermore, within each database, sequence

data are represented in a variety of forms. For example, beta globin may be described

at the DNA level (e.g. as a gene), at the RNA level (as a messenger RNA [mRNA]

transcript), and at the protein level (see Fig. 2.2). Because RNA is relatively

unstable, it is typically converted to complementary DNA (cDNA), and a variety

FIGURE 2.2. Types of sequence
data in GenBank and other data-
bases using human beta globin as
an example. Note that “globin”
may refer to a gene or other DNA
feature, an RNA transcript (or
its corresponding complementary
DNA), or a protein. There are
specialized databases correspond-
ing to each of these three levels.
See text for abbreviations. There
are many other databases (not
listed) that are not part of
GenBank and NCBI; note that
SwissProt, PDB, and PIR are
protein databases that are indepen-
dent of GenBank. The raw nucleo-
tide sequence data in GenBank,
DDBJ, and EBI are equivalent.

GenBank DNA databases
containing beta globin data
non-redundant (nr)
dbGSS
dbHTGS
dbSTS

GenBank DNA databases,
derived from RNA,
containing beta globin data
Entrez Gene
dbEST
UniGene
Gene Expression Omnibus

Protein databases
containing beta globin data
Entrez Protein
non-redundant (nr)
UniProt
Protein Data Bank
SCOP
CATH

DNA RNA

cDNA

protein

Beta globin is sometimes called

hemoglobin-beta. In general, a

gene does not always have the

same name as the corresponding

protein. Indeed there is no such

thing as a “hemoglobin gene”

because globin genes encode

globin proteins, and the combi-

nation of these globins with heme

forms the various types of hemo-

globin. Often, multiple investi-

gators study the same gene or

protein and assign different

names. The human genome

organization (HUGO) Gene

Nomenclature Committee

(HGNC) has the critical task of

assigning official names to genes

and proteins. See Q http://www.

gene.ucl.ac.uk/nomenclature/.
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of databases contain cDNA sequences corresponding to RNA transcripts. Thus for

our example of beta globin, the various forms of sequence data include the following.

Genomic DNA Databases
† Beta globin is part of a chromosome. In the case of human RBP we will see that

its gene is situated on chromosome 11 (Chapter 16, on the eukaryotic

chromosome).

† Beta globin may be a part of a large fragment of DNA such as a cosmid, bac-

terial artificial chromosome (BAC), or yeast artificial chromosome (YAC) that

may contain several genes. A BAC is a large segment of DNA (typically about

200,000 base pairs [bp], or 200 kilobases [kb]) that is cloned into bacteria.

Similarly, YACs are used to clone large amounts of DNA into yeast. BACs

and YACs are useful vectors with which to sequence large portions of genomes.

† Beta globin is present in databases as a gene. The gene is the functional unit of

heredity (further defined in Chapter 16), and it is a DNA sequence that typi-

cally consists of regulatory regions, protein-coding exons, and introns. Often,

human genes are 10 to 100 kb in size.

† Beta globin is present as a sequence-tagged site (STS)—that is, as a small frag-

ment of DNA (typically 500 bp long) that is used to link genetic and physical

maps and which is part of a database of sequence-tagged sites (dbSTS).

cDNA Databases Corresponding to Expressed Genes
Beta globin is represented in databases as an expressed sequence tag (EST), that is, a

cDNA sequence derived from a particular cDNA library. If one obtains a tissue such

as liver, purifies RNA, then converts the RNA to the more stable form of cDNA,

some of the cDNA clones contained in that cDNA are likely to encode beta globin.

Expressed Sequence Tags (ESTs)
The database of expressed sequence tags (dbEST) is a division of GenBank that con-

tains sequence data and other information on “single-pass” cDNA sequences from a

number of organisms (Boguski et al., 1993). An EST is a partial DNA sequence of a

cDNA clone. All cDNA clones, and thus all ESTs, are derived from some specific

RNA source such as human brain or rat liver. The RNA is converted into a more

stable form, cDNA, which may then be packaged into a cDNA library (refer to

Fig. 2.2). ESTs are typically randomly selected cDNA clones that are sequenced

on one strand (and thus may have a relatively high sequencing error rate). ESTs

are often 300 to 800 bp in length. The earliest efforts to sequence ESTs resulted in

the identification of many hundreds of genes that were novel at the time (Adams

et al., 1991).

In November, 2008 GenBank had over 58,000,000 ESTs. We discuss ESTs

further in Chapter 8.

Currently, GenBank divides ESTs into three major categories: human, mouse,

and other. Table 2.3 shows the 10 organisms from which the greatest number of

ESTs has been sequenced. Assuming that there are 22,000 human genes (see

Chapter 19) and given that there are about 8.1 million human ESTs, there is

currently an average of over 300 ESTs corresponding to each human gene.

Human chromosome 11, which is

a mid-sized chromosome, con-

tains about 1800 genes and is

about 134,000 kilobases (kb) in

length.

In GenBank, the convention is to

use the four DNA nucleotides

when referring to DNA derived

from RNA.
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ESTs and UniGene
The goal of the UniGene (unique gene) project is to create gene-oriented clusters by

automatically partitioning ESTs into nonredundant sets. Ultimately there should be

one UniGene cluster assigned to each gene of an organism. There may be as few

as one EST in a cluster, reflecting a gene that is rarely expressed, to tens of thousands

of ESTs, associated with a highly expressed gene. We discuss UniGene clusters

further in Chapter 8 (on gene expression). There are over 100 organisms currently

represented in UniGene, 71 of which are listed in Table 2.4.

For human beta globin, there is only a single UniGene entry. This entry currently

has 2400 human ESTs that match the beta globin gene. This large number of ESTs

reflects how abundantly the beta globin gene has been expressed in cDNA libraries

that have been sequenced. A UniGene cluster is a database entry for a gene contain-

ing a group of corresponding ESTs (Fig. 2.3).

There are now thought to be approximately 22,000 human genes (see Chapter

19). One might expect an equal number of UniGene clusters. However, in practice,

there are more UniGene clusters than there are genes—currently, there are about

120,000 human UniGene clusters. This discrepancy could occur for three reasons.

(1) Clusters of ESTs could correspond to distinct regions of one gene. In that case

there would be two (or more) UniGene entries corresponding to a single gene

(see Fig. 2.3). Two UniGene clusters may properly cluster into one, and the number

of UniGene clusters may collapse over time. (2) In the past several years it has

become appreciated that much of the genome is transcribed at low levels (see

Chapter 8). Currently, 40,000 human UniGene clusters consist of a single EST, and

over 76,000 UniGene clusters consist of just one to four ESTs. These could reflect

authentic genes that have not yet been appreciated by other means of gene identifi-

cation. Alternatively they may represent rare transcription events of unknown biological

relevance. (3) Some DNA may be transcribed during the creation of a cDNA library

without corresponding to an authentic transcript. Thus it is a cloning artifact. We dis-

cuss the criteria for defining a eukaryotic gene in Chapter 16. Alternative splicing

(Chapter 8) may introduce apparently new clusters of genes because the spliced

exon is not homologous to the rest of the sequence.

TABLE 2-3 TopTenOrganisms forWhich ESTsHaveBeen Sequenced
Organisms Common Name Number of ESTs

Homo sapiens Human 8,138,094

Mus musculus þ domesticus Mouse 4,850,602

Zea mays Maize 2,002,585

Arabidopsis thaliana Thale cress 1,526,133

Bos taurus Cattle 1,517,139

Sus scrofa Pig 1,476,546

Danio rerio Zebrafish 1,379,829

Glycine max Soybean 1,351,356

Xenopus (Silurana) tropicalis Western clawed frog 1,271,375

Oryza sativa Rice 1,220,908

Many thousand of cDNA libraries have been generated from a variety of organism, and the total number of
public entries is currently over 58 million.
Source: Q http://www.nebi.nlm.nin.gov/dbEST/dbEST_summary.html (dbEST release 022307,
November 2008).

To find the entry for beta globin,

go to Q http://www.ncbi.nlm.nih.

gov, select All Databases then click

UniGene, select human, then

enter beta globin or HBB. The

UniGene accession number is

Hs.523443; note that Hs refers to

Homo sapiens. To see the DNA

sequence of a typical EST, click on

an ESTaccession number from

the UniGene page (e.g.,

AA970968.1), then follow the link

to the GenBank entry in Entrez

Nucleotide.

We are using beta globin as a

specific example. If you want to

type “globin” as a query, you will

simply get more results from any

database—in UniGene, you will

find over 100 entries correspond-

ing to a variety of globin genes in

various species.

The UniGene project has become

extremely important in the effort

to identify protein-coding genes in

newly sequenced genomes. We

discuss this in Chapters 13 and 16.
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TABLE 2-4 Seventy-OneOrganisms Represented in UniGene
Group No. Species

Chordata: Mammalia 12 Bos taurus (cattle), Canis familiaris (dog), Equus caballus
(horse), Homo sapiens (human), Macaca fascicularis (crab-
eating macaque), Macaca mulatta (rhesus monkey), Mus
musculus (mouse), Oryctolagus cuniculus (rabbit), Ovis
aries (sheep), Rattus norvegicus (Norway rat), Sus scrofa
(pig), Trichosurus vulpecula (silver-gray brushtail possum)

Chordata:
Actinopterygii

8 Danio rerio (zebrafish), Fundulus heteroclitus (killifish),
Gasterosteus aculeatus (three spined stickleback),
Oncorhynchus mykiss (rainbow trout), Oryzias latipes
(Japanese medaka), Pimephales promelas (fathead
minnow), Salmo salar (Atlantic salmon), Takifugu rubripes
(pufferfish)

Chordata: Amphibia 2 Xenopus laevis (African clawed frog), Xenopus tropicalis
(western clawed frog)

Chordata: Ascidiacea 3 Ciona intestinalis, Ciona savignyi, Molgula tectiformis

Chordata: Aves 2 Gallus gallus (chicken), Taeniopygia guttata (zebra finch)

Chordata:
Cephalochordata

1 Branchiostoma floridae (Florida lancelet)

Chordata: Hyperoartia 1 Petromyzon marinus (sea lamprey)

Echinodermata:
Echinoidea

1 Strongylocentrotus purpuratus (purple sea urchin)

Arthopoda: Insecta 6 Aedes aegypti (yellow fever mosquito), Anopheles gambiae
(African malaria mosquito), Apis mellifera (honey bee),
Bombyx mori (domestic silkworm), Drosophila
melanogaster (fruit fly), Tribolium castaneum (red flour
beetle)

Nematoda:
Chromadorea

1 Caenorhabditis elegans (nematode)

Platyhelminthes:
Trematoda

2 Schistosoma japonicum, Schistosoma mansoni

Cnidaria: Hydrozoa 1 Hydra magnipapillata

Streptophyta: Bryopsida 1 Physcomitrella patens

Streptophyta:
Coniferopsida

3 Picea glauca (white spruce), Picea sitchensis (Sitka spruce),
Pinus taeda (loblolly pine)

Streptophyta:
Eudicotyledons

18 Aquilegia formosa � Aquilegia pubescens, Arabidopsis thaliana
(thale cress), Brassica napus (rape), Citrus sinensis
(Valencia orange), Glycine max (soybean), Gossypium
hirsutum (upland cotton), Gossypium raimondii,
Helianthus annuus (sunflower), Lactuca sativa (garden
lettuce), Lotus japonicus, Malus � domestica (apple),
Medicago truncatula (barrel medic), Nicotiana tabacum
(tobacco), Populus tremula � Populus tremuloides, Populus
trichocarpa (western balsam poplar), Solanum
lycopersicum (tomato), Solanum tuberosum (potato), Vitis
vinifera (wine grape)

Streptophyta: Liliopsida 6 Hordeum vulgare (barley), Oryza sativa (rice), Saccharum
officinarum (sugarcane), Sorghum bicolor (sorghum),
Triticum aestivum (wheat), Zea mays (maize)

Chlorophyta:
Chlorophyceae

1 Chlamydomonas reinhardtii

Dictyosteliida:
Dictyostelium

1 Dictyostelium discoideum (slime mold)

Apicomplexa: Coccidia 1 Toxoplasma gondii

Source: UniGene Q http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼unigene (November 2008).
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Sequence-Tagged Sites (STSs)
The dbSTS is an NCBI site containing STSs, which are short genomic landmark

sequences for which both DNA sequence data and mapping data are available

(Olson et al., 1989). STSs have been obtained from several hundred organisms,

including primates and rodents (Table 2.5). A typical STS is approximately the

size of an EST. Because they are sometimes polymorphic, containing short sequence

repeats (Chapter 16), STSs can be useful for mapping studies.

Genome Survey Sequences (GSSs)
The GSS division of GenBank is similar to the EST division, except that its

sequences are genomic in origin, rather than cDNA (mRNA). The GSS division con-

tains the following types of data (see Chapters 13 and 16):

† Random “single-pass read” genome survey sequences

† Cosmid/BAC/YAC end sequences

† Exon-trapped genomic sequences

† The Alu polymerase chain reaction (PCR) sequences

TABLE 2-5 Organisms from Which STSsHave BeenObtained
Organism Approximate Number of STSs

Homo sapiens 324,000

Pan troglodytes 161,000

Macaca mulatta 72,000

Mus musculus 56,000

Rattus norvegicus 50,000

These are the organisms with the most UniSTS entries.
Source: Q http://www.ncbi.nlm.nih.gov/genome/sts/unists_stats.html (November 2008).

FIGURE 2.3. Schematic descrip-
tion of UniGene clusters.
Expressed sequence tags (ESTs)
are mapped to a particular gene
and to each other. The number of
ESTs that constitute a UniGene
cluster ranges from 1 to tens of
thousands; on average there are
300 human ESTs per cluster.
Sometimes, as shown in the dia-
gram, separate UniGene clusters
correspond to distinct regions of a
gene. Eventually, as genome
sequencing increases our ability to
define and annotate full-length
genes, these two UniGene clusters
would be collapsed into one single
cluster. Ultimately, the number of
UniGene clusters should equal the
number of genes in the genome.

gene

ESTs

UniGene 
cluster

ESTs

UniGene 
cluster

As of November 2008 there are

1.3 million STSs, derived from

300 organisms.

There are currently 24 million

GSS entries from over 800 organ-

isms (November 2008). The top

four organisms (Table 2.6)

account for about a third of all

entries. This database is accessed

via Q http://www.ncbi.nlm.nih.

gov/projects/dbGSS/.
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All searches of the Entrez Nucleotide database provide results that are divided

into three sections: GSS, ESTs, and “CoreNucleotide” (that is, the remaining

nucleotide sequences). Recent holdings of the GSS database are listed in Table 2.6.

High Throughput Genomic Sequence (HTGS)
The HTGS division was created to make “unfinished” genomic sequence data

rapidly available to the scientific community. It was done in a coordinated effort

between the three international nucleotide sequence databases: DDBJ, EMBL,

and GenBank. The HTGS division contains unfinished DNA sequences generated

by the high throughput sequencing centers.

Protein Databases
The name beta globin may refer to the DNA, the RNA, or the protein. As a protein,

beta globin is present in databases such as the nonredundant (nr) database of

GenBank (Benson et al., 2009), the SwissProt database (Boeckmann et al., 2003),

UniProt (UniProt Consortium 2007), and the Protein Data Bank (Kouranov

et al., 2006).

We have described some of the basic kinds of sequence data in GenBank. We will

next turn our attention to Entrez and the other programs in NCBI and elsewhere,

which allow you to access GenBank, EMBL, and DDBJ data and related literature

information. In particular, we will introduce the NCBI website, one of the main

web-based resources in the field of bioinformatics.

NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION

Introduction to NCBI: Home Page
The NCBI creates public databases, conducts research in computational biology,

develops software tools for analyzing genome data, and disseminates biomedical

information (Wheeler et al., 2007). The NCBI home page is shown in Fig. 2.4.

Across the top bar of the website, there are seven categories: PubMed, Entrez,

BLAST, OMIM, Books, Taxonomy, and Structure.

PubMed
PubMed is the search service from the National Library of Medicine (NLM) that

provides access to over 18 million citations in MEDLINE (Medical Literature,

TABLE 2-6 SelectedOrganisms fromWhichGSSsHaveBeenObtained. Foradiscussionof
MetagenomesseeChapter13
Organism Approximate Number of Sequences

Marine metagenome 2,643,000

Zea mays þ subsp. mays (maize) 2,091,000

Mus musculus þ domesticus (mouse) 1,864,000

Nicotiana tabacum (tobacco) 1,421,000

Homo sapiens (human) 1,214,000

Canis lupus familiaris (dog) 854,000

Source: Q http://www.ncbi.nlm.nih.gov/dbGSS/dbGSS_summary.html (November 2008).

The HTGS home page is

Q http://www.ncbi.nlm.nih.gov/
HTGS/ and its sequences can be

searched via BLAST (see

Chapters 4 and 5).

Extremely useful tutorials are avail-

able for Entrez, PubMed, and other

NCBI resources at Q http://www.

ncbi.nlm.nih.gov/Education/.

You can also access this from the

education link on the NCBI home

page (Q http://www.ncbi.nlm.

nih.gov).
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Analysis, and Retrieval System Online) and other related databases, with links to

participating online journals.

Entrez
Entrez integrates the scientific literature, DNA and protein sequence databases,

three-dimensional protein structure data, population study data sets, and assemblies

of complete genomes into a tightly coupled system. PubMed is the literature

component of Entrez.

FIGURE 2.4. The main page of
the National Center for Biotechnol-
ogy Information (NCBI) website
(Q http://www.ncbi.nlm.nih.
gov). Across the top bar, sections
include PubMed, Entrez and
Books (described in this chapter),
BLAST (Chapters 3–5),
Taxonomy (Chapters 13–19),
Structure (Chapter 11), and
Online Mendelian Inheritance in
Man (OMIM, Chapter 20). Note
that the left sidebar includes tutor-
ials within the Education section.
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BLAST
BLAST (Basic Local Alignment Search Tool) is NCBI’s sequence similarity search

tool designed to support analysis of nucleotide and protein databases (Altschul

et al., 1990, 1997). BLAST is a set of similarity search programs designed to explore

all of the available sequence databases regardless of whether the query is protein or

DNA. We explore BLAST in Chapters 3 to 5.

OMIM
Online Mendelian Inheritance in Man (OMIM) is a catalog of human genes and gen-

etic disorders. It was created by Victor McKusick and his colleagues and developed

for the World Wide Web by NCBI (Hamosh et al., 2005). The database contains

detailed reference information. It also contains links to PubMed articles and

sequence information. We describe OMIM in Chapter 20 (on human disease).

Books
NCBI offers several dozen books online. These books are searchable, and are linked

to PubMed.

Taxonomy
The NCBI taxonomy website includes a taxonomy browser for the major divisions of

living organisms (archaea, bacteria, eukaryota, and viruses). The site features taxon-

omy information such as genetic codes and taxonomy resources and additional infor-

mation such as molecular data on extinct organisms and recent changes to

classification schemes. We will visit this site in Chapters 7 (on evolution) and 13 to

18 (on genomes and the tree of life).

Structure
The NCBI structure site maintains the Molecular Modelling Database (MMDB), a

database of macromolecular three-dimensional structures, as well as tools for their

visualization and comparative analysis. MMDB contains experimentally determined

biopolymer structures obtained from the Protein Data Bank (PDB). Structure

resources at NCBI include PDBeast (a taxonomy site within MMDB), Cn3D (a

three-dimensional structure viewer), and a vector alignment search tool (VAST)

which allows comparison of structures. (See Chapter 11, on protein structure.)

THE EUROPEAN BIOINFORMATICS INSTITUTE (EBI)

The EBI website is comparable to NCBI in its scope and mission, and it represents a

complementary, independent resource. EBI features six core molecular databases

(Brooksbank et al., 2003), as follows. (1) EMBL-Bank is the repository of DNA

and RNA sequences that is complementary to GenBank and DDBJ (Kulikova

et al., 2007). (2) SWISS-PROT and (3) TrEMBL are two protein databases that

are described further below. (4) MSD is a protein structure database (see Chapter

11). (5) Ensembl is one of the three main genome browsers (described below). (6)

ArrayExpress is one of the two main worldwide repositories for gene expression

The Protein Data Bank (Q http://
www.rcsb.org/pdb/) is the single

worldwide repository for the pro-

cessing and distribution of bio-

logical macromolecular structure

data. We explore the PDB in

Chapter 11.

You can access EBI at QEBI at

http://www.ebi.ac.uk/.
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data, along with the Gene Expression Omnibus at NCBI; both are described in

Chapter 8.

Throughout this book we will focus on both the NCBI and EBI websites. In

many cases those sites begin with similar raw data and then provide distinct ways

of organizing, analyzing, and displaying data across a broad range of bioinformatics

applications. When you work on a problem, such as studying the structure or function

of a particular gene, it is often helpful to explore the wealth of resources on both these

sites. For example, each offers expert functional annotation of particular sequences

and expert curation of the database. The NCBI and EBI websites increasingly

offer an integration of their database resources so that one can link to information

between the two sites with reasonable effort.

ACCESS TO INFORMATION: ACCESSION NUMBERS TO LABEL

AND IDENTIFY SEQUENCES

When you have a problem you are studying that involves any gene or protein, it is

likely that you will need to find information about some database entries. You may

begin your research problem with information obtained from the literature or you

may have the name of a specific sequence of interest. Perhaps you have raw amino

acid and/or nucleotide sequence data; we will explore how to analyze these (e.g.

Chapters 3 to 5). The problem we will address now is how to extract information

about your gene or protein of interest from databases.

An essential feature of DNA and protein sequence records is that they are tagged

with accession numbers. An accession number is a string of about 4 to 12 numbers

and/or alphabetic characters that are associated with a molecular sequence record.

An accession number may also label other entries, such as protein structures or the

results of a gene expression experiment (Chapters 8 and 9). Accession numbers

from molecules in different databases have characteristic formats (Box 2.1). These

formats vary because each database employs its own system. As you explore databases

from which you extract DNA and protein data, try to become familiar with the

different formats for accession numbers. Some of the various databases (Fig. 2.2)

employ accession numbers that tell you whether the entry contains nucleotide or

protein data.

For a typical molecule such as beta globin there are thousands of accession num-

bers (Fig. 2.5). Many of these correspond to ESTs and other fragments of DNA that

match beta globin. How can you assess the quality of sequence or protein data? Some

sequences are full-length, while others are partial. Some reflect naturally occurring

variants such as single nucleotide polymorphisms (SNPs; Chapter 16) or alternatively

spliced transcripts (Chapter 8). Many of the sequence entries contain errors, particu-

larly in the ends of EST reads. When we compare beta globin sequences derived from

mRNA and from genomic DNA, we may expect them to match perfectly (or nearly so),

but as we will see, discrepancies routinely occur.

In addition to accession numbers, NCBI also assigns unique sequence identification

numbers that apply to the individual sequences within a record. GI numbers are assigned

consecutively to each sequence that is processed. For example, the human beta

globin DNA sequence associated with the accession number NM_000518.4 has a

gene identifier GI:28302128. The suffix .4 on the accession number refers to a version

number; NM_000518.3 has a different gene identifier, GI: 13788565.

DNA is usually sequenced on both

strands. However, ESTs are often

sequenced on one strand only, and

thus they have a high error rate. We

will discuss sequencing error rates

in Chapter 13.
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The Reference Sequence (RefSeq) Project
One of the most important recent developments in the management of molecular

sequences is RefSeq. The goal of RefSeq is to provide the best representative

sequence for each normal (i.e., nonmutated) transcript produced by a gene and for

each normal protein product (Pruitt et al., 2009; Maglott et al., 2000). There may

be hundreds of GenBank accession numbers corresponding to a gene, since

GenBank is an archival database that is often highly redundant. However, there

will be only one RefSeq entry corresponding to a given gene or gene product, or sev-

eral RefSeq entries if there are splice variants or distinct loci.

Consider human myoglobin as an example. There are three RefSeq entries

(NM_005368, NM_203377, and NM_203378), each corresponding to a distinct

splice variant. Each splice variant involves the transcription of different exons from

a single gene locus. In this example, all three transcripts happen to encode an iden-

tical protein having the same amino acid sequence. Because the source of the tran-

script varies distinctly, each identical protein sequence is assigned its own protein

accession number (NP_005359, NP_976311, and NP_976312, respectively).

BOX 2-1
Types of Accession Numbers

Type of Record Sample Accession Format

GenBank/EMBL/DDBJ nucleotide

sequence records

One letter followed by five digits, e.g.,

X02775

Two letters followed by six digits, e.g.,

AF025334

GenPept sequence records (which

contain the amino acid translations

from GenBank/EMBL/DDBJ

records that have a coding region

feature annotated on them)

Three letters and five digits, e.g.,

AAA12345

Protein sequence records from

SwissProt and PIR

Usually one letter and five digits, e.g.,

P12345. SwissProt numbers may also

be a mixture of numbers and letters.

Protein sequence records from the

Protein Research Foundation

A series of digits (often six or seven)

followed by a letter, e.g., 1901178A

RefSeq nucleotide sequence records Two letters, an underscore bar, and six

or more digits, e.g., mRNA records

(NM_�): NM_006744; genomic

DNA contigs (NT_�): NT_008769

RefSeq protein sequence records Two letters (NP), an underscore bar, and

six or more digits, e.g., NP_006735

Protein structure records PDB accessions generally contain one

digit followed by three letters, e.g.,

1TUP. They may contain other

mixtures of numbers and letters (or

numbers only). MMDB ID numbers

generally contain four digits, e.g., 3973.

To see and compare the three

myoglobin RefSeq entries at the

DNA and the protein levels, visit

Q http://www.bioinfbook.org/
chapter2 and select webdocument

2.1.

Allelic variants, such as single base

mutations in a gene, are not

assigned different RefSeq acces-

sion numbers. However, OMIM

and dbSNP (Chapters 16 and 20)

do catalog allelic variants.
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RefSeq entries are curated by the staff at NCBI, and are nearly nonredundant.

However, there can be two proteins encoded by distinct genes sharing 100% amino

acid identity. Each is assigned its own unique RefSeq identifier. For example, the

alpha-1 globin and alpha-2 globin genes in human are physically separate genes that

encode proteins with identical sequences. The encoded alpha-1 globin and alpha-2

globin proteins are assigned the RefSeq identifiers NP_000549 and NP_000508.

Refseq entries have different status levels (predicted, provisional, and reviewed),

but in each case the RefSeq entry is intended to unify the sequence records. You can

recognize a RefSeq accession by its format, such as NP_000509 (P stands for

beta globin protein) or NM_006744 (for beta globin mRNA). A variety of RefSeq

identifiers are shown in Table 2.7, and examples of beta globin identifiers are given

in Table 2.8.

TABLE 2-7 Formatsof AccessionNumbers for RefSeqEntries
Molecule Accession Format Genome

Complete
genome

NC_123456 Complete genomic molecules, including
genomes, chromosomes, organelles, and
plasmids

Genomic
DNA

NW_123456
NW_123456789

Intermediate genomic assemblies

Genomic
DNA

NZ_ABCD12345678 Collection of whole genome shotgun sequence
data

Genomic
DNA

NT_123456 Intermediate genomic assemblies (BAC and/
or WGS sequence data)

mRNA NM_123456 or
NM_123456789

Transcript products; mature mRNA protein-
coding transcripts

Protein NP_123456 or
NM_123456789

Protein products (primarily full-length)

RNA NR_123456 Noncoding transcripts (e.g. structural RNAs,
transcribed pseudogenes)

There are currently 21 different RefSeq accession formats. The methods include expert manual curation,
automated curation, or a combination. Abbreviations: BAC, bacterial artificial chromosome; WGS, whole
genome shotgun (see Chapter 13).

Source: Adapted from Q http://www.ncbi.nlm.nih.gov/RefSeq/key.html#accessions (March 2007).

FIGURE 2.5. There are thousands
of accession numbers correspond-
ing to many genes and proteins. A
search with the query “beta
globin” from the main page of
NCBI shows the results across the
databases of the Entrez search
engine. There are over 1000 each
of core nucleotide sequences,
expressed sequence tags (ESTs),
and proteins. The RefSeq project
is particularly important in trying
to provide the best representative
sequence of each normal (nonmu-
tated) transcript produced by a
gene and of each distinct, normal
protein sequence.

A GenBank or RefSeq accession

number refers to the most recent

version of a given sequence. For

example NM_000558.3 is cur-

rently a RefSeq identifier for

human alpha globin. The

suffix“.3” is the version number.

By default, if you do not specify a

version number then the most

recent version is provided. Try

doing an Entrez nucleotide search

for NM_000558.1 and you can

learn about the revision history of

that accession number. In Chapter

3 we will learn how to compare

two sequences; you can blast

NM_000558.1 against

NM_000558.3 to see the differ-

ences, or view the results in web

document 2.2 at Q http://www.

bioinfbook.org/chapter2.
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The Consensus Coding Sequence (CCDS) Project
The Consensus Coding Sequence (CCDS) project was established to identify a

core set of protein coding sequences that provide a basis for a standard set of gene

annotations. The CCDS project is a collaboration between four groups (EBI,

NCBI, the Wellcome Trust Sanger Institute, and the University of California,

Santa Cruz [UCSC]). Currently, the CCDS project has been applied to the

human and mouse genomes, and thus its scope is considerably more limited

than RefSeq.

ACCESS TO INFORMATION VIA ENTREZ GENE AT NCBI

How can one navigate through the bewildering number of protein and DNA

sequences in the various databases? An emerging feature is that the various databases

are increasingly interconnected, providing a variety of convenient links to each other

and to algorithms that are useful for DNA, RNA, and protein analysis. Entrez Gene

(formerly LocusLink) is particularly useful as a major portal. It is a curated database

containing descriptive information about genetic loci (Maglott et al., 2007). You can

obtain information on official nomenclature, aliases, sequence accessions, pheno-

types, EC numbers, OMIM numbers, UniGene clusters, HomoloGene (a database

that reports eukaryotic orthologs), map locations, and related websites.

To illustrate the use of Entrez Gene we will search for human myoglobin. The

result of entering an Entrez Gene search is shown in Fig. 2.6. Note that in performing

this search, it can be convenient to restrict the search to a particular organism of

interest. (This can be done using the “limits” tab on the Entrez Gene page.) The

“Links” button (Fig. 2.6, top right) provides access to various other database entries

on myoglobin. Clicking on the main link to the human myoglobin entry results in the

following information (Fig. 2.7):

† At the top right, there is a table of contents for the Entrez Gene myoglobin

entry. Below it are further links to myoglobin entries in NCBI databases

(e.g. protein and nucleotide databases and PubMed), as well as external

databases (e.g. Ensembl and UCSC; see below and Chapter 16).

† Entrez Gene provides the official symbol and name for human myoglobin, MB.

† A schematic overview of the gene structure is provided, hyperlinked to the

Map Viewer (see below).

† There is a brief description of the function of MB, defining it as a carrier

protein of the globin family.

TABLE 2-8 RefSeqAccessionNumbers Corresponding to HumanBetaGlobin
Category Accession Size Description

DNA NC_000011 134,452,384 bp Genomic contig

DNA NM_000518.4 626 bp DNA corresponding to mRNA

DNA NG_000007.3 81,706 bp Genomic reference

DNA NW_925006.1 1,606 bp Alternate assembly

Protein NP_000509.1 147 amino acids Protein

You can learn about the CCDS

project at Q http://www.ncbi.

nlm.nih.gov/projects/CCDS/.

Entrez Gene is accessed from the

main NCBI web page (by clicking

All Databases). Currently

(November 2008), Entrez Gene

encompasses about 5,700 taxa

and 4.6 million genes. We will

explore many of the resources

within Entrez Gene in later

chapters.
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FIGURE 2.7. Portion of the
Entrez Gene entry for human myo-
globin. Information is provided on
the gene structure, chromosomal
location, as well as a summary of
the protein’s function. RefSeq
accession numbers are also pro-
vided (not shown); you can access
them by clicking “Reference
sequences” in the table of contents
(top right). The menu (right side-
bar) provides extensive links to
additional databases, including
PubMed, OMIM, UniGene, a
variation database (dbSNP),
HomoloGene (with information
on homologs), a gene ontology
database, and Ensembl viewers at
EBI. We will describe these
resources in later chapters.

FIGURE 2.6. Result of a search
for “myoglobin” in Entrez Gene.
Information is provided for a
variety of organisms, including
Homo sapiens, Mus musculus,
and Rattus norvegicus. The links
button (top right) provides access
to information on myoglobin from
a variety of other databases.
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† The Reference Sequence (RefSeq) accession numbers are provided:

NM_005368 for the DNA sequence encoding the longest myoglobin tran-

script and NP_005359 for the protein entry. GenBank accession numbers

corresponding to myoglobin (both nucleotide and protein) are also provided.

Figure 2.8 shows the standard, default form of a typical Entrez Protein record

(for myoglobin). It is simple to obtain a variety of formats by changing the Entrez

display options. By using the Display pulldown menu (Fig. 2.8a) one can obtain

FIGURE 2.8. Display of an Entrez
Protein record for human myoglo-
bin. This is a typical entry for any
protein. (a) Top portion of the
record. Key information includes
the length of the protein (154
amino acids), the division (PRI,
or primate), the accession number
(NP_005359), the organism
(H. sapiens), literature references,
comments on the function of glo-
bins, and many links to other data-
bases (right side). At the top of the
page, the display option allows
you to obtain this record in a
variety of formats, such as FASTA
(Figure 2.9). (b) Bottom portion
of the record. This includes features
such as the coding sequence (CDS).
The amino acid sequence is pro-
vided at the bottom in the single
letter amino acid code.
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the commonly used FASTA format for protein (or DNA) sequences, as shown in

Fig. 2.9. Note also that by clicking the CDS (coding sequence) link of an Entrez

Protein or Entrez Nucleotide record (shown in Fig. 2.8b), you can obtain the nucleo-

tides that encode a particular protein, typically beginning with a start methionine

(ATG) and ending with a stop codon (TAG, TAA, or TGA). This can be useful

for a variety of applications including multiple sequence alignment (Chapter 6)

and molecular phylogeny (Chapter 7).

Relationship of Entrez Gene, Entrez Nucleotide, and Entrez Protein
If you are interested in obtaining information about a particular DNA or protein

sequence, it is reasonable to visit Entrez Nucleotide or Entrez Protein and do a

search. A variety of search strategies are available, such as limiting the output to a

particular organism or taxonomic group of interest, or limiting the output to

RefSeq entries.

There are also many advantages to beginning your search through Entrez Gene.

There, you can identify the official gene name, and you can be assured of the chro-

mosomal location of the gene (thus providing unambigous information about

which particular gene you are studying). Furthermore, each Entrez Gene entry

includes a section of reference sequences that provides all the DNA and protein

variants that are assigned RefSeq accession numbers.

Comparison of Entrez Gene and UniGene
As described above, the UniGene project assigns one cluster of sequences to one

gene. For example, for RBP4 there is one UniGene entry with the UniGene acces-

sion number Hs.50223. This UniGene entry includes a list of all the GenBank

entries, including ESTs, that correspond to the RBP4 gene. The UniGene entry

also includes mapping information, homologies, and expression information (i.e.,

a list of the tissues from which cDNA libraries were generated that contain ESTs

corresponding to the RBP gene).

UniGene and Entrez Gene have features in common, such as links to OMIM,

homologs, and mapping information. They both show RefSeq accession numbers.

There are four main differences between UniGene and Entrez Gene:

1. UniGene has detailed expression information; the regional distributions of

cDNA libraries from which particular ESTs have been sequenced are listed.

FIGURE 2.9. The protein entry
for human myogobin can be dis-
played in the FASTA format. This
is easily accomplished by adjusting
the “Display” pull-down menu
from an Entrez protein record.
The FASTA format is used in a var-
iety of software programs that we
will use in later chapters.

FASTA is both an alignment pro-

gram (described in Chapter 3) and

a commonly used sequence format

(further described in Chapter 4).

Entrez Gene now has about

40,000 human gene entries (as of

November 2008).
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2. UniGene lists ESTs corresponding to a gene, allowing one to study them in

detail.

3. Entrez Gene may provide a more stable description of a particular gene; as

described above, UniGene entries may be collapsed as genome-sequencing

efforts proceed.

4. Entrez Gene has fewer entries than UniGene, but these entries are better

curated.

Entrez Gene and HomoloGene
The HomoloGene database provides groups of annotated proteins from a set of com-

pletely sequenced eukaryotic genomes. Proteins are compared (by blastp; see

Chapter 4), placed in groups of homologs, and then the protein alignments are

matched to the corresponding DNA sequences. This allows distance metrics to be

calculated such as Ka/Ks, the ratio of nonsynonymous to synonymous mutations

(see Chapter 7). You can find a HomoloGene entry for a gene/protein of interest

by following a link on the Entrez Gene page.

A search of HomoloGene with the term hemoglobin results in dozens of matches

for myoglobin, alpha globin, and beta globin. By clicking on the beta globin group

one gains access to a list of proteins with RefSeq accession numbers from human,

chimpanzee, dog, mouse, and chicken. The pairwise alignment scores (see

Chapter 3) are summarized and linked to, and the sequences can be displayed as a

multiple sequence alignment (Chapter 6), or in the FASTA format.

ACCESS TO INFORMATION: PROTEIN DATABASES

In many cases you are interested in obtaining protein sequences. The Entrez Protein

database at NCBI consists of translated coding regions from GenBank as well as

sequences from external databases (the Protein Information Resource [PIR],

SWISS-PROT, Protein Research Foundation [PRF], and the Protein Data Bank

[PDB]). The EBI also provides information on proteins via these major databases.

We will next explore ways to obtain protein data through UniProt, an authoritative

and comprehensive protein database.

UniProt
The Universal Protein Resource (UniProt) is the most comprehensive, centralized

protein sequence catalog (UniProt Consortium, 2009). Formed as a collaborative

effort in 2002, it consists of a combination of three key databases. (1) Swiss-Prot is

considered the best-annotated protein database, with descriptions of protein struc-

ture and function added by expert curators. (2) The translated EMBL (TrEMBL)

Nucleotide Sequence Database Library provides automated (rather than manual)

annotations of proteins not in Swiss-Prot. It was created because of the vast

number of protein sequences that have become available through genome sequencing

projects. (3) PIR maintains the Protein Sequence Database, another protein database

curated by experts.

UniProt is organized in three database layers. (1) The UniProt Knowledgebase

(UniProtKB) is the central database that is divided into the manually annotated

UniProtKB/Swiss-Prot and the computationally annotated UniProtKB/TrEMBL.

HomoloGene is available by

clicking All Databases from the

NCBI home page, or at Q http://
www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db¼homologene.

Release 53 (March 2007) has over

170,000 groups. We will define

homologs in Chapter 3.

EBI offers access to over a dozen

different protein databases, listed

at Q http://www.ebi.ac.uk/
Databases/protein.html.

The European Bioinformatics

Institute (EBI) in Hinxton and the

Swiss Institute of Bioinformatics

(SIB) in Geneva created Swiss-

Prot and TrEMBL. PIR is a div-

ision of the National Biomedical

Research Foundation (Q http://
pir.georgetown.edu/) in

Washington, D.C. PIR was

founded by Margaret Dayhoff,

whose work is described in

Chapter 3. The UniProt web site

is Q http://www.uniprot.org. It

contains over 7 million entries

(release 14.4, November 2008).
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(2) The UniProt Reference Clusters (UniRef) offer nonredundant reference clusters

based on UniProtKB. UniRef clusters are available with members sharing at least

50%, 90%, or 100% identity. (3) The UniProt Archive, UniParc, consists of a

stable, nonredundant archive of protein sequences from a wide variety of sources

(including model organism databases, patent offices, RefSeq, and Ensembl).

You can access UniProt directly from its website, or from EBI or ExPASy.

The Sequence Retrieval System at ExPASy
One of the most useful resources available to obtain protein sequences and associated

data is provided by ExPASy, the Expert Protein Analysis System. The ExPASy server

is a major resource for proteomics-related analysis tools, software, and databases. In

addition to providing access to the UniProt database, ExPASy serves as a portal for

the Sequence Retrieval System (SRS). The query page has four rectangular boxes

(Fig. 2.10). Each has an associated pull-down menu, and as a default condition each

says “AllText.” In the first box, type “retinol-binding.” (Note that queries should consist

of one word.) In the second box, type “human,” change the corresponding pull-down

menu to “organism,” then click “do query.” You see 10 entries listed. Click the link in

which we are interested (SWISS_PROT: RETB_HUMAN P02753).

An output consists of a SwissProt record. This provides very useful, well-

organized information, including alternative names and accession numbers; litera-

ture links; functional data and information about cellular localization; links to

GenBank and other database records for both the RBP protein and gene; and links

to many databases such as OMIM, InterPro, Pfam, Prints, GeneCards,

PROSITE, and two-dimensional protein gel databases. We will describe these

resources later (Chapters 6 and 10). The record includes features; note that by click-

ing on any of the linked features, you can see the protein sequence with that feature

highlighted in color. While we have mentioned several key ways to acquire sequence

data, there are dozens of other useful servers. As an example, the Protein Information

Resource (PIR) provides access to sequences (Wu et al., 2002). PIR is especially

useful for its efforts to annotate functional information on proteins.

FIGURE 2.10. Format of a query
at the Sequence Retrieval System
(SRS) of the Expert Protein
Analysis System (ExPASy)
(Q http://www.expasy.ch/srs5/).
This website provides one of the
most useful resources for protein
analysis. You can also access the
SRS through other sites such as the
European Bioinformatics Institute
(Q http://srs6.ebi.ac.uk/).

To access UniProt from EBI, visit

Q http://www.ebi.ac.uk/uniprot/.

To access UniProt from ExPASy,

visit Q http://www.expasy.org/
sprot/.

ExPASy is a proteomics server of

the Swiss Institute of

Bioinformatics (Q http://www.

expasy.ch/), another portal from

which the Sequence Retrieval

System (SRS) is accessed. From

Q http://www.expasy.ch/srs5/,

click “Start a new SRS session,”

then click “continue.” SRS was

created by Lion Biosciences, and a

list of several dozen publicly avail-

able SRS servers is at Q http://
downloads.lionbio.co.uk/
publicsrs.html.
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ACCESS TO INFORMATION: THE THREE MAIN GENOME

BROWSERS

Genome browsers are databases with a graphical interface that presents a represen-

tation of sequence information and other data as a function of position across the

chromosomes. We will focus on viral, prokaryotic, and eukaryotic chromosomes in

Chapters 14 to 19. Genome browsers have emerged as an essential tool for organizing

information about genomes. We will now briefly introduce the three principal

genome browsers and describe how they may be used to acquire information about

a gene or protein of interest.

The Map Viewer at NCBI
The NCBI Map Viewer includes chromosomal maps (both physical maps and gen-

etic maps; see Chapter 16) for a variety of organisms, including metazoans (animals),

fungi, and plants. Map Viewer allows text-based queries (e.g., “beta globin”) or

sequence-based queries (e.g., BLAST; see Chapter 4). For each genome, four

levels of detail are available: (1) the home page of an organism; (2) the genome

view, showing ideograms (representations of the chromosomes); (3) the map view,

allowing you to view regions at various levels of resolution; and (4) the sequence

view, displaying sequence data as well as annotation of interest such as the location

of genes.

The University of California, Santa Cruz (UCSC) Genome Browser
The UCSC browser currently supports the analysis of three dozen vertebrate and

invertebrate genomes, and it is perhaps the most widely used genome browser for

human and other prominent organisms such as mouse. The Genome Browser pro-

vides graphical views of chromosomal locations at various levels of resolution (from

several base pairs up to hundreds of millions of base pairs spanning an entire chromo-

some). Each chromosomal view is accompanied by horizontally oriented annotation

tracks. There are hundreds of available tracks in categories such as mapping

and sequencing, phenotype and disease associations, genes, expression, comparative

genomics, and genomic variation. These annotation tracks offer the Genome Browser

tremendous depth and flexibility. The Genome Browser has a complementary, inter-

connected Table Browser that provides tabular output of information.

As an example of how to use the browser, go the UCSC bioinformatics site, click

Genome Browser, set the clade (group) to Vertebrate, the genome to human, the

assembly to March 2006 (or any other build date), and under “position or search

term” type beta globin (Fig. 2.11a). Click submit and you will see a list of known

genes and a RefSeq gene entry for beta globin on chromosome 11 (Fig. 2.11b). By

following this RefSeq link you will view the beta globin gene (spanning about 1600

base pairs) on chromosome 11, and can perform detailed analyses of the beta

globin gene (including neighboring regulatory elements), the messenger RNA (see

Chapter 8), and the protein (Fig. 2.11c).

The Ensembl Genome Browser
The Ensembl project offers a series of comprehensive websites for a variety of eukary-

otic organisms (Hubbard et al., 2007). The project’s goals are to automatically ana-

lyze and annotate genome data (see Chapter 13) and to present genomic data via its

Genomes are analyzed over time

in assemblies (see Chapter 13).

The main human genome brow-

sers share the same underlying

assemblies, and differ in the ways

they annotate and present infor-

mation. NCBI Build 36

(November, 2005) is an example

of a human assembly.

The Map Viewer is accessed from

the main page of NCBI or via

Q http://www.ncbi.nlm.nih.gov/
mapview/. Records in Entrez

Gene, Entrez Nucleotide, and

Entrez Protein also provide direct

links to the Map Viewer.

The UCSC genome browser is

available from the UCSC bioin-

formatics site at Q http://genome.

ucsc.edu. You can see examples of

it in Figs. 5.17, 5.20, 6.10, 8.8,

12.8, 16.4, and 9.20.
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web browser. Ensembl is in some ways comparable in scope to the UCSC Genome

Browser, although the two offer distinct resources.

We can begin to explore Ensembl from its home page by selecting Homo sapiens and

doing a text search for “hbb,” the gene symbol for beta globin. This yields a link to the

beta globin protein and gene; we will return to the Ensembl resource in later chapters.

This entry contains a large number of features relevant to HBB, including identifiers,

the DNA sequence, and convenient links to many other database resources.

EXAMPLES OF HOW TO ACCESS SEQUENCE DATA

We will next explore two practical problems in accessing data: the human immuno-

deficiency virus-1 (HIV-1) pol protein, and human histones. Each presents distinct

challenges.

HIV pol

Consider reverse transcriptase, the RNA-dependent DNA polymerase of HIV-1

(Frankel and Young, 1998). The gene-encoding reverse transcriptase is called pol

(for polymerase). How do you obtain its DNA and protein sequence?

From the home page of NCBI enter “hiv-1” (do not use quotation marks; the use

of capital letters is optional). All Entrez databases are searched. Under the Nucleotide

category, there are several hundred thousand entries. Click Nucleotide to see these

entries. Over 800 entries have RefSeq identifiers; while this narrows the search con-

siderably, there are still too many matches to easily find HIV-1 pol. One reason for

the large number of entries in Entrez Nucleotide is that the HIV-1 genome has been

FIGURE 2.11. Using the UCSC
Genome Browser. (a) One can
select from dozens of organisms
(mostly vertebrates) and assem-
blies, then enter a query such as
“beta globin” (shown here) or an
accession number or chromosomal
position. (b) By clicking submit, a
list of known genes as well as
RefSeq genes is displayed. (c)
Following the link to the RefSeq
gene for beta globin, a browser
window is opened showing 1606
base pairs on human chromosome
11. A series of horizontal tracks is
displayed including a list of
RefSeq genes and Ensembl gene
predictions; exons are displayed as
thick bars, and arrows indicate
the direction of transcription
(from right to left, toward the telo-
mere or end of the short arm of
chromosome 11). See Q http://
genome.ucsc.edu.

(a)

(b)

(c)

Ensembl (Q http://www.ensembl.

org) is supported by EMBL and

the EBI (Q http://www.ebi.ac.uk/)

in cooperation with the Wellcome

Trust Sanger Institute (WTSI;

Q http://www.sanger.ac.uk/).

Ensembl focuses on vertebrate

genomes, although its genome

browser format is being adopted

for the analysis of many additional

eukaryotic genomes.

We explore bioinformatics

approaches to HIV-1 in detail in

Chapter 14 on viruses.

As of November 2008 there are

about 250,000 entries in Entrez

Nucleotide for the query “hiv-1.”

36 ACCESS TO SEQUENCE DATA AND LITERATURE INFORMATION



resequenced thousands of times in efforts to identify variants. Another reason for the

many hits is that entries for a variety of organisms, including mouse and human,

refer to HIV-1 and thus are listed in the output. Performing a search with the query

“hiv-1 pol” further reduces the number of matches, but there are still several thousand.

A useful alternate strategy is to limit the search to the organism you are interested

in. Begin the search again from the home page of NCBI by clicking “Taxonomy

Browser” (along the top bar), and entering Hiv-1. Next follow the link to the taxon-

omy page specific to HIV-1 (Fig. 2.12). Here you will find the taxonomy identifier for

HIV-1; each organism or group in GenBank (e.g., kingdom, phylum, order, genus,

species) is assigned a unique identifier. Also, there is an extremely useful table of

links to Entrez records. By clicking on the link to Entrez Nucleotide (Fig. 2.11,

right side), you will find all the records of sequences from HIV-1, but no records

from any other organisms. There is now only one RefSeq entry (NC_001802).

This entry refers to the 9181 bases that constitute HIV-1, encoding just nine genes

including gag-pol. Given the thousands of HIV-1 pol variants that exist, this example

highlights the usefulness of the RefSeq project, allowing the research community to

have a common reference sequence to explore.

As an alternative strategy, from the Entrez table on the HIV-1 taxonomy page one

can link to the single Entrez Genome record for HIV-1, and find a table of the nine

genes (and nine proteins) encoded by the genome. Each of these nine Entrez

Genome records contains detailed information on the genes; in the case of

gag-pol, there are seven separate RefSeq entries, including one for the gag-pol pre-

cursor (NP_057849, 1435 amino acids in length) and one for the mature HIV-1

pol protein (NP_789740, 995 amino acids).

Note that other NCBI databases are not appropriate for finding the sequence of a

viral reverse transcriptase: UniGene does not incorporate viral records, while OMIM

is limited to human entries. UniGene and OMIM, however, do have links to genes

that are related to HIV, such as eukaryotic reverse transcriptases.

FIGURE 2.12. The entry for
human immunodeficiency virus 1
(HIV-1) at the NCBI Taxonomy
Browser displays information
about the genus and species as
well as a variety of links to
Entrez records. By following these
links, one can obtain a list of pro-
teins, genes, DNA sequences, struc-
tures, or other data types that are
restricted to this organism. This
can be a useful strategy to find a
protein or gene from a particular
organism (e.g., a species or subspe-
cies of interest), excluding data
from all other species. By following
the Entrez Genome Sequences link,
one can access a list of nine known
HIV-1 protein-coding genes.

We will see that BLAST searches

(Chapter 4) can be limited by any

Entrez query; you can enter the

taxonomy identifier into a BLAST

search to restrict the output to any

organism or taxonomic group of

interest.

From the Entrez Genome or other

Entrez pages, try exploring the

various options under the Display

pull-down menu. For example, for

the Entrez Genome entry for

NC_001802 you can display a

convenient protein table; from

Entrez Nucleotide or Entrez

Protein you can select Graph to

obtain a schematic view of the

HIV-1 genome and the genes and

proteins it encodes.
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In a separate approach, one can obtain the HIV-1 reverse transcriptase sequence

from SRS. Select the SwissProt database to search. In the four available dialog

boxes, set one row to “organism” and “HIV-1,” then set another row to “AllText”

and “reverse.” Upon clicking “Do query,” a list of several dozen entries is returned;

many of these are identified as fragments and may be ignored. One entry is

SWISS_PROT:POL_ HV1A2 (SWISS-PROT accession P03369), a protein of 1437

amino acids. Following the SwissProt link, one finds the “NiceProt” for this database

entry. This information includes entry and modification dates, names of this protein

and synonyms, references (with PubMed links), comments (including a brief func-

tional description), cross-references to over a dozen other useful databases, a keyword

listing, features such as predicted secondary structure, and finally, the amino acid

sequence in the single-letter amino acid code and the predicted molecular weight of

the protein. For this case, the gene encodes a protein as an unprocessed precursor

that is further cleaved to generate many smaller proteins, including matrix protein

p17, capsid protein p24, nucleocapsid protein p7, a viral protease, a reverse transcrip-

tase/ribonuclease H multifunctional protein, and an integrase. These features are

clearly described in the UniProtKB/Swiss-Prot entry for P03369.

Histones
The biological complexity of proteins can be astonishing, and accessing information

about some proteins can be extraordinarily challenging. Histones are among the most

familiar proteins by name. They are small proteins (12 to 20 kilodaltons) that are

localized to the nucleus where they interact with DNA. There are five major histone

subtypes as well as additional variant forms; the major forms serve as core histones

(the H2A, H2B, H3, and H4 families) which �147 base pairs of DNA wrap

around, and linker histones (the H1 family). Suppose you want to inspect a typical

human histone for the purpose of understanding the properties of a representative

gene and its corresponding protein. A challenge is that there are currently 80,000 his-

tone entries in Entrez Protein (November 2008). Restricting the output to human

histone proteins (using the command “txid9606[Organism:exp] histone”) there

are currently 5000 human histone proteins, of which 1200 have RefSeq accession

numbers. Some of these are histone deacetylases and histone acetyltransferases; by

expanding the query to “txid9606[Organism:exp] AND histone[All Fields] NOT

deacetylase NOT acetyltransferase” there are 800 proteins with RefSeq accession

numbers. There are many additional strategies for limiting Entrez searches (Box 2.2).

How can the search be further pursued? (1) You may select a histone at random

and study it although you may not know whether it is representative. (2) There are

specialized, expert-curated databases available online for many genes, proteins, dis-

eases, and other molecular features of interest. The Histone Sequence Database

(Sullivan et al., 2002) shows that the human genome has about 86 histone genes,

including a cluster of 68 adjacent genes on chromosome 6p. This information is

useful to understand the scope of the family. (3) There are databases of protein families,

including Pfam and InterPro. We will introduce these in Chapters 6 (multiple sequence

alignment) and 10 (proteomics). Such databases offer succinct descriptions of protein

and gene families and can orient you toward identifying representative members.

ACCESS TO BIOMEDICAL LITERATURE

The NLM is the world’s largest medical library. In 1971 the NLM created

MEDLINE (Medical Literature, Analysis, and Retrieval System Online), a

By clicking the Details tab on an

Entrez Protein search, you can see

that the command is interpreted as

“txid9606[Organism:exp] AND

histone[All Fields]”. The Boolean

operator AND is included

between search terms by default.

The Histone Sequence Database

is available at Q http://research.

nhgri.nih.gov/histones/ (Sullivan

et al., 2002). It was created by

David Landsman, Andy

Baxevanis, and colleagues at the

National Human Genome

Research Institute.

You can find links to a large col-

lection of specialized databases at

Q http://www.expasy.org/links.

html, the Life Science Directory at

the ExPASy (Expert Protein

Analysis System) proteomics

server of the Swiss Institute of

Bioinformatics (SIB).

The NLM website is Q http://
www.nlm.nih.gov/.
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bibliographic database. MEDLINE currently contains over 18 million references to

journal articles in the life sciences with citations from over 4300 biomedical journals

in 70 countries. Free access to MEDLINE is provided on the World Wide Web

through PubMed (Q http://www.ncbi.nlm.nih.gov/PubMed/), which is developed

by NCBI. While MEDLINE and PubMed both provide bibliographic citations,

PubMed also contains links to online full-text journal articles. PubMed also provides

access and links to the integrated molecular biology databases maintained by NCBI.

These databases contain DNA and protein sequences, genome-mapping data, and

three-dimensional protein structures.

PubMed Central and Movement toward Free Journal Access
The biomedical research community has steadily increased access to literature

information. Groups such as the Association of Research Libraries (ARL) monitor

the migration of publications to an electronic form. Thousands of journals

are currently available online. Increasingly, online versions of articles include

supplementary material such as molecular data (e.g., the sequence of complete

BOX 2-2
Tips for Using Entrez Databases

The Boolean operators AND, OR, and NOT must be capitalized. By default,

AND is assumed to connect two terms; subject terms are automatically

combined.

You can perform a search of a specific phrase by adding quotation marks. This

may potentially restrict the output, so it is a good idea to repeat a search with

and without quotation marks.

Boolean operators are processed from left to right. If you add parentheses, the

enclosed terms will be processed as a unit rather than sequentially. A search of

Entrez Gene with the query “globin AND promoter OR enhancer” yields 4800

results; however, by adding parentheses, the query “globin AND (promoter or

enhancer)” yields just 70 results.

If you are interested in obtaining results from a particular organism (or from any

taxonomic group such as the primates or viruses), try beginning with

TaxBrowser to select the organism first. See Fig. 2–11 for a detailed

explanation. Adding the search term human[ORGN] will restrict the output to

human. Alternatively, you can use the taxonomy identifier for human, 9606, as

follows: txid9606[Organism:exp]

A variety of limiters can be added. In Entrez Protein, the search

500000:999999[Molecular weight] will return proteins having a molecular

weight from 500,000 to 1 million daltons. If you would like to see proteins

between 10,000 and 50,000 daltons that I have worked on, enter

010000:050000[Molecular weight] pevsner j (or, equivalently,

010000[MOLWT]: 050000[MOLWT] AND pevsner j[Author]).

By truncating a query with an asterisk, you can search for all records that begin

with a particular text string. For example, a search of Entrez Nucleotide with

the query “globin” returns 5800 results; querying with “glob�” returns 8.2

million results. These include entries with the species Chaetomium globosum or

the word global.

Keep in mind that any Entrez query can be applied to a BLAST search to restrict

its output (Chapter 4).

MEDLINE is also accessible

through the SRS at the European

Bioinformatics Instititute via

Q http://srs.ebi.ac.uk/. A

PubMed tutorial is offered at

Q http://www.nlm.nih.gov/bsd/
pubmed_tutorial/m1001.html.

The growth of MEDLINE is

described at Q http://www.nlm.

nih.gov/bsd/medline_growth.

html. Despite the multinational

contributions to MEDLINE, the

percentage of articles written in

English has risen from 59% at its

inception in 1966 to 92% in the

year 2008 (Q http://www.nlm.

nih.gov/bsd/medline_lang_distr.

html).
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genomes, or gene expression data) or videotapes illustrating an article. PubMed

Central provides a central repository for biological literature (Roberts, 2001).

All these articles have been peer reviewed and published simultaneously in

another journal. As of 2008, publications resulting from research funded by the

NIH, Wellcome Trust, and Medical Research Council must be made freely available

in PubMed Central.

Example of PubMed Search: RBP
A search of PubMed for information about “RBP” yields 1700 entries. Box 2.3

describes the basics of using Boolean operators in PubMed. There are many

additional ways to limit this search. Press “limits” and try applying features such as

restricting the output to articles that are freely available through PubMed Central.

BOX 2-3
Venn Diagrams of Boolean Operators AND, OR, and NOT for
Hypothetical Search Terms 1 and 2

1 OR 2

1 AND 2

1 NOT 2

1 2

1 2

1 2

globin AND disease
1461 results in PubMed

globin OR disease
2,087,446 results in PubMed

globin NOT disease
13,640 results in PubMed

The AND command restricts the search to entries that are both present in a

query. The OR command allows either one or both of the terms to be present.

The NOT command excludes query results. The shaded areas represent search

queries that are retrieved. Examples are provided for the queries “lipocalin” or

“retinol-binding protein” in PubMed. The Boolean operators affect the searches

as indicated.

The National Library of Medicine

also offers access to PubMed

through NLM Gateway (Q http://
gateway.nlm.nih.gov). This com-

prehensive service includes access

to a variety of NLM databases not

offered through PubMed, such as

meeting abstracts and a medical

encyclopedia.

The ARL website is Q http://
www.arl.org/index.shtml.
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The Medical Subject Headings (MeSH) browser provides a convenient way to

focus or expand a search. MeSH is a controlled vocabulary thesaurus containing

25,000 descriptors (headings). From PubMed, click “MeSH Database” on the left

sidebar and enter “retinol-binding protein.” The result suggests a series of possibly

related topics. By adding MeSH terms, a search can be focused and structured

according to the specific information you seek. Lewitter (1998) and Fielding and

Powell (2002) discuss strategies for effective MEDLINE searches, such as avoiding

inconsistencies in MeSH terminology and finding a balance between sensitivity

(i.e., finding relevant articles) and specificity (i.e., excluding irrelevant citations).

For example, for a subject that is not well indexed, it is helpful to combine a text key-

word with a MeSH term. It can also be helpful to use truncations; for example, the

search “therap�” introduces a wildcard that will retrieve variations such as therapy,

therapist, and therapeutic. Figure 2.13 provides an example of sensitivity and

specificity in a PubMed search for articles on hemoglobin.

18,000,000 articles
in PubMed

200,000 articles
on hemoglobin 
(PubMed result)

17,800,000 articles 
not on hemoglobin 

(PubMed result)

True negatives
17,799,800 articles
identified as not on 

globins are not on globins

Sensitivity:
199,000/200,000

=0.995

Specificity:
17,799,800/17,800,800

=0.999

False negatives
200 articles identified 

as not on globins
truly are on globins

False positives
1,000 articles

identified as on globins
are not on globins

True positives
199,000 articles

identified as on globins
truly are on globins

FIGURE 2.13. Sensitivity and
specificity in a database search.
We will describe sensitivity and
specificity in Chapter 3 (see
Fig. 3.27) but can begin thinking
about those concepts in terms of a
hypothetical search of PubMed for
hemoglobin. Each search of a data-
base yields results that are reported
(positives) or not (negatives).
According to some “gold standard”
or objective measure of the truth,
these results may be true positives
(e.g., a search for globins does
return literature citations on glo-
bins) or false positives (e.g., a
search for glob� returns infor-
mation about the species C. globo-
sum but those citations are
irrelevant to globins). The sensi-
tivity is defined as the proportion
of true positives relative to true
plus false positives. There also will
be many negative results (lower
portion of figure). These may
include true negatives (e.g., articles
that do not describe globins and are
not included in the search results)
and false negatives (e.g., articles
that do discuss globins but are not
part of the search results; this
might occur if the title and abstract
do not mention globins but the
body of the article does).
Specificity may be defined as the
proportion of true negative results
divided by the sum of true negative
and false positive results.

The MeSH website at NLM is

Q http://www.nlm.nih.gov/
mesh/meshhome.html; you can

also access MeSH via the NCBI

website including its PubMed

page.
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PERSPECTIVE

Bioinformatics is a young, emerging field whose defining feature is the accumulation

of biological information in databases. The three major DNA databases—GenBank,

EMBL, and DDBJ—are adding several million new sequences each year as well as

billions of nucleotides. Beginning in 2008, terabases (thousands of gigabases) of

DNA sequence are arriving.

In this chapter, we described ways to find information on the DNA and/or

protein sequence of globins, RBP4, and the HIV pol gene. In addition to the three

major databases, a variety of additional resources are available on the web.

Increasingly, there is no single correct way to find information—many approaches

are possible. Moreover, resources such as those described in this chapter—NCBI,

ExPASy, EBI/EMBL, and Ensembl—are closely interrelated, providing links

between the databases.

PITFALLS

There are many pitfalls associated with the acquisition of both sequence and litera-

ture information. In any search, the most important first step is to define your

goal: for example, decide whether you want protein or DNA sequence data. A

common difficulty that is encountered in database searches is receiving too much

information; this problem can be addressed by learning how to generate specific

searches with appropriate limits.

WEB RESOURCES

DISCUSSION QUESTIONS

PROBLEMS

[2-1] In this chapter we explored histones as an example of a protein

that can be challenging to study because it is part of a large

gene family. Another challenging example is ubiquitin.

How many ubiquitins are there in the human genome, and

what is the sequence of a prototypical (that is, representative)

ubiquitin?

[2-2] How many human proteins are bigger than 300,000 daltons?

Hints: Try to first limit your search to human by using

TaxBrowser. Then follow the link to Entrez Protein, where all

the results will be limited to human. Enter a command in the

format xxxxxx:yyyyyy[molwt] to restrict the output to a certain

number of daltons; for example, 002000:010000[molwt] will

select proteins of molecular weight 2,000 to 10,000.

[2-3] You are interested in learning about genes involved in breast

cancer. Which genes have been implicated? What are the DNA

and protein accession numbers for several of these genes? Try

all of these approaches: PubMed, Entrez, OMIM, and SRS at

ExPASy.

[2-4] An ATP (adenosine triphosphate) binding cassette (ABC) is an

example of a common protein domain that is found in many so-

called ABC transporter proteins. However, you are not familiar

with this motif and would like to learn more. Approximately

You can visit the website for this book (Q http://www.bioinfbook.

org) to find many of the URLs, organized by chapter. The

Wiley-Blackwell website for this book is http://www.wiley.com/

go/pevsnerbioinformatics.

[2-1] What categories of errors occur in databases? How are these

errors assessed?

[2-2] How is quality control maintained in GenBank, given that

thousands of individual investigators submit data?
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SELF-TEST QUIZ

[2-1] Which of the following is a RefSeq accession number corre-

sponding to an mRNA?

(a) J01536

(b) NM_15392

(c) NP_52280

(d) AAB134506

[2-2] Approximately how many human clusters are currently in

UniGene?

(a) About 8,000

(b) About 25,000

(c) About 100,000

(d) About 300,000

[2-3] You have a favorite gene, and you want to determine in what tis-

sues it is expressed. Which one of the following resources is likely

the most direct route to this information?

(a) UniGene

(b) Entrez

(c) PubMed

(d) PCR

[2-4] Is it possible for a single gene to have more than one UniGene

cluster?

(a) Yes

(b) No

[2-5] Which of the following databases is derived from mRNA

information?

(a) dbEST

(b) PBD

(c) OMIM

(d) HTGS

[2-6] Which of the following databases can be used to access text

information about human diseases?

(a) EST

(b) PBD

(c) OMIM

(d) HTGS

[2-7] What is the difference between RefSeq and GenBank?

(a) RefSeq includes publicly available DNA sequences

submitted from individual laboratories and sequencing

projects.

(b) GenBank provides nonredundant curated data.

(c) GenBank sequences are derived from RefSeq.

(d) RefSeq sequences are derived from GenBank and provide

nonredundant curated data.

[2-8] If you want literature information, what is the best website to

visit?

(a) OMIM

(b) Entrez

(c) PubMed

(d) PROSITE

[2-9] Compare the use of Entrez and ExPASy to retrieve information

about a protein sequence.

(a) Entrez is likely to yield a more comprehensive search because

GenBank has more data than EMBL.

(b) The search results are likely to be identical because the

underlying raw data from GenBank and EMBL are the

same.

(c) The search results are likely to be comparable, but the

SwissProt record from ExPASy will offer a different output

format with distinct kinds of information.

how many human proteins have ABC domains? Approximately

how many bacterial proteins have ABC domains? Which of the

resources you used in problem 2.3 is most useful in providing

you a clear definition of an ABC motif ? (We will discuss

additional resources to solve this problem in Chapter 10.)

[2-5] Find the accession number of a lipocalin protein (e.g., retinol-

binding protein, lactoglobulin, any bacterial lipocalin, glycode-

lin, or odorant-binding protein). First, use Entrez, then

UniGene, then OMIM. Which approach is most effective?

What is the function of this protein?

[2-6] Three prominent tools for text-based searching of molecular

information are:

† the National Center for Biotechnology Information’s

PubMed, Entrez, and OMIM tools (Q http://www.ncbi.

nlm.nih.gov),

† the European Bioinformatics Institute (EBI) Sequence

Retrieval System (SRS) (Q http://srs.ebi.ac.uk) or its related

SRS site (Q http://www.expasy.ch/srs5/), and

† DBGET, the GenomeNet tool of Kyoto University, and the

University of Tokyo (Q http://www.genome.ad.jp/dbget/

dbget2.html) literature database LitDB.

You are interested in learning more about West Nile virus. What

happens when you use that query to search each of these three

resources?

[2-7] You would like to know what articles about viruses have been

published in the journal BMC Bioinformatics. Do this search

using PubMed.
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Pairwise alignment involves matching two protein or DNA sequences. The first proteins that were sequenced include insulin (by

Frederick Sanger and colleagues; see fig. 7.1) and globins. This figure is from The Molecular Basis of Evolution by the Nobel

laureate Christian Anfinsen (1959, p. 153). It shows the results of a pairwise alignment of a portion of adrenocorticotropic hor-

mone (ACTH) from sheep or cow (top) with that of pig (below). Such alignments, performed manually, led to the realization that

amino acid sequences of proteins reflect the phylogenetic relatedness of different species. Furthermore, pairwise alignments reveal

the portions of a protein that may be important for its biological function. Used with permission.



3

Pairwise Sequence Alignment

INTRODUCTION

One of the most basic questions about a gene or protein is whether it is related to any

other gene or protein. Relatedness of two proteins at the sequence level suggests that

they are homologous. Relatedness also suggests that they may have common func-

tions. By analyzing many DNA and protein sequences, it is possible to identify

domains or motifs that are shared among a group of molecules. These analyses of

the relatedness of proteins and genes are accomplished by aligning sequences. As

we complete the sequencing of many organisms’ genomes, the task of finding out

how proteins are related within an organism and between organisms becomes

increasingly fundamental to our understanding of life.

In this chapter we will introduce pairwise sequence alignment. We will adopt an

evolutionary perspective in our description of how amino acids (or nucleotides) in

two sequences can be aligned and compared. We will then describe algorithms and

programs for pairwise alignment.

Protein Alignment: Often More
Informative Than DNA Alignment
Given the choice of aligning a DNA sequence or the sequence of the protein it

encodes, it is often more informative to compare protein sequences. There

are several reasons for this. Many changes in a DNA sequence (particularly at

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

Two genes (or proteins) are hom-

ologous if they have evolved from a

common ancestor.
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the third position of a codon) do not change the amino acid that is specified.

Furthermore, many amino acids share related biophysical properties (e.g., lysine

and arginine are both basic amino acids). The important relationships between

related (but mismatched) amino acids in an alignment can be accounted for

using scoring systems (described in this chapter). DNA sequences are less informa-

tive in this regard. Protein sequence comparisons can identify homologous

sequences from organisms that last shared a common ancestor over 1 billion

years ago (BYA) (e.g., glutathione transferases) (Pearson, 1996). In contrast,

DNA sequence comparisons typically allow lookback times of up to about 600

million years ago (MYA).

When a nucleotide coding sequence is analyzed, it is often preferable to study

its translated protein. In Chapter 4 (on BLAST searching), we will see that we

can move easily between the worlds of DNA and protein. For example, the tblastn

tool from the National Center for Biotechnology Information (NCBI) BLAST

website allows one to search with a protein sequence for related proteins derived

from a DNA database (see Chapter 4). This query option is accomplished

by translating each DNA sequence into all of the six proteins that it potentially

encodes.

Nevertheless, in many cases it is appropriate to compare nucleotide sequences.

This comparison can be important in confirming the identity of a DNA sequence

in a database search, in searching for polymorphisms, in analyzing the identity of a

cloned cDNA fragment, or in many other applications.

Definitions: Homology, Similarity, Identity
Let us consider the globin family of proteins. We will begin with human myoglobin

(accession number NP_005359) and beta globin (accession number NP_000509)

as two proteins that are distantly but significantly related. The accession numbers

are obtained from Entrez Gene (Chapter 2). Myoglobin and the hemoglobin

chains (alpha, beta, and other) are thought to have diverged some 600 million

years ago, near the time the vertebrate and insect lineages diverged.

Two sequences are homologous if they share a common evolutionary ancestry.

There are no degrees of homology; sequences are either homologous or not

(Reeck et al., 1987; Tautz, 1998). Homologous proteins almost always share a signifi-

cantly related three-dimensional structure. Myoglobin and beta globin have very

similar structures as determined by x-ray crystallography (Fig. 3.1). When two

sequences are homologous, their amino acid or nucleotide sequences usually share

significant identity. Thus, while homology is a qualitative inference (sequences are

homologous or not), identity and similarity are quantities that describe the related-

ness of sequences. Notably, two molecules may be homologous without sharing stat-

istically significant amino acid (or nucleotide) identity. For example, in the globin

family, all the members are homologous, but some have sequences that have diverged

so greatly that they share no recognizable sequence identity (e.g., human beta globin

and human neuroglobin share only 22% amino acid identity). Perutz, Kendrew and

others demonstrated that individual globin chains share the same overall shape as

myoglobin (see Ingram, 1963), even though the myoglobin and alpha globin proteins

share only about 26% amino acid identity. In general, three-dimensional structures

diverge much more slowly than amino acid sequence identity between two proteins

Some researchers use the term

analogous to refer to proteins that

are not homologous, but share

some similarity by chance. Such

proteins are presumed to have not

descended from a common

ancestor.

48 PAIRWISE SEQUENCE ALIGNMENT



(Chothia and Lesk, 1986). Recognizing this type of homology is an especially chal-

lenging bioinformatics problem.

Proteins that are homologous may be orthologous or paralogous. Orthologs are

homologous sequences in different species that arose from a common ancestral

gene during speciation. Figure 3.2 shows a tree of myoglobin orthologs. There is a

human myoglobin gene and a rat gene. Humans and rodents diverged about 80

MYA (see Chapter 18), at which time a single ancestral myoglobin gene diverged

by speciation. Orthologs are presumed to have similar biological functions; in this

example, human and rat myoglobins both transport oxygen in muscle cells.

Paralogs are homologous sequences that arose by a mechanism such as gene

duplication. For example, human alpha-1 globin (NP_000549) is paralogous to

alpha-2 globin (NP_000508); indeed, these two proteins share 100% amino acid

identity. Human alpha-1 globin and beta globin are also paralogs (as are all the

proteins shown in Fig. 3.3). All of the globins have distinct properties, including

regional distribution in the body, developmental timing of gene expression, and

abundance. They are all thought to have distinct but related functions as oxygen

carrier proteins.

FIGURE 3.1. Three-dimensional
structures of (a) myoglobin (acces-
sion 2MM1), (b) the tetrameric
hemoglobin protein (2H35), (c)
the beta globin subunit of hemo-
globin, and (d) myoglobin and
beta globin superimposed. The
images were generated with the
program Cn3D (see Chapter 11).
These proteins are homologous (des-
cended from a common ancestor),
and they share very similar three-
dimensional structures. However,
pairwise alignment of these pro-
teins’ amino acid sequences reveals
that the proteins share very limited
amino acid identity.

You can see the protein sequences

used to generate Figs. 3.2 and 3.3

in web documents 3.1 and 3.2 at

Q http://www.bioinfbook.org/
chapter3.

In general when we consider other

paralogous families they are pre-

sumed to share common func-

tions. Consider the lipocalins: all

are about 20 kilodalton proteins

that have a hydrophobic binding

pocket that is thought to be used to

transport a hydrophobic ligand.

Members include retinol binding

protein (a retinol transporter),

apolipoprotein D (a cholesterol

transporter), and odorant-binding

protein (an odorant transporter

secreted from a nasal gland).
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Walter M. Fitch (1970, p. 113) defined these terms. He wrote:
there should be two subclasses of homology. Where the homology is the result

of gene duplication so that both copies have descended side by side during the

history of an organism (for example, a and b hemoglobin) the genes should be

called paralogous (para ¼ in parallel). Where the homology is the result of spe-

ciation so that the history of the gene reflects the history of the species (for

example a hemoglobin in man and mouse) the genes should be called ortholo-

gous (ortho ¼ exact).

Notably, orthologs and paralogs do not necessarily have the same function.

We will provide various definitions of gene and protein function in Chapter 10.

Later we will explore genomes across the tree of life (Chapters 13 to 19). In

all genome sequencing projects, orthologs and paralogs are identified based on

database searches. Two DNA (or protein) sequences are defined as homologous

based on achieving significant alignment scores, as discussed below and in

Chapter 4. However, homologous proteins do not necessarily share the same

function.

We can assess the relatedness of any two proteins by performing a pairwise align-

ment. In this procedure, we place the two sequences directly next to each other. One

practical way to do this is through the NCBI pairwise BLAST tool (Tatusova and

Madden, 1999) (Fig. 3.4). Perform the following steps:

1. Choose the protein BLAST program and select “BLAST 2 sequences” for

our comparison of two proteins. An alternative is to select blastn (for

“BLAST nucleotides”) for DNA–DNA comparison.

2. Enter the sequences or their accession numbers. Here we use the sequence of

human beta globin in the fasta format, and for myoglobin we use the accession

number (Fig. 3.4).

3. Select any optional parameters.

† You can choose from five scoring matrices: BLOSUM62, BLOSUM45,

BLOSUM80, PAM70, and PAM30. Select PAM250.

† You can change the gap creation penalty and gap extension penalty.

† For blastn searches you can change reward and penalty values.

† There are other parameters you can change, such as word size, expect value,

filtering, and dropoff values. We will discuss these more in Chapter 4.

4. Click “BLAST.” The output includes a pairwise alignment using the single-

letter amino acid code (Fig. 3.5a).

Note that the fasta format uses the single-letter amino acid code; those abbreviations

are shown in Box 3.1.

It is extremely difficult to align proteins by visual inspection. Also, if we allow

gaps in the alignment to account for deletions or insertions in the two sequences,

the number of possible alignments rises exponentially. Clearly, we will need a com-

puter algorithm to perform an alignment (see Box 3.2). In the pairwise alignments

shown in Fig. 3.5a, beta globin is on top (on the line labeled query) and myoglobin

is below (on the subject line). An intermediate row indicates the presence of identical

amino acids in the alignment. For example, notice that near the beginning of the

alignment the residues WGKV are identical between the two proteins. We can

count the total number of identical residues; in this case, the two proteins share

We thus define homologous genes

within the same organism as

paralogous. But consider further

the case of globins. Human

a-globin and b-globin are para-

logs, as are mouse a-globin and

mouse b-globin. Human a-globin

and mouse a-globin are orthologs.

What is the relation of human

a-globin to mouse b-globin?

These could be considered para-

logs, because a-globin and

b-globin originate from a gene

duplication event rather than from

a speciation event. However, they

are not paralogs because they do

not occur in the same species. It

may thus be most appropriate to

simply call them “homologs,”

reflecting their descent from a

common ancestor. Fitch (1970,

p. 113) notes that phylogenies

require the study of orthologs (see

also Chapter 7).

Richard Owen (1804–1892) was

one of the first biologists to use the

term homology. He defined hom-

ology as “the same organ in differ-

ent animals under every variety of

form and function” (Owen, 1843,

p. 379). Charles Darwin (1809–

1882) also discussed homology in

the sixth edition of The Origin of

Species by means of Natural Selection

or,ThePreservation ofFavouredRaces

in the Struggle for Life (1872). He

wrote: “That relation between parts

which results from their develop-

ment from corresponding embryo-

nicparts, either indifferentanimals,

as in the case of the arm of man, the

foreleg of a quadruped, and the

wing of a bird; or in the same indi-

vidual, as in the case of the fore and

hind legs in quadrupeds, and the

segments or rings and their appen-

dages of which the body of a worm,

a centipede, &c., is composed. The

latter is called serial homology. The

parts which stand in such a relation

to each other are said to be hom-

ologous, and one such part or organ

is called thehomologue of theother.

In different plants the parts of the

flower are homologous, and in

general these parts are regarded as

homologous with leaves.”
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25% identity (37 of 145 aligned residues). Identity is the extent to which two amino

acid (or nucleotide) sequences are invariant. Note that this particular alignment is

called local because only a subset of the two proteins is aligned: the first and last

few amino acid residues of each protein are not displayed. A global pairwise align-

ment includes all residues of both sequences.

Another aspect of this pairwise alignment is that some of the aligned residues are

similar but not identical; they are related to each other because they share similar bio-

chemical properties. Similar pairs of residues are structurally or functionally related.

For example, on the first row of the alignment we can find threonine and serine (Tand

S connected by a þ sign in Fig. 3.5a); nearby we can see a leucine and a valine residue

that are aligned. These are conservative substitutions. Amino acids with similar prop-

erties include the basic amino acids (K, R, H), acidic amino acids (D, E), hydroxyl-

ated amino acids (S, T), and hydrophobic amino acids (W, F, Y, L, I, V, M, A). Later

in this chapter we will see how scores are assigned to aligned amino acid residues.

human

chimpanzee

orangutan

rhesus monkey

pig

common tree shrew

sheep

cow

sperm whale

horse

zebra

rat

mouse

dog

chicken

0.003

0.004

0.011

0.018

0.016

0.023

0.000

0.000

0.054

0.095

0.001

0.042

0.032

0.012

0.174

0.076

0.071

0.037

0.002

0.016

0.030

0.022

0.011
0.013

0.017

0.007

0.002

0.017

0.02

FIGURE 3.2. A group of myoglobin orthologs, visualized by multiply aligning the sequences
(Chapter 6) then creating a phylogenetic tree by neighbor-joining (Chapter 7). The accession
numbers and species names are as follows: human, NP_005359 (Homo sapiens); chimpanzee,
XP_001156591 (Pan troglodytes); orangutan, P02148 (Pongo pygmaeus); rhesus monkey,
XP_001082347 (Macaca mulatta); pig, NP_999401 (Sus scrofa); common tree shrew,
P02165 (Tupaia glis); horse, P68082 (Equus caballus); zebra, P68083 (Equus burchellii);
dog, XP_850735 (Canis familiaris); sperm whale, P02185 (Physeter catodon); sheep, P02190
(Ovis aries); rat, NP_067599 (Rattus norvegicus); mouse, NP_038621 (Mus musculus);
cow, NP_776306 (Bos taurus); chicken_XP_416292 (Gallus gallus). The sequences are
shown in web document 3.1 (Q http://www.bioinfbook.org/chapter3). In this tree, sequences
that are more closely related to each other are grouped closer together. Note that as entire gen-
omes continue to be sequenced (Chapters 13 to 19), the number of known orthologs will grow
rapidly for most families of orthologous proteins.

You can access the pairwise

BLAST program at the NCBI

blast site, Q http://www.ncbi.

nlm.nih.gov/BLAST/. We

discuss various options for using

the Basic Local Alignment Search

Tool (BLAST) in Chapter 4.

We discuss global and local align-

ments below.
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FIGURE 3.3. Paralogous human
globins: Each of these proteins is
human, and each is a member of
the globin family. This unrooted
tree was generated using the neigh-
bor-joining algorithm in MEGA
(see Chapter 7). The proteins and
their RefSeq accession numbers
(also shown in web document 3.2)
are delta globin (NP_000510),
G-gamma globin (NP_000175),
beta globin (NP_000509),
A-gamma globin (NP_000550),
epsilon globin (NP_005321), zeta
globin (NP_005323), alpha-1
globin (NP_000549), alpha-2
globin (NP_000508), theta-1
globin (NP_005322), hemoglobin
mu chain (NP_001003938), cyto-
globin (NP_599030), myoglobin
(NP_005359), and neuroglobin
(NP_067080). A Poisson correc-
tion model was used (see Chapter 7).

G-gamma globin

A-gamma globin

epsilon globin

delta globin

beta globin

mu globin

zeta globin

theta-1 globin

alpha-2 globin

alpha-1 globin

cytoglobin

myoglobin

neuroglobin

0.039

0.007

0.037

0.008

0.117

0.254

0.000
0.271

0.435

0.591

0.718

0.856

0.000

0.183

0.095

0.116

0.039

0.324

0.081

0.056

0.092

0.079

0.083

0.052

0.1

beta globin group

alpha globin group

FIGURE 3.4. The BLAST pro-
gram at the NCBI website allows
the comparison of two DNA or
protein sequences. Here the
program is set to blastp for
the comparison of two proteins
(arrow 1). Human beta globin
(NP_000509) is input in the
fasta format (arrow 2), while
human myoglobin (NP_005359)
is input as an accession number
(arrow 3).

1

2

3
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In the pairwise alignment of a segment of HBB and myoglobin, you can see that each

pair of residues is assigned a score that is relatively high for matches, and often nega-

tive for mismatches.

The percent similarity of two protein sequences is the sum of both identical and

similar matches. In Fig. 3.5a, there are 57 aligned amino acid residues that are simi-

lar. In general, it is more useful to consider the identity shared by two protein

sequences, rather than the similarity, because the similarity measure may be based

on a variety of definitions of how related (similar) two amino acid residues are to

each other.

In summary, pairwise alignment is the process of lining up two sequences to

achieve maximal levels of identity (and maximal levels of conservation in the case

of amino acid alignments). The purpose of a pairwise alignment is to assess the

degree of similarity and the possibility of homology between two molecules. We

may say that two proteins share, for example, 25% amino acid identity and 39% simi-

larity. If the amount of sequence identity is sufficient, then the two sequences are

probably homologous. It is never correct to say that two proteins share a certain per-

cent homology, because they are either homologous or not. Similarly, it is not appro-

priate to describe two sequences as “highly homologous”; instead one can say that

they share a high degree of similiarity. We will discuss the statistical significance of

sequence alignments below, including the use of expect values to assess whether

an alignment of two sequences is likely to have occurred by chance (Chapter 4).

(a)

(b)

Score = 18.1 bits (35),  Expect = 0.015, Method: Composition-based stats.
 Identities = 11/24 (45%), Positives = 12/24 (50%), Gaps = 2/24 (8%)

Query  12  VTALWGKVNVD--EVGGEALGRLL  33
           V  +WGKV  D    G E L RL 
Sbjct  11  VLNVWGKVEADIPGHGQEVLIRLF  34

match      4  11 5   6    6 5 4 5    sum of matches: +60
                6 4              4
mismatch   -1 1    0   -2 -2  -4  0  sum of mismatches: -13

-2      0   -3   0   
gap open             -11
gap extend            -1
                                     total raw score: 60 - 13 - 12 = 35

                                     sum of gap penalties: -12

 Score = 43.9 bits (102),  Expect = 1e-09, Method: Composition-based stats.
 Identities = 37/145 (25%), Positives = 57/145 (39%), Gaps = 2/145 (1%)

Query  4    LTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV  61
            L+  E   V  +WGKV  D    G E L RL   +P T   F+ F  L + D +  +  +
Sbjct  3    LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL  62

Query  62   KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK  121
            K HG  VL A    L    + +     L++ H  K  +  +    +   ++ VL      
Sbjct  63   KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG  122

Query  122  EFTPPVQAAYQKVVAGVANALAHKY  146
            +F    Q A  K +      +A  Y
Sbjct  123  DFGADAQGAMNKALELFRKDMASNY  147

▼▼

FIGURE 3.5. Pairwise alignment
of human beta globin (the
“query”) and myoglobin (the “sub-
ject”). Panel (a) shows the align-
ment from the search shown in
Fig. 3.4. Note that this alignment
is local (i.e., the entire lengths of
each protein are not compared),
and there are many positions of
identity between the two sequences
(indicated with amino acids inter-
vening between the query and sub-
ject lines). The alignment contains
an internal gap (indicated by two
dashes). Panel (b) illustrates how
raw scores are calculated, using
the result of a separate search with
just amino acids 10–34 of HBB
(corresponding to the region
between the arrowheads in panel
a). The raw score is 35; this rep-
resents the sum of the match scores
(from a BLOSUM62 matrix in
this case), the mismatch scores, the
gap opening penalty (set to 211
for this search), and the gap exten-
sion penalty (set to 21).

Two proteins could have similar

structures due to convergent evol-

ution. Molecular evolutionary

studies are essential (based on

sequence analyses) to assess this

possibility.
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Such analyses provide evidence to assess the hypothesis that two proteins are

homologous. Ultimately the strongest evidence to determine whether two proteins

are homologous comes from structural studies in combination with evolutionary

analyses.

Box 3.1
Structures and One- and Three-Letter Abbreviations of Twenty Common
Amino Acids

Alanine
(Ala, A
7.8%)

Valine
(Val, V
6.6%)

Leucine
(Leu, L
9.1%)

Isoleucine
(Ile, I
5.3%)

Proline
(Pro, P
5.2%)

Methionine
(Met, M
2.2%)

Phenylalanine
(Phe, F
3.9%)

Tryptophan
(Trp, W
1.4%)

Glycine
(Gly, G
7.2%)

Serine
(Ser, S
6.8%)

Threonine
(Thr, T
5.9%)

Cysteine
(Cys, C
2.8%)

Tyrosine
(Tyr, Y
3.2%)

Asparagine
(Asn, N
4.3%)

Glutamine
(Gln, Q
4.3%) Aspartic acid

(Asp, D
5.3%)

Glutamic acid
(Glu, E
6.3%)

Histidine
(His, H
2.3%)

Lysine
(Lys, K
5.9%)

Arginine
(Arg, R
5.1%)

Positively charged amino acids

Negatively charged amino acids

Uncharged polar amino acids

Nonpolar (hydrophobic) amino acids

CH

3

HN3

+
C

O

H

C

O
-

3 CH

CHCH

CH

CH

CHCH

CH

CH

CH

CH

CH

CH CH

S3

HN C

O

H

C

O
-

CH

CH CH

CH CH

NH

2

3 3 3

2

2

3

3

2

22
2

2

2
2

CH2

OH

CH

CH

CH

2

2

CH2

2

HN3
+

CH

CH

2
CH2

2

HN

C

NH2

NH2
+

CH

NH
2

NH
+

CH2

C

O
-

OH

CH2

C

O
-

OH

CH2

H CH2

OH

CH2

SH

HC

CH3

OH

CH2

C

OH2N

CH2

C

OH2N

CH2

It is very helpful to memorize these abbreviations and to become familiar with

the physical properties of the amino acids. The percentages refer to the relative

abundance of each amino acid in proteins.
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Gaps
Pairwise alignment is useful as a way to identify mutations that have occurred during

evolution and have caused divergence of the sequences of the two proteins we are

studying. The most common mutations are substitutions, insertions, and deletions. In

protein sequences, substitutions occur when a mutation results in the codon for

one amino acid being changed into that for another. This results in the alignment

of two nonidentical amino acids, such as serine and threonine. Insertions and del-

etions occur when residues are added or removed and are typically represented by

dashes that are added to one or the other sequence. Insertions or deletions (even

those just one character long) are referred to as gaps in the alignment.

In our alignment of human beta globin and myoglobin there is one gap (Fig. 3.5a,

between the D and E residues of the query). Gaps can occur at the ends of the proteins

or in the middle. Note that one of the effects of adding gaps is to make the overall

length of each alignment exactly the same. The addition of gaps can help to create

an alignment that models evolutionary changes that have occurred. In a typical scoring

scheme there are two gap penalties: one for creating a gap (211 in the example of

Fig. 3.5b) and one for each additional residue that a gap extends (21 in Fig. 3.5b).

Pairwise Alignment, Homology, and Evolution of Life
If two proteins are homologous, they share a common ancestor. Generally, we

observe the sequence of proteins (and genes) from organisms that are extant. We

Box 3.2
Algorithms and Programs

An algorithm is a procedure that is structured in a computer program (Sedgewick,

1988). For example, there are many algorithms used for pairwise alignment. A

computer program is a set of instructions that uses an algorithm (or multiple

algorithms) to solve a task. For example, the BLAST program (Chapters 3 to

5) uses a set of algorithms to perform sequence alignments. Other programs

that we introduce in Chapter 7 use algorithms to generate phylogenetic trees.

Computer programs are essential to solve a variety of bioinformatics

problems because millions of operations may need to be performed. The

algorithm used by a program provides the means by which the operations of

the program are automated. Throughout this book, note how many hundreds

of programs have been developed using many hundreds of different algorithms.

Each program and algorithm is designed to solve a specific task. An algorithm

that is useful to compare one protein sequence to another may not work in a

comparison of one sequence to a database of 10 million protein sequences.

Why is it that an algorithm that is useful for comparing two sequences cannot

be used to compare millions of sequences? Some problems are so inherently

complex that an exhaustive analysis would require a computer with enormous

memory or the problem would take an unacceptably long time to complete. A

heuristic algorithm is one that makes approximations of the best solution without

exhaustively considering every possible outcome. The 13 proteins in Fig. 3.2

can be arranged in a tree over a billion distinct ways (see Chapter 7)—and

finding the optimal tree is a problem that a heuristic algorithm can solve in a

second.
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can compare myoglobins from species such as human, horse, and chicken, and see

that the sequences are homologous (Fig. 3.2). This implies that an ancestral organ-

ism had a myoglobin gene and lived sometime before the divergences of the lineages

that gave rise to human and chicken (over 300 MYA; see Chapter 18). Descendants

of that ancestral organism include many vertebrate species. The study of homologous

protein (or DNA) sequences by pairwise alignment involves an investigation of the

evolutionary history of that protein (or gene).

For a brief overview of the time scale of life on Earth, see Fig. 3.6 (refer to

Chapter 13 for a more detailed discussion). The divergence of different species is

established through the use of many sources of data, especially the fossil record.

Fossils of prokaryotes have been discovered in rocks 3.5 billion years old or even

older (Schopf, 2002). Fossils of methane-producing archaea, representative of a

second domain of life, are found in rocks over 3 billion years old. The other main

domain of life, the eukaryotes, emerged soon after. In the case of globins, in addition

to the vertebrate proteins represented in Fig. 3.2, there are plant globins that must

have shared a common ancestor with the metazoan (animal) globins some 1.5 billion

years ago. There are also many bacterial and archaeal globins suggesting that the

globin family arose earlier than two billion years ago.

As we examine a variety of homologous protein sequences, we can observe a wide

range of conservation between family members. Some are very ancient and well con-

served, such as the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

A multiple sequence alignment, which is essentially a series of pairwise alignments

between a group of proteins, reveals that GAPDH orthologs are extraordinarily

well conserved (Fig. 3.7). Such highly conserved proteins may have any degree of rep-

resentation across the tree of life, from being present in most known species to only a

select few.

Orthologous kappa caseins from various species provide an example of a less

well-conserved family (Fig. 3.8). Some columns of residues in this alignment are per-

fectly conserved among the selected species, but most are not, and many gaps needed

to be introduced. Several positions at which four or even five different residues occur

in an aligned column are indicated.

We can see from the preceding examples that pairwise sequence alignment

between any two proteins can exhibit widely varying amounts of conservation. We

will next examine how the information in such alignments can be used to decide

how to quantitate the relatedness of any two proteins.

FIGURE 3.6. Overview of the his-
tory of life on Earth. See Chapter
13 for details. Gene/protein
sequences are analyzed in the con-
text of evolution: Which organisms
have orthologous genes? When did
these organisms evolve? How
related are human and bacterial
globins?

Origin
of Earth

Origin 
of life

Eukaryotes/
bacteria

Plants/
animals

Invertebrates/
vertebrates

Billions of years ago (BYA)

4 3 2 1

It is possible to infer the sequence

of the common ancestor (see

Chapter 7).

Databases such as Pfam (Chapter

6) and COGS (Chapter 15)

summarize the phylogenetic

distribution of gene/protein

families across the tree of life.

The GAPDH sequences used to

generate Fig. 3.7 and the kappa

casein sequences used to generate

fig. 3.8 are shown in web docu-

ments 3.3 and 3.4 at Q http://
www.bioinfbook.org/chapter3.
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SCORING MATRICES

When two proteins are aligned, what scores should they be assigned? For the align-

ment of beta globin and myoglobin in Fig. 3.5a there were specific scores for matches

and mismatches; how were they derived? Margaret Dayhoff (1978) provided a model

of the rules by which evolutionary change occurs in proteins. We will now examine

the Dayhoff model, which provides the basis of a quantitative scoring system for

pairwise alignments. This system accounts for scores between any proteins, whether

they are closely or distantly related. We will then describe the BLOSUM matrices of

▼▼ ▼ ▼▼ ▼ ▼ ▼▼ ▼ ▼▼ ▼

FIGURE 3.7. Multiple sequence alignment of a portion of the glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) protein from thirteen organisms: Homo sapiens (human), Pan troglodytes
(chimpanzee), Canis lupus (dog), Mus musculus (mouse), Rattus norvegicus (rat; four variants),
Gallus gallus (chicken), Drosophila melanogaster (fruit fly), Anopheles gambiae (mosquito),
Caenorhabditis elegans (worm), Schizosaccharomyces pombe (fission yeast), Saccharomyces cer-
evisiae (baker’s yeast), Kluyveromyces lactis (a fungus), and Oryza sativa (rice). Columns in the
alignment having even a single amino acid change are indicated with arrowheads. The accession
numbers are given in the figure. The alignment was created by searching HomoloGene at NCBI
with the term gapdh. The full alignment is given in Web Document 3.3 at Q http://www.
bioinfbook.org/chapter3.

mouse      AIPNPSFLAMPTNENQDNTAIPTIDPITPIVST--PVPTM------ESIVNTVANPEAST
rabbit     S--HPFFMAILPNKMQDKAVTPTTNTIAAVEPT--PIPTT------EPVVSTEVIAEASP
sheep      PHPHLSFMAIPPKKDQDKTEIPAINTIASAEPTVHSTPTT------EAVVNAVDNPEASS
cattle     PHPHLSFMAIPPKKNQDKTEIPTINTIASGEPT--STPTT------EAVESTVATLEDSP
pig        PRPHASFIAIPPKKNQDKTAIPAINSIATVEPT--IVPATEPIVNAEPIVNAVVTPEASS
human      PNLHPSFIAIPPKKIQDKIIIPTINTIATVEPT--PAPAT------EPTVDSVVTPEAFS
horse      PCPHPSFIAIPPKKLQEITVIPKINTIATVEPT--PIPTP------EPTVNNAVIPDASS
           .  :  *:*: .:: *:    *  :.*:.  .*    *:       *.  .     :  .

FIGURE 3.8. Multiple sequence alignment of seven kappa caseins, representing a protein
family that is relatively poorly conserved. Only a portion of the entire alignment is shown.
Note that just eight columns of residues are perfectly conserved (indicated with asterisks), and
gaps of varying length form part of the alignment. In several columns, there are four different
aligned amino acids (arrowheads); in two instances there are five different residues (double
arrowheads). The sequences were aligned with MUSCLE 3.6 (see Chapter 6) and were
human (NP_005203), equine (Equus caballus; NP_001075353), pig (Sus scrofa
NP_001004026), ovine (Ovis aries NP_001009378), rabbit (Oryctolagus cuniculus
P33618), bovine (Bos taurus NP_776719), and mouse (Mus musculus NP_031812). The
full alignment is available as web document 3.3 at Q http://www.bioinfbook.org/chapter3.
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Steven Henikoff and Jorja G. Henikoff (1992). Next, we will discuss the two main

kinds of pairwise sequence algorithms, global and local. Many database searching

methods such as BLAST (Chapters 4 and 5) depend in some form on the evolution-

ary insights of the Dayhoff model.

Dayhoff Model: Accepted Point Mutations
Dayhoff and colleagues considered the problem of how to assign scores to aligned

amino acid residues. Their approach was to catalog thousands of proteins and com-

pare the sequences of closely related proteins in many families. They considered the

question of which specific amino acid substitutions are observed to occur when two

homologous protein sequences are aligned. They defined an accepted point mutation as

a replacement of one amino acid in a protein by another residue that has been

accepted by natural selection. Accepted point mutation is abbreviated PAM (which

is easier to pronounce than APM). An amino acid change that is accepted by natural

selection occurs when (1) a gene undergoes a DNA mutation such that it encodes a

different amino acid and (2) the entire species adopts that change as the predominant

form of the protein.

Which point mutations are accepted in protein evolution? Intuitively, conserva-

tive replacements such as serine for threonine would be most readily accepted. In

order to determine all possible changes, Dayhoff and colleagues examined 1572

changes in 71 groups of closely related proteins (Box 3.3). Thus, their definition of

“accepted” mutations was based on empirically observed amino acid substitutions.

Their approach involved a phylogenetic analysis: rather than comparing two amino

acid residues directly, they compared them to the inferred common ancestor of

those sequences (Fig. 3.9 and Box 3.4).

For the PAM1 matrix, the proteins have undergone 1% change (that is, 1

accepted point mutation per 100 amino acid residues). The results are shown in

Fig. 3.10, which describes the frequency with which any amino acid pairs i, j are

aligned. Inspection of this table reveals which substitutions are unlikely to occur

(for example, cysteine and tryptophan have noticeably few substitutions), while

others such as asparagine and serine tolerate replacements quite commonly. Today,

we could generate a table like this with vastly more data (refer to Fig. 2.1 and the

explosive growth of GenBank). Several groups have produced updated versions of

the PAM matrices (Gonnet et al., 1992; Jones et al., 1992). Nonetheless the findings

from 1978 are essentially correct.

The main goal of Dayhoff ’s approach was to define a set of scores for the com-

parison of aligned amino acid residues. By comparing two aligned proteins, one can

then tabulate an overall score, taking into account identities as well as mismatches,

and also applying appropriate penalties for gaps. A scoring matrix defines

scores for the interchange of residues i and j. It is given by the probability qi,j of align-

ing original amino acid residue j with replacement residue i relative to the likelihood

of observing residues i by chance (pi). The scoring matrix further incorporates

a logarithm to generate log-odds scores. For the Dayhoff matrices, this takes the

following form:

si, j ¼ 10� log
qi, j

pi

� �
(3:1)

Here the score si, j refers to the score for aligning any two residues (including an amino

acid with itself) along the length of a pairwise alignment. The probability qi, j is the

The Dayhoff (1978) reference is to

the Atlas of Protein Sequence and

Structure, a book with 25 chapters

(and various coauthors) describ-

ing protein families. The 1966

version of the Atlas described the

sequences of just several dozen

proteins (cytochromes c, other

respiratory proteins, globins, some

enzymes such as lysozyme and

ribonucleases, virus coat proteins,

peptide hormones, kinins, and

fibrinopeptides). The 1978 edi-

tion included about 800 protein

sequences.

Dayhoff et al. (1972) focused on

proteins sharing 85% or more

identity. Thus, they could con-

struct their alignments with a high

degree of confidence. Later in this

chapter, we will see how the

Needleman and Wunsch algor-

ithm (described in 1970) permits

the optimal alignment of protein

sequences.
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observed frequency of substitution for each pair of amino acids. The values for qij are

called the “target frequencies,” and they are estimated in reference to a particular

amount of evolutionary change. For example, in a comparison of human beta

globin versus the closely related chimpanzee beta globin, the likelihood of any par-

ticular residue matching another in a pairwise alignment is extremely high, while

in a comparison of human beta globin and a bacterial globin the likelihood of a

match is low. If in a particular comparison of closely related proteins an aligned

serine were to change to a threonine 5% of the time, then that target frequency

qS,T would be 0.05. If in a different comparison of differently related proteins

serine were to change to threonine more often, say 40% of the time, then that

target frequency qS,T would be 0.4.

Equation 3.1 describes an odds ratio (Box 3.5). For the numerator, Dayhoff et al.

(1972) considered an entire spectrum of models for evolutionary change in deter-

mining target frequencies. We begin with the PAM1 matrix, which describes substi-

tutions that occur in very closely related proteins. For the denominator of Equation

3.1, pipj, is the probability of amino acid residues i and j occurring by chance. We will

Box 3.3
Dayhoff’s Protein Superfamilies

Dayhoff (1978, p. 3) and colleagues studied 34 protein “superfamilies” grouped

into 71 phylogenetic trees. These proteins ranged from some that are very well

conserved (e.g., histones and glutamate dehydrogenase; see Fig. 3.7) to others

that have a high rate of mutation acceptance (e.g., immunoglobulin [Ig] chains

and kappa casein; see Fig. 3.8). Protein families were aligned (compare Fig.

3.7); then they counted how often any one amino acid in the alignment was

replaced by another. Here is a partial list of the proteins they studied, including

the rates of mutation acceptance. For a more detailed list, see Table 11.1.

There is a range of almost 400-fold between the families that evolve fastest and

slowest, but within a given family the rate of evolution (measured in PAMs per

unit time) varies only two- to threefold between species. Used with permission.

Protein PAMs per 100 million years

Immunoglobulin (Ig) kappa chain C region 37

Kappa casein 33

Epidermal growth factor 26

Serum albumin 19

Hemoglobin alpha chain 12

Myoglobin 8.9

Nerve growth factor 8.5

Trypsin 5.9

Insulin 4.4

Cytochrome c 2.2

Glutamate dehydrogenase 0.9

Histone H3 0.14

Histone H4 0.10

SCORING MATRICES 59



5
6

myoglobin (NP_000539)

alpha-1 globin (NP_000549)

delta globin (NP_000510)

beta globin (NP_000509) 1

2

3

4

(a)

(b)

beta globin     MVHLTPEEKSAVTALWGKV
delta globin    MVHLTPEEKTAVNALWGKV
alpha-1 globin  MV.LSPA DKTN VK AA WGKV
myoglobin       .MGLSDG EWQL VL NV WGKV
5               MVHLSPE EKTA VN AL WGKV
6               MVHLTPE EKTA VN AL WGKV

FIGURE 3.9. Dayhoff’s approach to determining amino acid substitutions. Panel (a) shows a
partial multiple sequence alignment of human alpha-1 globin, beta globin, delta globin, and
myoglobin. Four columns in which alpha-1 globin and myoglobin have different amino acid resi-
dues are indicated in red. For example, A is aligned with G (arrow). Panel (b) shows a phylo-
genetic tree that shows the four extant sequences (labeled 1 to 4), as well as two internal
nodes that represent the ancestral sequences (labeled 5 and 6). The inferred ancestral sequences
were identified by maximum parsimony analysis using the software PAUP (Chapter 7), and are
displayed in panel (a). From this analysis it is apparent that at each of the columns labeled in red,
there was not a direct interchange of two amino acids between alpha-1 globin and myoglobin.
Instead, an ancestral residue diverged. For example, the arrow in panel (a) indicates an ances-
tral glutamate that evolved to become alanine or glycine, but it would not be correct to suggest
that alanine had been converted directly to glycine.

Box 3.4
A Phylogenetic Approach to Aligning Amino Acids

Dayhoff and colleagues did not compare the probability of one residue mutating

directly into another. Instead, they constructed phylogenetic trees using

parsimony analysis (see Chapter 7). Then, they described the probability that

two aligned residues derived from a common ancestral residue. With this

approach, they could minimize the confounding effects of multiple

substitutions occurring in an aligned pair of residues. As an example, consider

an alignment of the four human proteins alpha-1 globin, beta globin, delta

globin, and myoglobin. A direct comparison of alpha-1 globin to myoglobin

would suggest several amino acid replacements, such as ala$ gly, asn$ leu,

lys$ leu, and ala$ val (Fig. 3.9a, residues highlighted in red). However, a

phylogenetic analysis of these four proteins results in the estimation of internal

nodes that represent ancestral sequences. In Fig. 3.9b the external nodes

(corresponding to the four existing proteins) are labeled, as are internal nodes

5 and 6, which correspond to inferred ancestral sequences. In one of the four

cases that are highlighted in Fig. 3.9a, the ancestral sequences suggest that a

glu residue changed to ala and gly in alpha-1 globin and myoglobin, but ala

and gly never directly interchanged (Fig. 3.9a, arrow). Thus, the Dayhoff

approach was more accurate by taking an evolutionary perspective.

In a further effort to avoid the complicating factor of multiple substitutions

occurring in alignments of protein families, Dayhoff et al. also focused on

using multiple sequence alignments of closely related proteins. Thus, for

example, their analysis of globins considered the alpha globins and beta globins

separately.
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next explain how they calculated these values, resulting in the creation of an entire

series of scoring matrices.

Dayhoff et al. calculated the relative mutabilities of the amino acids (Table 3.1).

This simply describes how often each amino acid is likely to change over a short evol-

utionary period. (We note that the evolutionary period in question is short because

this analysis involves protein sequences that are closely related to each other.) To cal-

culate relative mutability, they divided the number of times each amino acid was

observed to mutate by the overall frequency of occurrence of that amino acid.

Table 3.2 shows the frequency with which each amino acid is found.

Why are some amino acids more mutable than others? The less mutable residues

probably have important structural or functional roles in proteins, such that the

consequence of replacing them with any other residue could be harmful to the

organism. (We will see in Chapter 20 that many human diseases, from cystic fibrosis

to the autism-related Rett syndrome to hemoglobinopathies, can be caused by a

single amino acid substitution in a protein.) Conversely, the most mutable amino

acids—asparagine, serine, aspartic acid, and glutamic acid—have functions in pro-

teins that are easily assumed by other residues. The most common substitutions

seen in Fig. 3.10 are glutamic acid for aspartic acid (both are acidic), serine for

Box 3.5
Statistical Concept: The Odds Ratio

Dayhoff et al. (1972) developed their scoring matrix by using odds ratios. The

mutation probability matrix has elements Mij that give the probability that

amino acid j changes to amino acid i in a given evolutionary interval. The

normalized frequency fi gives the probability that amino acid i will occur at that

given amino acid position by chance. The relatedness odds matrix in Equation

3.1 may also be expressed as follows:

Rij ¼
Mij

fi

Here, Rij is the relatedness odds ratio. Equation 3.1 may also be represented:

Probability of an authentic alignment ¼ p(aligned j authentic)

p(aligned j random)

The right side of this equation can be read, “the probability of an alignment given

that it is authentic (i.e. the substitution of amino acid j with amino acid i ) divided

by the probability that the alignment occurs given that it happened by chance. An

odds ratio can be any positive ratio. The probability that an event will occur is the

fraction of times it is expected to be observed over many trials; probabilities have

values ranging from 0 to 1. Odds and probability are closely related concepts. A

probability of 0 corresponds to an odds of 0; a probability of 0.5 corresponds to an

odds of 1.0; a probability of 0.75 corresponds to odds of 75:25 or 3. Odds and

probabilities may be converted as follows:

odds ¼ probability

1� probability
and probability ¼ odds

1þ odds

You can look up a recent estimate

of the frequency of occurrence of

each amino acid at the SwissProt

website Q http://www.expasy.ch/
sprot/relnotes/relstat.html. From

the UniProtKB/Swiss-Prot

protein knowledgebase (release

51.7), the amino acid composition

of all proteins is shown in web

document 3.5 (Q http://www.

bioinfbook.org/chapter3).
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alanine, serine for threonine (both are hydroxylated), and isoleucine for valine (both

are hydrophobic and of a similar size).

The substitutions that occur in proteins can also be understood with reference to

the genetic code (Box 3.6). Observe how common amino acid substitutions tend to

require only a single nucleotide change. For example, aspartic acid is encoded by

GAU or GAC, and changing the third position to either A or G causes the codon to

encode a glutamic acid. Also note that fourof the five least mutable amino acids (trypto-

phan, cysteine, phenylalanine, and tyrosine) are specified by only one or two codons. A

mutation of any of the three bases of the W codon is guaranteed to change that amino

acid. The low mutability of this amino acid suggests that substitutions are not tolerated

by natural selection. Of the eight least mutable amino acids (Table 3.1), only one (leu-

cine) is specified by six codons, and only two (glycine and proline) are specified by four

codons. The others are specified by one or two codons.

PAM1 Matrix
Dayhoff and colleagues next used the data on accepted mutations (Fig. 3.10) and the

probabilities of occurrence of each amino acid to generate a mutation probability

TABLE 3-1 Relative Mutabilities of Amino Acids
Asn 134 His 66

Ser 120 Arg 65

Asp 106 Lys 56

Glu 102 Pro 56

Ala 100 Gly 49

Thr 97 Tyr 41

Ile 96 Phe 41

Met 94 Leu 40

Gln 93 Cys 20

Val 74 Trp 18

The value of alanine is arbitrarily set to 100.
Source: From Dayhoff (1978). Used with permission.

TABLE 3-2 Normalized Frequencies of Amino Acid
Gly 0.089 Arg 0.041

Ala 0.087 Asn 0.040

Leu 0.085 Phe 0.040

Lys 0.081 Gln 0.038

Ser 0.070 Ile 0.037

Val 0.065 His 0.034

Thr 0.058 Cys 0.033

Pro 0.051 Tyr 0.030

Glu 0.050 Met 0.015

Asp 0.047 Trp 0.010

These values sum to 1. If the 20 amino acids were equally rep-
resented in proteins, these values would all be 0.05 (i.e., 5%);
instead, amino acids vary in their frequency of occurrence
Source: From Dayhoff (1978). Used with permission.

SCORING MATRICES 63



Box 3.6
The Standard Genetic Code

GTT Val 111
GTC Val 146
GTA Val 72
GTG Val 288

GCT Ala 185
GCC Ala 282
GCA Ala 160
GCG Ala 74

GAT Asp 230
GAC Asp 262
GAA Glu 301
GAG Glu 404

GGT Gly 112
GGC Gly 230
GGA Gly 168
GGG Gly 160

T

C

A

G

T C A G

T
C
A
G

ATT Ile 165
ATC Ile 218
ATA Ile 71
ATG Met 221

ACT Thr 131
ACC Thr 192
ACA Thr 150
ACG Thr 63

AAT Asn 174
AAC Asn 199
AAA Lys 248
AAG Lys 331

AGT Ser 121
AGC Ser 191
AGA Arg 113
AGG Arg 110

CTT Leu 127
CTC Leu 187
CTA Leu 69
CTG Leu 392

CCT Pro 175
CCC Pro 197
CCA Pro 170
CCG Pro 69

CGT Arg 47
CGC Arg 107
CGA Arg 63
CGG Arg 115

CAT His 104
CAC His 147
CAA Gln 121
CAG Gln 343

TTT Phe 171
TTC Phe 203
TTA Leu 73
TTG Leu 125

TCT Ser 147
TCC Ser 172
TCA Ser 118
TCG Ser 45

TAT Tyr 124
TAC Tyr 158
TAA Ter 0
TAG Ter 0

TGT Cys 99
TGC Cys 119
TGA Ter 0
TGG Trp 122

T
C
A
G

T
C
A
G

T
C
A
G

Second nucleotide

F
irs

t n
uc

le
ot

id
e

T
hi

rd
 n

uc
le

ot
id

e

In this table, the 64 possible codons are depicted along with the frequency of

codon utilization and the three-letter code of the amino acid that is specified.

There are four bases (A, C, G, U) and three bases per codon, so there are

43 ¼ 64 codons.

Several features of the genetic code should be noted. Amino acids may be

specified by one codon (M, W), two codons (C, D, E, F, H, K, N, Q, Y), three

codons (I), four codons (A, G, P, T, V), or six codons (L, R, S). UGA is rarely

read as a selenocysteine (abbreviated sec, and the assigned single-letter

abbreviations is U).

For each block of four codons that are grouped together, one is often used

dramatically less frequently. For example, for F, L, I, M, and V (i.e., codons

with a U in the middle, occupying the first column of the genetic code),

adenine is used relatively infrequently in the third-codon position. For codons

with a cytosine in the middle position, guanine is strongly underrepresented in

the third position.

Also note that in many cases mutations cause a conservative change (or no

change at all) in the amino acid. Consider threonine (ACX). Any mutation in

the third position causes no change in the specified amino acid, because of

“wobble.” If the first nucleotide of any threonine codon is mutated from A to

U, the conservative replacement to a serine occurs. If the second nucleotide C

is mutated to a G, a serine replacement occurs. Similar patterns of conservative

substitution can be seen along the entire first column of the genetic code,

where all of the residues are hydrophobic, and for the charged residues D, E

and K, R as well.

Codon usage varies between organisms and between genes within organisms.

Note also that while this is the standard genetic code, some organisms use
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matrix M (Fig. 3.11). Each element of the matrix Mij shows the probability that an

original amino acid j (see the columns) will be replaced by another amino acid i

(see the rows) over a defined evolutionary interval. In the case of Fig. 3.11 the interval

is one PAM, which is defined as the unit of evolutionary divergence in which 1% of

the amino acids have been changed between the two protein sequences. Note that the

evolutionary interval of this PAM matrix is defined in terms of percent amino acid

divergence and not in units of years. One percent divergence of protein sequence

may occur over vastly different time frames for protein families that undergo substi-

tutions at different rates.

Examination of Fig. 3.11 reveals several important features. The highest scores

are distributed in a diagonal from top left to bottom right. The values in each

column sum to 100%. The value 98.67 at the top left indicates that when the original

sequence consists of an alanine there is a 98.67% chance that the replacement amino

acid will also be an alanine over an evolutionary distance of one PAM. There is a

0.28% chance that it will be changed to serine. The most mutable amino acid

(from Table 3.1), asparagine, has only a 98.22% chance of remaining unchanged; the

least mutable amino acid, tryptophan, has a 99.76% chance of remaining the same.

For each original amino acid, it is easy to observe the amino acids that are most

likely to replace it if a change should occur. These data are very relevant to pairwise

sequence alignment because they will form the basis of a scoring system (described

below) in which reasonable amino acid substitutions in an alignment are rewarded

while unlikely substitutions are penalized. These concepts are also relevant to data-

base searching algorithms such as BLAST (Chapters 4 and 5) which depend on

rules to score the relatedness of molecular sequences.

Almost all molecular sequence data are obtained from extant organisms. We can

infer ancestral sequences, as described in Box 3.4 and Chapter 7. But in general, for

an aligned pair of residues i, j we do not know which one mutated into the other.

Dayhoff and colleagues used the assumption that accepted amino acid mutations

are undirected, that is, they are equally likely in either direction. In the PAM1

matrix, the close relationship of the proteins makes it unlikely that the ancestral

residue is entirely different than both of the observed, aligned residues.

PAM250 and Other PAM Matrices
The PAM1 matrix was based on the alignment of closely related protein sequences,

all of which were at least 85% identical within a protein family. We are often interested

in exploring the relationships of proteins that share far less than 85% amino acid iden-

tity. We can accomplish this by constructing probability matrices for proteins that

share any degree of amino acid identity. Consider closely related proteins, such as

the GAPDH proteins shown in Fig. 3.7. A mutation from one residue to another

alternate genetic codes. A group of two dozen alternate genetic codes are listed

at the NCBI Taxonomy website, Q http://www.ncbi.nlm.nih.gov/Taxonomy/
taxonomyhome.html/. As an example of a nonstandard code, vertebrate

mitochondrial genomes use AGA and AGG to specify termination (rather than

arg in the standard code), ATA to specify met (rather than ile), and TGA to

specify trp (rather then termination).

Source: Adapted from the International Human Genome Sequencing

Consortium (2001), fig. 34. Used with permission.
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is a relatively rare event, and a scoring system used to align two such closely related

proteins should reflect this. In the PAM1 mutation probability matrix (Fig. 3.11)

some substitutions such as tryptophan to threonine are so rare that they are never

observed in the data set. But next consider two distantly related proteins, such as

the kappa caseins shown in Fig. 3.8. Here, substitutions are likely to be very

common. PAM matrices such as PAM100 or PAM250 were generated to reflect

the kinds of amino acid substitutions that occur in distantly related proteins.

How are PAM matrices other than PAM1 derived? Dayhoff et al. multiplied

the PAM1 matrix by itself, up to hundreds of times, to obtain other PAM matrices

(see Box 3.7). Thus they extrapolated from the PAM1 matrix.

To make sense of what different PAM matrices mean, consider the extreme cases.

When PAM equals zero, the matrix is a unit diagonal (Fig. 3.12), because no amino

acids have changed. PAM can be extremely large (e.g., PAM greater than 2000, or the

matrix can even be multiplied against itself an infinite number of times). In the result-

ing PAM1 matrix there is an equal likelihood of any amino acid being present and all

the values consist of rows of probabilities that approximate the background prob-

ability for the frequency of occurrence of each amino acid (Fig. 3.12, lower panel).

We described these background frequencies in Table 3.2.

The PAM250 matrix is of particular interest (Fig. 3.13). It is produced when the

PAM1 matrix is multiplied against itself 250 times, and it is one of the common

matrices used for BLAST searches of databases (Chapter 4). This matrix applies

Box 3.7
Matrix Multiplication

A matrix is an orderly array of numbers. An example of a matrix with rows i and

columns j is:

1 2 4

2 0 �3

4 �3 6

2
4

3
5

In a symmetric matrix, such as the one above, aij ¼ aji. This means that all the

corresponding nondiagonal elements are equal. Matrices may be added,

subtracted, or manipulated in a variety of ways. Two matrices can be multiplied

together provided that the number of columns in the first matrix M1 equals the

number of rows in the second matrix M2. Following is an example of how to

multiply M1 by M2.

Successively multiply each row of M1 by each column of M2:

M1 ¼
3 4

0 2

� �
M2 ¼

5 �2

2 1

� �

M12 ¼
(3)(5)þ (4)(2) (3)(�2)þ (4)(1)

(0)(5)þ (2)(2) (0)(�2)þ (2)(1)

� �
¼

23 �2

4 2

� �

If you want to try matrix multiplication yourself, enter the PAM1 mutation

probability matrix of Fig. 3.11 into a program such as MATLABw

(Mathworks), divide each value by 10,000, and multiply the matrix times itself

250 times. You will get the PAM250 matrix of Fig. 3.13.
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to an evolutionary distance where proteins share about 20% amino acid identity.

Compare this matrix to the PAM1 matrix (Fig. 3.11) and note that much of the infor-

mation content is lost. The diagonal from top left to bottom right tends to contain

higher values than elsewhere in the matrix, but not in the dramatic fashion of the

PAM1 matrix. As an example of how to read the PAM250 matrix, if the original

amino acid is an alanine, there is just a 13% chance that the second sequence will

also have an alanine. In fact, there is a nearly equal probability (12%) that the alanine

will have been replaced by a glycine. For the least mutable amino acids, tryptophan

and cysteine, there is more than a 50% probability that those residues will remain

unchanged at this evolutionary distance.

FIGURE 3.12. Portion of the
matrices for a zero PAM value
(PAM0; upper panel) or for an
infinite PAM1 value (lower
panel). At PAM1 (i.e., if the
PAM1 matrix is multiplied against
itself an infinite number of times),
all the entries in each row converge
on the normalized frequency of the
replacement amino acid (see Table
3.2). A PAM2000 matrix has simi-
lar values that tend to converge on
these same limits. In a PAM2000
matrix, the proteins being com-
pared are at an extreme of unrelat-
edness. In constrast, at PAM0, no
mutations are tolerated, and the
residues of the proteins are per-
fectly conserved.

original amino acid

original amino acid
re
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pl
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en
t a

m
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o 
ac

id PAM0 A R N D C Q E G
A 100 0 0 0 0 0 0 0

R 0 100 0 0 0 0 0 0

N 0 0 100 0 0 0 0 0

D 0 0 0 100 0 0 0 0

C 0 0 0 0 100 0 0 0

Q 0 0 0 0 0 100 0 0

E 0 0 0 0 0 0 100 0

G 0 0 0 0 0 0 0 100

PAM• A R N D C Q E G
A 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7

R 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1

N 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

D 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7

C 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

Q 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8

E 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

G 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

FIGURE 3.13. The PAM250
mutation probability matrix. From
Dayhoff (1978, p. 350, fig. 83). At
this evolutionary distance, only
one in five amino acid residues
remains unchanged from an orig-
inal amino acid sequence (col-
umns) to a replacement amino
acid (rows). Note that the scale
has changed relative to Fig. 3.11,
and the columns sum to 100.
Used with permission.

A R N D C Q E G H I L K M F P S T W Y V
A
R
N
D
C
Q
E
G
H
I
L
K
M
F
P
S
T
W
Y
V

13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9 

3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2 

4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3 

5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3 

2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2 

3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3 

5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3 

12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7 

2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2 

3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9 

6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13 

6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5 

1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2 

2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3 

7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4 

9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6 

8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6 

0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0 

1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2 

7 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 7 2 4 17 
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From a Mutation Probability Matrix to a Log-Odds
Scoring Matrix
Our goal in studying PAM matrices is to derive a scoring system so that we can assess

the relatedness of two sequences. When we perform BLAST searches (Chapters 4

and 5) or pairwise alignments, we employ a scoring matrix, but it is not in the

form we have described so far. The PAM250 mutation probability matrix (Fig.

3.13) is useful because it describes the frequency of amino acid replacements

between distantly related proteins. We next need to convert the elements of a PAM

mutation probability matrix into a scoring matrix, also called a log-odds matrix or

relatedness odds matrix.

The cells in a log-odds matrix consist of scores as defined in Equation 3.1 above.

The target frequencies qij are derived from a mutation probability matrix, such as

those shown in Figs. 3.11 (for PAM1) and 3.13 (for PAM250). These values consist

of positive numbers that sum to 1. The background frequencies pipj reflect the inde-

pendent probabilities of each amino acid i, j occurring in this position. Its values were

given in Table 3.2.

For this scoring system Dayhoff and colleagues took 10 times the base 10 logar-

ithm of the odds ratio (Equation 3.1). Using the logarithm here is helpful because it

allows us to sum the scores of the aligned residues when we perform an overall align-

ment of two sequences. (If we did not take the logarithm, we would need to multiply

the ratios at all the aligned positions, and this is computationally more cumbersome.)

A log-odds matrix for PAM250 is shown in Fig. 3.14. The values have been

rounded off to the nearest integer. Try using Equation 3.1 to make sure you

understand how the mutation probability matrix (Fig. 3.13) is converted into

the log-odds scoring matrix (Fig. 3.14). As an example, to determine the score

assigned to two aligned tryptophan residues, the PAM250 mutation probability

matrix value is 0.55 (Fig. 3.13), and the normalized frequency of tryptophan is

0.010 (Table 3.2). Thus,

S(tryptophan,tryptophan) ¼ 10� log10

0:55

0:01

� �
¼ þ17:4 (3:2)

A 2

R 6–2

N 200

D 42–10

C 12–5–4–4–2

Q 4–52110

E 42–531–10

G 50–1–310–31

H 6–213–3122–1

I –1 –2 –2 –2 –2 –2 –2 –3 –2 5

L –2 –3 –3 –4 –6 –2 –3 –4 –2 –2 6

K –1 3 1 0 –5 1 0 –2 0 –2 –3 5

M –1 0 –2 –3 –5 –1 –2 –3 –2 2 4 0 6

F –3 –4 –3 –6 –4 –5 –5 –5 –2 1 2 –5 9

P 1 0 0 –1 –3 0 –1 0 0 –2 –3 –1 –2 –5 6

S 1 0 1 0 0 –1 0 1 –1 –1 –3 0 –2 –3 1 2

T 1 –1 0 0 –2 –1 0 0 –1 0 –2 0 –1 –3 0 1 3 

W –6 2 –4 –7 –8 –5 –7 –7 –3 –5 –2 –3 –4 0 –6 –2 –5 17

Y –3 –4 –2 –4 0 –4 –4 –5 0 –1 –1 –4 –2 7 –5 –3 –3 0 10

V 0 –2 –2 –2 –2 –2 –2 –1 –2

0

4 2 –2 2 –1 –1 –1 0 –6 –2 4

A R N D C Q E G H I L K M F P S T W Y V 

FIGURE 3.14. Log-odds matrix
for PAM250. High PAM values
(e.g., PAM250) are useful for
aligning very divergent sequences.
A variety of algorithms for pairwise
alignment, multiple sequence
alignment, and database searching
(e.g., BLAST) allow you to select
an assortment of PAM matrices
such as PAM250, PAM70, and
PAM30.

Note that this scoring matrix is

symmetric, in contrast to the

mutation probability matrix in

Fig. 3.13. In a comparison of two

sequences it does not matter

which is given first. In problem

[3-6] of this chapter we will cal-

culate the likelihood of changing

cys to glu, then of changing glu

to cys.
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This value is rounded off to 17 in the PAM250 log-odds matrix (Fig. 3.14). What do

the scores in the PAM250 matrix signify? A score of 210 indicates that the correspon-

dence of two amino acids in an alignment that accurately represents homology (evol-

utionary descent) is one-tenth as frequent as the chance alignment of these amino

acids. This assumes that each was randomly selected from the background amino

acid frequency distribution. A score of zero is neutral. A score of þ17 for tryptophan

indicates that this correspondence is 50 times more frequent than the chance align-

ment of this residue in a pairwise alignment. A score of þ2 indicates that the amino

acid replacement occurs 1.6 times as frequently as expected by chance. The highest

values in this particular matrix are for tryptophan (17 for an identity) and cysteine

(12), while the most severe penalties are associated with substitutions for those

two residues. When two sequences are aligned and a score is given, that score is

simply the sum of the scores for all the aligned residues across the alignment.

It is easy to see how different PAM matrices score amino acid substitutions by

comparing the PAM250 matrix (Fig. 3.14) with a PAM10 matrix (Fig. 3.15). In

the PAM10 matrix, identical amino acid residue pairs tend to produce a higher

score than in the PAM250 matrix; for example, a match of alanine to alanine

scores 7 versus 2, respectively. The penalties for mismatches are greater in the

PAM10 matrix; for example, a mutation of aspartate to arginine scores 217

(PAM10) versus 21 (PAM250). PAM10 even has negative scores for substitutions

(such as glutamate to asparagine, 25) that are scored positively in the PAM250

matrix (þ1).

Practical Usefulness of PAM Matrices in Pairwise Alignment
We can demonstrate the usefulness of PAM matrices by performing a series of global

pairwise alignments of both closely related proteins and distantly related proteins.

For the closely related proteins we will use human beta globin (NP_000509) and

beta globin from the chimpanzee Pan troglodytes (XP_508242); these proteins

share 100% amino acid identity. The bit scores proceed in a fairly linear, decreasing

fashion from about 590 bits using the PAM10 matrix to 200 bits using the PAM250

matrix and 100 bits using the PAM500 matrix (Fig. 3.16, black line). In this pairwise

alignment there are no mismatches or gaps, and the high bit scores associated with

low PAM matrices (such as PAM10) are accounted for by the lower relative entropy

(defined below). The PAM10 matrix is thus appropriate for comparisons of closely

related proteins. Next consider pairwise alignments of two relatively divergent

proteins, human beta globin and alpha globin (NP_000549) (Fig. 3.16, red line).

The PAM70 matrix yields the highest score. Lower PAM matrices (e.g., PAM10 to

PAM60) produce lower bit scores because the sequences share only 42% amino

acid identity, and mismatches are assigned large negative scores. We conclude that

different scoring matrices vary in their sensitivity to protein sequences (or DNA

sequences) of varying relatedness. When you compare two sequences you may

need to repeat the search using several different scoring matrices. Alignment pro-

grams cannot be preset to choose the right matrix for each pair of sequences.

Instead they begin with the most broadly useful scoring matrix such as

BLOSUM62, which we describe next.

Important Alternative to PAM: BLOSUM Scoring Matrices
In addition to the PAM matrices, another very common set of scoring matrices is the

blocks substitution matrix (BLOSUM) series. Henikoff and Henikoff (1992, 1996)

We state that a score of þ17 for

tryptophan indicates that the cor-

respondence of two tryptophans

in an alignment of homologous

proteins is 50 times more likely

than a chance alignment of two

tryptophan residues. How do we

derive the number 50? From

Equation 3.1, let Si, j ¼ þ17 and let

the probability of replacement

qij=pi ¼ x. Thenþ17 ¼ 10 log10 x,
þ1:7 ¼ log10 x, and 101:7 ¼
x ¼ 50.
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used the BLOCKS database, which consisted of over 500 groups of local multiple

alignments (blocks) of distantly related protein sequences. Thus the Henikoffs

focused on conserved regions (blocks) of proteins that are distantly related to

each other. The BLOSUM scoring scheme employs a log-odds ratio using the base

2 logarithm:

sij ¼ 2� log2

qij

pij

� �
(3:3)

Equation 3.3 resembles Equation 3.1 in its format. Karlin and Altschul (1990) and

Altschul (1991) have shown that substitution matrices can be described in general in

a log-odds form as follows:

sij ¼
1

l

� �
ln

qij

pipj

� �
(3:4)

Here sij refers to the score of amino acid i aligning with j. qij are the positive target

frequencies; these sum to 1. l is a positive parameter that provides a scale for the

matrix. We will again encounter l when we describe the basic statistical measure of

a BLAST result (Chapter 4, Equation 4.5).

The BLOSUM62 matrix is the default scoring matrix for the BLAST protein

search programs at NCBI. It merges all proteins in an alignment that have 62%

amino acid identity or greater into one sequence. If a block of aligned globin ortho-

logs includes several that have 62%, 80%, and 95% amino acid identity, these would

all be weighted (grouped) as one sequence. Substitution frequencies for the

BLOSUM62 matrix are weighted more heavily by blocks of protein sequences

having less than 62% identity. (Thus, this matrix is useful for scoring proteins that

share less than 62% identity.) The BLOSUM62 matrix is shown in Fig. 3.17.

Henikoff and Henikoff (1992) tested the ability of a series of BLOSUM and

PAM matrices to detect proteins in BLAST searches of databases. They found that

FIGURE 3.16. Global pairwise
alignment scores using a series of
PAM matrices. Two closely related
globins (human and chimpanzee
beta globin; black line) were
aligned using a series of PAM
matrices (x axis) and the bit
scores were measured (y axis).
For two distantly related globins
(human alpha versus beta globin;
red line) the bit scores are smaller
for low PAM matrices (such as
PAM1 to PAM20) because mis-
matches are severely penalized.
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The PAM matrix is given as 10

times the log base 10 of the odds

ratio. The BLOSUM matrix is

given as 2 times the log base 2 of

the odds ratio. Thus, BLOSUM

scores are not quite as large as they

would be if given on the same scale

as PAM scores. Practically, this

difference in scales is not import-

ant because alignment scores are

typically converted from raw

scores to normalized bit scores

(Chapter 4).
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BLOSUM62 performed slightly better than BLOSUM60 or BLOSUM70 and

dramatically better than PAM matrices at identifying various proteins. Their matrices

were especially useful for identifying weakly scoring alignments. BLOSUM50 and

BLOSUM90 are other commonly used scoring matrices in BLAST searches. (For

an alignment of two proteins sharing about 50% identity, try using the

BLOSUM50 matrix. The fasta family of sequence comparison programs use

BLOSUM50 as a default.)

The relationships of the PAM and BLOSUM matrices are outlined in Fig. 3.18.

To summarize, BLOSUM and PAM matrices both use log-odds values in their scor-

ing systems. In each case, when you perform a pairwise sequence alignment (or when

you search a query sequence against a database), you specify the exact matrix to use

based on the suspected degree of identity between the query and its matches. PAM

matrices are based on data from the alignment of closely related protein families, and

they involve the assumption that substitution probabilities for highly related proteins

(e.g., PAM40) can be extrapolated to probabilities for distantly related proteins (e.g.,

PAM250). In contrast, the BLOSUM matrices are based on empirical observations

of more distantly related protein alignments. Note that a PAM30 matrix, which is

available as an option on standard blastp searches at NCBI (Chapter 4), may be

R
N
D
C
Q
E
G
H

A 4

5–1

60–2

61–2–2

9–3–3–30

5–3001–1

52–4200–1

6–2–2–3–10–20

8–200–3–110–2

I –1 –3 –3 –3 –1 –3 –3 –4 –3 4

L –1 –2 –3 –4 –1 –2 –3 –4 –3 2 4

K –1 2 0 –1 –1 1 1 –2 –1 –3 –2 5

M –1 –2 –2 –3 –1 0 –2 –3 –2 1 2 –1 5

F –2 –3 –3 –3 –2 –3 –3 –3 –1 0 0 –3 0 6

P –1 –2 –2 –1 –3 –1 –1 –2 –2 –3 –3 –1 –2 –4 7

S 1 –1 1 0 –1 0 0 0 –1 –2 –2 0 –1 –2 –1 4

T 0 –1 0 –1 –1 –1 –1 –2 –2 –1 –1 –1 –1 –2 –1 1 5

W –3 –3 –4 –4 –2 –2 –3 –2 –2 –3 –2 –3 –1 1 –4 –3 –2 11

Y –2 –2 –2 –3 –2 –1 –2 –3 2 –1 –1 –2 –1 3 –3 –2 –2 2 7

V 0 –3 –3 –3 –1 –2 –2 –3 –3 3 1 –2 1 –1 –2 –2 0 –3 –1 4

A R N D C Q E G H I L K M F P S T W Y V 

FIGURE 3.17. The BLOSUM62
scoring matrix of Henikoff and
Henikoff (1992). This matrix
merges all proteins in an align-
ment that have 62% amino acid
identity or greater into one
sequence. BLOSUM62 performs
better than alternative BLOSUM
matrices or a variety of PAM
matrices at detecting distant
relationships between proteins. It
is thus the default scoring matrix
for most database search programs
such as BLAST (Chapter 4). Used
with permission.

PAM30

Less divergent More divergent

Human versus 
chimpanzee beta globin

Human versus 
bacterial globins

PAM250

BLOSUM90 BLOSUM45BLOSUM62

PAM120

FIGURE 3.18. Summary of PAM and BLOSUM matrices. High-value BLOSUM matrices and
low-value PAM matrices are best suited to study well-conserved proteins such as mouse and rat
globins. BLOSUM matrices with low numbers (e.g., BLOSUM45) or high PAM numbers
are best suited to detect distantly related proteins. Remember that in a BLOSUM45 matrix
all members of a protein family with greater than 45% amino acid identity are grouped together,
allowing the matrix to focus on proteins with less than 45% identity.
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useful for identifying significant conservation between two closely related proteins.

However, a BLOSUM matrix with a high value (such as the BLOSUM80 matrix

that is available at the NCBI blastp site) is not necessarily suitable for scoring closely

related sequences. This is because the BLOSUM80 matrix is adapted to regions of

sequences that share up to 80% identity, but beyond that limited region two proteins

may share dramatically less amino acid identity (Pearson and Wood, 2001).

Pairwise Alignment and Limits of Detection:
The “Twilight Zone”
When we compare two protein sequences, how many mutations can occur between

them before their differences make them unrecognizable? When we compared

glyceraldehyde-3-phosphate dehydrogenase proteins, it was easy to see their relation-

ship (Fig. 3.7). However, when we compared human beta globin and myoglobin, the

relationship was much less obvious (Fig. 3.5). Intuitively, at some point two homolo-

gous proteins are too divergent for their alignment to be recognized as significant.

The best way to determine the detection limits of pairwise alignments is through

statistical tests that assess the likelihood of finding a match by chance. These are

described below, and in Chapter 4. In particular we will focus on the expect (E)

value. It can also be helpful to compare the percent identity (and percent divergence)

of two sequences versus their evolutionary distance. Consider two protein sequences,

each 100 amino acids in length, in which various numbers of mutations are intro-

duced. A plot of the two diverging sequences has the form of a negative exponential

(Fig. 3.19) (Doolittle, 1987; Dayhoff, 1978). If the two sequences have 100% amino

acid identity, they have zero changes per 100 residues. If they share 50% amino acid

identity, they have sustained an average of 80 changes per 100 residues. One might

have expected 50 changes per 100 residues in the case of two proteins that share

50% amino acid identity. However, any position can be subject to multiple hits.

Thus, percent identity is not an exact indicator of the number of mutations that

have occurred across a protein sequence. When a protein sustains about 250 hits

FIGURE 3.19. Two randomly
diverging protein sequences change
in a negatively exponential fashion.
This plot shows the observed
number of amino acid identities per
100 residues of two sequences (y
axis) versus the number of changes
that must have occurred (the evol-
utionary distance in PAM units).
The twilight zone (Doolittle, 1987)
refers to the evolutionary distance
corresponding to about 20% identity
between two proteins. Proteins with
this degree of amino acid sequence
identity may be homologous, but
such homology is difficult to
detect. This figure was constructed
using MATLABw software with
data from Dayhoff (1978) (see
Table 3.3). Evolutionary distance (PAMs)
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A hit is a change in an amino acid

residue that occurs by mutation.

We discuss mutations (including

multiple hits at a nucleotide pos-

ition) in Chapter 7 (see Fig. 7.11).

We discuss mutations associated

with human disease in Chapter 20.

The plot in Fig. 3.19 reaches an

asymptote below about 15%

amino acid identity. This asymp-

tote would reach about 5% (or the

average background frequency of

the amino acids) if no gaps were

allowed in the comparison

between the proteins.
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per 100 amino acids, it may have about 20% identity with the original protein, and it

can still be recognizable as significantly related. If a protein sustains 360 changes

per 100 residues, it evolves to a point at which the two proteins share about 15%

amino acid identity and are no longer recognizable as significantly related in a

direct, pairwise comparison.

The PAM250 matrix assumes the occurrence of 250 point mutations per 100

amino acids. As shown in Fig. 3.19, this corresponds to the “twilight zone.” At

this level of divergence, it is usually difficult to assess whether the two proteins are

homologous. Other techniques, including multiple sequence alignment (Chapter

6) and structural predictions (Chapter 11), are often very useful to assess homology

in these cases. PAM matrices are available from PAM1 to PAM250 or higher, and a

specific number of observed amino acid differences per 100 residues is associated

with each PAM matrix (Table 3.3 and Fig. 3.19). Consider the case of the human

alpha globin compared to myoglobin. These proteins are approximately 150 amino

acid residues in length, and they may have undergone over 300 amino acid substi-

tutions since their divergence (Dayhoff et al., 1972, p. 19). If there were 345 changes

(corresponding to 230 changes per 100 amino acids), then an additional 100 changes

would result in only 10 more observable changes (Dayhoff et al., 1972; Table 3.3).

ALIGNMENT ALGORITHMS: GLOBAL AND LOCAL

Our discussion so far has focused on matrices that allow us to score an alignment

between two proteins. This involves the generation of scores for identical matches, mis-

matches, and gaps. We also need an appropriate algorithm to perform the alignment.

When two proteins are aligned, there is an enormous number of possible alignments.

TABLE 3-3 Relationship between Observed Number of AminoAcid Differences
per 100 Residues of Two Aligned Protein Sequences and Evolutionary Differencea

Observed
Differences in
100 Residues

Evolutionary Distance
in PAMs

1 1.0

5 5.1

10 10.7

15 16.6

20 23.1

25 30.2

30 38.0

35 47

40 56

45 67

50 80

55 94

60 112

65 133

70 159

75 195

80 246

aThe number of changes that must have occurred, in PAM units.
Source: Adapted from Dayhoff (1978, p. 375). Used with permission.

There are about 22n=
ffiffiffiffiffiffi
pn
p

possible

global alignments between two

sequences of length n (Durbin

et al., 2000; Ewens and Grant,

2001). For two sequences of

length 1000, there are about 10600

possible alignments. For two pro-

teins of length 200 amino acid

residues, the number of possible

alignments is over 6 � 1058.
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There are two main types of alignment: global and local. We will explore these

approaches next. A global alignment such as one produced by the method of

Needleman and Wunsch (1970) contains the entire sequence of each protein or

DNA sequence. A local alignment such as the method of Smith and Waterman

(1981) focuses on the regions of greatest similarity between two sequences. We

saw a local alignment of human beta globin and myoglobin in Fig. 3.5. For many pur-

poses, a local alignment is preferred, because only a portion of two proteins aligns.

(We will study the modular nature of proteins in Chapter 10.) Most database

search algorithms, such as BLAST (Chapter 4), use local alignments.

Each of these methods is guaranteed to find one or more optimal solutions to the

alignment of two protein or DNA sequences. We will then describe two rapid-search

algorithms, BLASTand FASTA. BLAST represents a simplified form of local align-

ment that is popular because the algorithm is very fast and easily accessible.

Global Sequence Alignment: Algorithm of Needleman
and Wunsch
One of the first and most important algorithms for aligning two protein sequences

was described by Saul Needleman and Christian Wunsch (1970), with subsequent

modifications by Sellers (1974), Gotoh (1982), and others. This algorithm is import-

ant because it produces an optimal alignment of two protein or DNA sequences, even

allowing the introduction of gaps. The result is optimal, but nonetheless not all possi-

ble alignments need to be evaluated. The Needleman–Wunsch (sometimes called

Needleman–Wunsch–Sellers) algorithm is an example of dynamic programming

in which the optimal alignment is identified by reducing the problem to a series of

smaller alignments on a residue-by-residue basis. An exhaustive pairwise comparison

would be too computationally expensive to perform.

We can describe the Needleman–Wunsch approach to global sequence align-

ment in three steps: (1) setting up a matrix, (2) scoring the matrix, and (3) identifying

the optimal alignment. We will illustrate this process using two globin sequences.

Step 1: Setting Up a Matrix
First, we compare two sequences in a two-dimensional matrix (Fig. 3.20 and follow-

ing figures). The first sequence, of length m, is listed vertically along the y axis, with its

amino acid residues corresponding to rows. The second sequence, of length n, is listed

horizontally along the x axis so that its amino acid residues correspond to the columns.

In our two-dimensional matrix, a perfect alignment between two identical

sequences is represented by a diagonal line extending from the top left to the

bottom right (Fig. 3.20a). Any mismatch between two sequences is still represented

on this diagonal path (Fig. 3.20b). In the example of Fig. 3.20b, the mismatch of L

and M residues might be assigned a score lower than the perfect match of L and L

shown in Fig. 3.20a. Gaps are represented in this matrix using horizontal or vertical

paths, as shown in Fig. 3.20c,d. Any gap in the second sequence is represented as a

vertical line (Fig. 3.20c), while any gap in the first sequence is drawn as a horizontal

line (Fig. 3.20d). These gaps can be of any length, and gaps can be internal or term-

inal. Sellers (1974) introduced a modification to allow linear gap penalties, while

Gotoh (1982) allowed affine gap penalties in which there is a large penalty for intro-

ducing a gap and a small penalty for each position that the gap is extended (see

Chapter 4).

This algorithm is also sometimes

called the Needleman–Wunsch–

Sellers algorithm. Sellers (1974)

provided a related alignment

algorithm (one that focuses on

minimizing differences, rather

than on maximizing similarities).

Smith et al. (1981) showed that

the Needleman–Wunsch and

Sellers approaches are mathemat-

ically equivalent.
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We will use a specific example of globally aligning a portion of human cytoglobin

(sequence 1 in Figs. 3.20e,f and 3.21) and a honeybee globin (sequence 2).

Step 2: Scoring the Matrix
The Needleman–Wunsch approach (from 1970) begins with the creation of an iden-

tity matrix (also called a unitary matrix). To do this, we simply place a value of þ1 in

each cell of the matrix where the two proteins share an identical amino acid

residue (Fig. 3.20e). The identity matrix uses the simplest scheme for assigning

scores, but we could apply any scoring matrix such as Blosum62 (as shown in

Fig. 3.20f).

Next, we set up a scoring matrix (Fig. 3.21), distinct from the identity matrix. For

our example, we employ a simple scoring system in which each amino acid identity

gains a score of þ1, each mismatch scores 22, and each gap position scores 22

(Fig. 3.21b). Our goal in finding an optimal alignment is to determine the path

through the matrix that maximizes the score. This usually entails finding a path

through as many positions of identity as possible while introducing as few gaps as

F M T P L N ED

F

K

H

M

E

D

P

L

E 1

1

1

1

1

1

1

(e) (f)

S
eq

ue
nc

e 
1

 (
fr

om
 h

um
an

 c
yt

og
lo

bi
n 

)

Sequence 2
(from honeybee globin)

F M T P L N ED

F

K

H

M

E

D

P

L

E

S
eq

ue
nc

e 
1

Sequence 2

5

6

5

5

7

6

4

0

0

–3 –2 –4 0

0

–4

–3

–3 –3

–3

–3

–3

–1

–1 –1 –1 –1 –2 0 1

–2 –1 –2 –2 –3 1 0

–3 –1 –2 2 –2 –2

–2

–2

–2

2

2 –1 –1 –3 0

2 –1 –1 –3 0

–3 –1 –1 –4 1 2

–1 –1 –3 –2 –1

–4 –1 –3 –3 –3

(d)

D P EL
D

P

L

ES
eq

ue
nc

e 
1

Sequence 2

1  DPLE
2  DPLE

D P EM
D

P

L

ES
eq

ue
nc

e 
1

Sequence 2

1  DPLE
2  DPME

D P E
D

P

L

ES
eq

ue
nc

e 
1

Sequence 2

1  DPLE
2  DP-E

D P EL
D

L

E

S
eq

ue
nc

e 
1

Sequence 2

1  D-LE
2  DPLE

(a) (b) (c)

FIGURE 3.20. Pairwise align-
ment of two amino acid sequences
using a dynamic programming
algorithm of Needleman and
Wunsch (1970) for global align-
ment. (a) Two identical sequences
can be assigned a diagonal path
through the matrix. (b) A mis-
match in one sequence still results
in a diagonal path, but the score
of a mismatch may be lower than
that of a perfect match. (c) A del-
etion in sequence 2 (or an insertion
in sequence 1) results in the inser-
tion of a gap position and a result-
ing vertical path in the optimal
alignment. (d) A gap in the first
sequence is represented by a hori-
zontal path through the matrix.
(e) A portion of the sequences of
human cytoglobin (NP_599030)
and a honeybee globin
(NP_001071291) are used to
demonstrate global alignment. An
identity matrix uses a simple scor-
ing system of þ1 at each position
in which the sequences share an
identical amino acid residue, and
0 (not shown) in all other cells.
(f) A BLOSUM62 scoring matrix
is applied to provide scores for the
same two sequences as in (e).
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FIGURE 3.21. Pairwise alignment of two amino acid sequences using the dynamic program-
ming algorithm of Needleman and Wunsch (1970) for global alignment. (a) For sequences
of length m and n we form a matrix of dimensions mþ1 by n þ1 and add gap penalties in
the first row and column. Each gap position receives a score of 22. The cells having identity
are shaded gray. (b) The scoring system in this example is þ1 for a match, 22 for a mismatch,
and 22 for a gap penalty. In each cell, the score is assigned using the recursive algorithm that
identifies the highest score from three calculations. (c) In each cell F(i, j) we calculate the scores
derived from following a path from the upper left cell (we add the score of that cell þ F(i, j)), the
score of the cell to the left (including a gap penalty), and the cell directly above (again including a
gap penalty). (d) To calculate the score in the cell of the second row and column, we take the
maximum of the three scores þ1, 24, 24. This best score (þ1) follows the path of the red
arrow, and we maintain the information of the best path resulting in each cell’s score in
order to later reconstruct the pair wise alignment. (e) To calculate the score in the second
row, third column we again take the maximum of the three scores 24, 21, 24. The best
score follows from the left cell (red arrow). (f) We proceed to fill in scores across the first row
of the matrix. (g) The completed matrix includes the overall score of the optimal alignment
(24; see cell at bottom right, corresponding to the carboxy termini of each protein). Red
arrows indicate the path(s) by which each cell’s highest score was obtained.
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possible. As shown in Fig. 3.20a–e, there are four possible occurrences at each pos-

ition i, j (i.e., in each cell in the matrix):

1. Two residues may be perfectly matched (i.e., identical).

2. They may be mismatched.

3. A gap may be introduced from the first sequence.

4. A gap may be introduced from the second sequence.

The Needleman–Wunsch–Sellers algorithm provides a score, corresponding to

each of these possible outcomes, for each position of the aligned sequences. The algor-

ithm also specifies a set of rules describing how we can move through the matrix. We

define two sequences of length m and n and create a scoring matrix of dimensions

mþ1 and nþ1 (Fig. 3.21a). The upper left cell is assigned a score of 0. Subsequent

cells down the first column and across the first row correspond to terminal gap assign-

ments. On the first row, the cell with a score of 22 corresponds to the insertion of one

gap position in the final alignment; a score of 24 indicates two terminal gap positions.

Let us next introduce a nomenclature for the cells of the matrix. Define i corre-

sponding to rows (in sequence 1) and j corresponding to columns (sequence 2).

Consider any given cell at position (i, j) for which we want to assign a score

(Fig. 3.21c, lower right). The score is the maximal value of three scores derived

from the three adjacent cells that are (1) positioned diagonally up to the left, (2)

directly to the left, or (3) directly above.

(1) The cell diagonally up to the left, at position F(i21, j21), corresponds to an

alignment having either a match or mismatch. We take the score in that cell i21, j21

and add to it the score s(xi, yi) in the lower right quadrant (Fig. 3.21c). This score may

take a negative value if the residues are mismatched. To calculate the score in row 2,

column 2 in Fig. 3.21d, we add 0 (the score in the upper left cell) plus 1 (the score

assigned to a match between F and F). To calculate the score in row 2, column 3

in Fig. 3.21e, we add 22 (the score in the upper left quadant) to 22 (the score

assigned to a mismatch between F and M) for a total of 24.

(2) The cell directly to the left of i, j (that is, i, j21) has some score (see Fig. 3.21c).

As shown in Fig. 3.21b, we take this score and subtract the gap penalty. Choosing this

path (described below) corresponds to the insertion of a gap position in sequence 1. To

calculate the score in row 2, column 2 (Fig. 3.21d), we sum 22 (the score in row 2,

column 1) and 22 (the gap penalty) for a score of 24. In Fig. 3.21e, we sum þ1

(the score to the left of row 2, column 3) and 22 (the gap penalty) for a score of 21.

(3) The cell directly above i, j is at position i21, j. To move from i21, j to i, j

requires inserting a gap in sequence 2. We calculate scores as described for a gap

insertion in sequence 1. To score the cell in row 2, column 2 of Fig. 3.21d, we

sum 22 and the gap penalty 22 for a total of 24. To score the cell in row 2,

column 3, we sum 24 and the gap penalty of 22 for a total of 26 (Fig. 3.21e).

We can add scores to the matrix moving systematically across the rows (Fig.

3.21f). As we do this, we keep track of which of the three possible paths lead to the

optimal score in each cell. To help show which cells have þ1 scores from the identity

matrix of Fig. 3.20e, we have shaded those same cells gray in Fig. 3.21. When the pro-

cess of filling the scoring matrix is complete (Fig. 3.21g), the score in the lower right

hand cell is the overall score of the alignment.

Step 3: Identifying the Optimal Alignment
After the matrix is filled, we know the overall score of the alignment but we do not

know that optimal alignment itself. That is determined by a trace-back procedure.
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For this, we begin with the cell at the lower right of the matrix (carboxy termini of the

proteins or 3 end of the nucleic acid sequences). In our example, this has a score of 24

and represents an alignment of two glutamate residues. For this and every cell we can

determine from which of the three adjacent cells the best score was derived. This pro-

cedure is outlined in Fig. 3.22a in which red arrows indicate the paths from which the

best scores were obtained for each cell. We thus define a path (see red-shaded cells)

that will correspond to the actual alignment. Sometimes, two or even all three paths

will give the same score at that cell; in such cases all equivalent traceback pointers

are kept. In Fig. 3.22b, we further show just the arrows indicating which cell each

best score was derived from. This is a different way of defining the optimal path of

the pairwise alignment. We build that alignment, including gaps in either sequence,

proceeding from the carboxy to the amino terminus. The final alignment (Fig.

3.22c) is guaranteed to be optimal, given this scoring system. There may be multiple

alignments that share an optimal score, although this rarely occurs when scoring

matrices such as BLOSUM62 are employed.

A variety of programs implement global alignment algorithms (see Web

Resources at the end of this chapter). An example is the Needle program from

EMBOSS (Box 3.8). Two bacterial globin family sequences are entered: one from

Streptomyces avermitilis MA-4680 (NP_824492, 260 amino acids), and another

from Mycobacterium tuberculosis CDC1551 (NP_337032, 134 amino acids).

Penalties are selected for gap creation and extension, and each sequence is pasted

into an input box in the fasta format. The resulting global alignment includes descrip-

tions of the percent identity and similarity shared by the two proteins, the length of

the alignment, and the number of gaps introduced (Fig. 3.23a).
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FIGURE 3.22. Global pairwise alignment of two amino acid sequences using a dynamic pro-
gramming algorithm: scoring the matrix and using the trace-back procedure to obtain the align-
ments. (a) The alignment of Fig. 3.22g is shown. The cells highlighted represent the source of the
optimal scores. (b) In an equivalent representation, we use arrows to point back to the source of
each cell’s optimal score. (c) This traceback allows us to determine the sequence of the optimal
alignment. Vertical or horizontal arrows correspond to positions of gap insertions, while diagonal
lines correspond to exact matches (or mismatches). Note that the final score (24) equals the sum
of matches (6�1¼6), mismatches (none in this example), and gaps (5�22¼210).

The needle program for global

pairwise alignment is part of the

EMBOSS package available

online at the European

Bioinformatics Institute

(Q http://www.ebi.ac.uk/
emboss/align/). It is further

described at the EMBOSS website

under applications (Q http://
emboss.sourceforge.net/). The

E. coli and S. cerevisiae proteins

are available in the fasta format,

as well as globally and locally

aligned in web document 3.6

(Q http://www.bioinfbook.org/
chapter3).
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Box 3.8
EMBOSS

EMBOSS (European Molecular Biology Open Software Suite) is a collection of

freely available programs for DNA, RNA, or protein sequence analysis (Rice

et al., 2000). There are over 200 available programs in three dozen categories.

The home page of EMBOSS (Q http://emboss.sourceforge.net/) describes the

various packages. A variety of web servers offer EMBOSS, including the

following.

http://bips.u-strasbg.fr/EMBOSS/

http://bioinfo.hku.hk/EMBOSS/

http://sbcr.bii.a-star.edu.sg/emboss/

Virginia Bioinformatics Institute http://phytophthora.vbi.vt.edu/
EMBOSS/

Weizmann Institute http://inn.weizmann.ac.il/EMBOSS/

Strasbourg Bioinformatics

Platform

http://bips.u-strasbg.fr/EMBOSS/

NP_824492.1        1 MCGDMTVHTVEYIRYRIPEQQSAEFLAAYTRAAAQLAAAPQCVDYELARC     50
                                                                       
NP_337032.1        1                                                         0

NP_824492.1       51 EEDFEHFVLRITWTSTEDHIEGFRKSELFPDFLAEIRPYISSIEEMRHYK    100
                                                                       
NP_337032.1        1                                                         0

NP_824492.1      101 PTTVRGTGAAVPTLYAWAGGAEAFARLTEVFYEKVLKDDVLAPVFEGMAP    150
                        :.|......:.|...|||:.|..:...||.:|.:|:||..|:    |
NP_337032.1        1    MEGMDQMPKSFYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVY----P     43

NP_824492.1      151 EH-----AAHVALWLGEVFGGPAAYSETQGGHGHMVAKHLGKNITEVQRR    195
                     |.     ...:.::|.:.:|||..||| |.||..:..:|....|:.::|.
NP_337032.1       44 EDDLAGAEERLRMFLEQYWGGPRTYSE-QRGHPRLRMRHAPFRISLIERD     92

NP_824492.1      196 RWVNLLQDAADDAGLPT-DAEFRSAFLAYAEWGTRLAVYFSGPDAVPPAE    244
                     .|:..:..|.......| |.|.|...|.|.|......|  :.|.      
NP_337032.1       93 AWLRCMHTAVASIDSETLDDEHRRELLDYLEMAAHSLV--NSPF          134

NP_824492.1      245 QPVPQWSWGAMPPYQP    260
                                     
NP_337032.1      135                     134

NP_824492.1      113 TLYAWAGGAEAFARLTEVFYEKVLKDDVLAPVFEGMAPEH-----AAHVA    157
                     :.|...|||:.|..:...||.:|.:|:||..|:    ||.     ...:.
NP_337032.1       10 SFYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVY----PEDDLAGAEERLR     55

NP_824492.1      158 LWLGEVFGGPAAYSETQGGHGHMVAKHLGKNITEVQRRRWVNLLQDAADD    207
                     ::|.:.:|||..||| |.||..:..:|....|:.::|..|:..:..|...
NP_337032.1       56 MFLEQYWGGPRTYSE-QRGHPRLRMRHAPFRISLIERDAWLRCMHTAVAS    104

NP_824492.1      208 AGLPT-DAEFRSAFLAYAE    225
                     ....| |.|.|...|.|.|
NP_337032.1      105 IDSETLDDEHRRELLDYLE    123

(a)

(b)

FIGURE 3.23. (a) Global pair-
wise alignment of bacterial proteins
containing globin domains from
Streptomyces avermitilis MA-4680
(NP_824492) and Mycobacterium
tuberculosis CDC1551 (NP_
337032). The scoring matrix was
BLOSUM62. The aligned proteins
share 14.7% identity (39/266
aligned residues), 22.6% similarity
(60.266), and 51.9% gaps (138/
266). (b) A local pairwise align-
ment of these two sequences lacks
the unpaired amino- and carboxy-
terminal extensions and shows
30% identity (35/115 aligned
residues). The alignment in (b)
corresponds to the region within
the dotted vertical lines of (a).
The arrowheads in (a) indicate
aligned residues that not seen in
the local alignment. Thus, in per-
forming local alignments (as is
done in BLAST, Chapter 4) some
authentically aligned regions may
be missed.
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Local Sequence Alignment: Smith and Waterman Algorithm
The local alignment algorithm of Smith and Waterman (1981) is the most rigorous

method by which subsets of two protein or DNA sequences can be aligned.

Localalignment isextremelyuseful inavarietyof applications, suchasdatabasesearch-

ing where we may wish to align domains of proteins (but not the entire sequences). A

localsequencealignmentalgorithmresemblesthat forglobalalignment inthattwopro-

teins are arranged in a matrix and an optimal path along a diagonal is sought. However,

there is no penalty for starting the alignment at some internal position, and the align-

ment does not necessarily extend to the ends of the two sequences.

For the Smith–Waterman algorithm a matrix is again constructed with an

extra row along the top and an extra column on the left side. Thus for sequences

of lengths m and n, the matrix has dimensions m þ 1 and n þ 1. The rules for defining

the value in each position of the matrix differ slightly from those used in the

Needleman–Wunsch algorithm. The score in each cell is selected as the maximum

of the preceding diagonal or the score obtained from the introduction of a gap.

However, the score cannot be negative: a rule introduced by the Smith–Waterman

algorithm is that if all other score options produce a negative value, then a zero

must be inserted in the cell. Thus, the score s(i, j) is given as the maximum of four

possible values (Fig. 3.24):

1. The score from the cell at position i 2 1, j 2 1; that is, the score diagonally

up to the left. To this score, add the new score at position s[i, j], which consists

of either a match or a mismatch.

2. s(i, j 2 1) (i.e., the score one cell to the left) minus a gap penalty.

3. s(i 2 1, j) (i.e., the score immediately above the new cell) minus a gap penalty.

4. The number zero. This condition assures that there are no negative values in

the matrix. In contrast negative numbers commonly occur in global align-

ments because of gap or mismatch penalties (note the log-odds matrices in

this chapter).

An example of the use of a local alignment algorithm to align two nucleic

acid sequences, adapted from Smith and Waterman (1981), is shown in Fig. 3.24.

The topmost rowand the leftmost column of the matrix are filled with zeros.The maxi-

mal alignment can begin and end anywhere in the matrix (within reason; the linear

orderof the twoamino acid sequences cannot be violated).The procedure is to identify

the highest value in the matrix (this value is 3.3 in Fig. 3.24a). This represents the end

(30 end for nucleic acids, or carboxy-terminal portion proteins) of the alignment. This

position is not necessarily at the lower right corner, as it must be fora global alignment.

The trace-back procedurebeginswith this highest valuepositionand proceeds diagon-

ally up to the left stopping when a cell is reached with a value of zero. This defines the

start of the alignment, and it is not necessarily at the extreme top left of the matrix.

A requirement of the Smith–Waterman algorithm is that the expected score for a

random match is negative. This condition ensures that alignments between very long

unrelated sequences do not accrue high scores. Such sequences could otherwise pro-

duce spurious alignments having higher scores than the authentic match between two

proteins over a shorter region.

An example of a local alignment of two proteins using the Smith–Waterman

algorithm is shown in Fig. 3.23b. Compare this with the global alignment of Fig.
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3.23a and note that the aligned region is shorter for the local alignment, while the

percent identity and similarity are higher. Note also that the local alignment ignores

several identically matching residues (Fig. 3.23a, arrowheads). Since database

searches such as BLAST (Chapter 4) rely on local alignments, there may be con-

served regions that are not reported as aligned, depending on the particular search

parameters you choose.
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(a)

(b)
sequence 1   GCC-UCG
sequence 2   GCCAUUG

(c)
sequence 1   CAGCC-UCGCUUAG
sequence 2   AAUGCCAUUGACGG

FIGURE 3.24. Local sequence alignment method of Smith and Waterman (1981). (a) In this
example, the matrix is formed from two RNA sequences (CAGCCUCGCUUAG and
AAUGCCAUUGACGG). While this is not an identity matrix (such as that shown in Fig.
3.20e), positions of nucleotide identity are shaded gray. The scoring system here is þ1 for a
match, minus one-third for a mismatch, and a gap penalty of the difference between a match
and a mismatch (21.3 for a gap of length one). The matrix is scored according to the rules out-
lined on the bottom of page 82. The highest value in the matrix (3.3) corresponds to the beginning
of the optimal local alignment, and the aligned residues (shaded red) extend up and to the left until
a value of zero is reached. (b) The local alignment derived from this matrix is shown. Note that this
alignment includes identities, a mismatch, and a gap. (c) A global alignment of the two sequences
is shown for comparison to the local alignment. Note that it encompasses the entirety of both
sequences, and that the local alignment is not a subsequence of the global alignment. Used with
permission.
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Rapid, Heuristic Versions of Smith–Waterman:
FASTA and BLAST
While the Smith–Waterman algorithm is guaranteed to find the optimal align-

ment(s) between two sequences, it suffers from the fact that it is relatively slow.

For pairwise alignment, speed is usually not a problem. But when a pairwise align-

ment algorithm is applied to the problem of comparing one sequence (a “query”)

to an entire database, the speed of the algorithm becomes a significant issue and

may vary by orders of magnitude.

Most algorithms have a parameter N that refers to the number of data items to be

processed (see Sedgewick, 1988). This parameter can greatly affect the time required

for the algorithm to perform a task. If the running time is proportional to N, then

doubling N doubles the running time. If the running time is quadratic (N2), then

for N ¼ 1000, the running time is one million. For both the Needleman–Wunsch

and the Smith–Waterman algorithms, both the computer space and the time

required to align two sequences is proportional to at least the length of the two

query sequences multiplied against each other, m � n. For the search of a database

of size N, this is m � N.

Another useful descriptor is O-notation (called “big-Oh notation”) which allows

one to approximate the upper bounds on the running time of an algorithm. The

Needleman–Wunsch algorithm requires O(mn) steps, while the Smith–Waterman

algorithm requires O(m2n) steps. Subsequently, Gotoh (1982) and Myers and

Miller (1988) improved the algorithms so they require less time and space.

Two popular local alignment algorithms have been developed that provide rapid

alternatives to Smith–Waterman: FASTA (Pearson and Lipman, 1988) and BLAST

(Basic Local Alignment Search Tool) (Altschul et al., 1990). Each of these algor-

ithms requires less time to perform an alignment. The time saving occurs because

FASTA and BLAST restrict the search by scanning a database for likely matches

before performing more rigorous alignments. These are heuristic algorithms (Box

3.2) that sacrifice some sensitivity in exchange for speed; in contrast to Smith–

Waterman, they are not guaranteed to find optimal alignments.

The FASTA search algorithm introduced by Pearson and Lipman (1988) pro-

ceeds in four steps.

1. A lookup table is generated consisting of short stretches of amino acids or

nucleotides from a database. The size of these stretches is determined from

the ktup parameter. If ktup ¼ 3 for a protein search, then the query sequence

is examined in blocks of three amino acids against matches of three amino

acids found in the lookup table. The FASTA program identifies the 10 highest

scoring segments that align for a given ktup.

2. These 10 aligned regions are rescored, allowing for conservative replace-

ments, using a scoring matrix such as PAM250.

3. High-scoring regions are joined together if they are part of the same proteins.

4. FASTA then performs a global (Needleman–Wunsch) or local (Smith–

Waterman) alignment on the highest scoring sequences, thus optimizing

the alignments of the query sequence with the best database matches.

Thus, dynamic programming is applied to the database search in a limited

fashion, allowing FASTA to return its results very rapidly because it evaluates

only a portion of the potential alignments.

The modified alignment algor-

ithms introduced by Gotoh

(1982) and Myers and Miller

(1988) require only O(nm) time

and occupy O(n) in space. Instead

of committing the entire matrix to

memory, the algorithms ignore

scores below a threshold in order

to focus on the maximum scores

that are achieved during the

search.

FASTA stands for FAST-All,

referring to its ability to perform a

fast alignment of all sequences

(i.e., proteins or nucleotides).

The parameter ktup refers to mul-

tiples such as duplicate, triplicate,

or quadruplicate (for k ¼ 2, k ¼ 3,

k ¼ 4). The ktup values are usually

3 to 6 for nucleotide sequences

and 1 to 2 for amino acid

sequences. A small ktup value

yields a more sensitive search but

requires more time to complete.

William Pearson of the University

of Virginia provides FASTA

online. Visit Q http://fasta.bioch.

virginia.edu/fasta_www2/fasta_

list2.shtml. Another place to try

FASTA is at the European

Bioinformatics Institute website,

Q http://www.ebi.ac.uk/fasta33/.
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BLASTwas introduced as a local alignment search tool that identifies alignments

between a query sequence and a database without the introduction of gaps (Altschul

et al., 1990).TheversionofBLASTthat is available todayallowsgaps in thealignment.

We gave an example of an alignment of two proteins (Figs. 3.4 and 3.5) and we intro-

duce BLAST in more detail in Chapter 4, where we describe its heuristic algorithm.

Pairwise Alignment with Dot Plots
In addition to displaying a pairwise alignment, the output of pairwise BLAST at

NCBI includes a dot plot (or dot matrix), which is a graphical method for comparing

two sequences. One protein or nucleic acid sequence is placed along the x axis, and

the other is placed along the y axis. Positions of identity are scored with a dot. A

region of identity between two sequences results in the formation of a diagonal

2

(a)

(d)

(b) (c)

1

FIGURE 3.25. Dot plots in the output of the NCBI BLAST pairwise alignment algorithm
permit visualization of matching domains in pairwise protein alignments. The program is
used as described in Fig. 3.4. (a) For a comparison of human cytoglobin (NP_599030, length
190 amino acids) with itself, the output includes a dot plot shown with sequences 1 and 2
(both cytoglobin) on the x and y axes, and the data points showing amino acid identities
appear as a diagonal line. (b) For a comparison of cytoglobin with a globin from the snail
Biomphalaria glabrata (accession CAJ44466, length 2,148 amino acids), the cytoglobin
sequence (x axis) matches 12 times with internal globin repeats in the snail protein. (c)
Changing the scoring matrix to PAM250 enables all 13 globin repeats of the snail protein to
be aligned with cytoglobin. (d) A pairwise alignment of the sequences shows that the snail
globin repeats align with residues 25–154 of cytoglobin. This is reflected in the dot plots,
where the portion on the x axis corresponding to cytoglobin residues 1–24 [see arrowheads,
panels (b) and (c)] does not align to the snail sequence. A broader perspective on the pairwise
alignment is also shown by the output (panel d) showing the cytoglobin (top) aligned to a portion
of the large snail protein (see aligned rectangles).

Dotlet is a web-based diagonal

plot tool available from the Swiss

Institute of Bioinformatics

(Q http://www.isrec.isb-sib.ch/
java/dotlet/Dotlet.html). It was

written by Marco Pagni and

Thomas Junier. The website

provides examples of the use

of Dotlet to visualize repeated

domains, conserved domains,

exons and introns, terminators,

frameshifts, and low-complexity

regions.
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line. This is illustrated for an alignment of human cytoglobin with itself as part of the

BLASToutput (Fig. 3.25a). We also illustrate a dot plot using the web-based Dotlet

program of Junier and Pagni (2000) (Fig. 3.26a). That program features an adjusta-

ble sliding window size, a zoom feature, a variety of scoring matrices, and a histogram

window to adjust the pixel intensities (Fig. 3.26a, right side) in order to manually

optimize the signal to noise ratio.

We can further illustrate the usefulness of dot plots by examining an unusual

hemoglobin protein of 2,148 amino acids from the snail Biomphalaria glabrata. It con-

sists of 13 globin repeats (Lieb et al., 2006). When we compare it to human cytoglobin

(190 amino acids) with a default BLOSUM62 matrix, the BLAST output shows

cytoglobin (x axis) matching the snail protein 12 times (y axis) (Fig. 3.25b); one

repeat is missed. By changing the scoring matrix to BLOSUM45 we can now see

all 13 snail hemoglobin repeats (Fig. 3.25c). The gap at the start of the dot plot

(Figs. 3.25b and c, arrowheads) is evident in the pairwise alignment of that region

(Fig. 3.25d): the first 128 amino acids of the snail protein are unrelated and thus

not aligned with cytoglobin. Using Dotlet, all 13 globin repeats are evident in a com-

parison of the snail protein with itself (Fig. 3.26b) or with cytoglobin (Fig. 3.26c).

THE STATISTICAL SIGNIFICANCE OF PAIRWISE

ALIGNMENTS

How can we decide whether the alignment of two sequences is statistically signifi-

cant? We address this question for local alignments, and then for global alignments.

FIGURE 3.26. Pairwise alignment
with the Dotlet program. (a) Com-
parison of cytoglobin with itself
provides a result comparable to
that shown in Fig. 3.25 using
BLAST 2 Sequences. Dotlet includes
user-controlled zoom and window
features allowing the background
intensity to be adjusted. This allows
one to maximize views such as
(b) globin from the snail Biompha-
laria glabrata (CAJ44466) aligned
with itself, or (c) globin from
the snail Biomphalaria glabrata
(CAJ44466) aligned with human
cytoglobin.

We will encounter dot plots in

Chapter 15 when we compare

bacterial genome sequences to

each other. We will also see a dot

plot in Chapter 17 (on fungi).

Protein sequences from

Saccharomyces cerevisiae chromo-

somes were systematically BLAST

searched against each other. The

resulting dot plot showed many

diagonal lines indicating homolo-

gous regions. This provided evi-

dence that, surprisingly, the entire

yeast genome duplicated over 100

million years ago.
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Consider two proteins that share limited amino acid identity (e.g., 20% to 25%).

Alignment algorithms report the score of a pairwise alignment or the score of the best

alignments of a query sequence against an entire database of sequences (Chapter 4).

We need statistical tests to decide whether the matches are true positives (i.e.,

whether the two aligned proteins are genuinely homologous) or whether they are

false positives (i.e., whether they have been aligned by the algorithm by chance)

(Fig. 3.27). For the alignments that are not reported by an algorithm, for instance

because the score falls below some threshold, we would like to evaluate whether

the sequences are true negatives (i.e., genuinely unrelated) or whether they are

false negatives, that is, homologous sequences that receive a score suggesting that

they are not homologous.

A main goal of alignment algorithms is thus to maximize the sensitivity and speci-

ficity of sequence alignments (Fig. 3.27). Sensitivity is the number of true positives

divided by the sum of true positive and false negative results. This is a measure of the

ability of an algorithm to correctly identify genuinely related sequences. Specificity is

the numberof true negative results divided by the sum of true negative and false positive

results. This describes the sequence alignments that are not homologous.

Statistical Significance of Global Alignments
When we align two proteins, such as human beta globin and myoglobin, we obtain a

score. We can use hypothesis testing to assess whether that score is likely to have

occurred by chance. To do this, we first state a null hypothesis (H0) that the two

sequences are not related. According to this hypothesis, the score S of beta globin

and myoglobin represents a chance occurrence. We then state an alternative hypoth-

esis (H1) that they are indeed related. We choose a significance value a, often set to

0.05, as a threshold for defining statistical significance. One approach to determining

whether our score occurred by chance is to compare it to the scores of beta globin or

myoglobin relative to a large number of other proteins (or DNA sequences) known to

not be homologous. Another approach is to compare the query to a set of randomly

generated sequences. A third approach is to randomly scramble the sequence of one

of the two query proteins (e.g., myoglobin) and obtain a score relative to beta globin;

Information based on a “gold standard”

sequences are 
homologous

sequences are 
not homologous

alignment result:
sequences reported 

as related

alignment result: 
sequences reported 

as not related 
(or, sequences 

not reported)

True positives
(TP)

False positives
(FP)

All positives

All negatives
False negative

(FN)

True positives
(TP)

False positives
(FP)

False negative
(FN)

True negative
(TN)

FIGURE 3.27. Sequence align-
ments, whether pairwise (this chap-
ter) or from a database search
(Chapter 4), can be classified as
true or false and positives or nega-
tives. Statistical analyses of align-
ments provide the main way that
you can evaluate whether an align-
ment represents a true positive,
that is, an alignment of homolo-
gous sequences. Ideally, an align-
ment algorithm can maximize
both sensitivity and specificity.
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by repeating this process 100 times, we can obtain the sample mean (�x) and sample

standard deviation (s) of the scores for the randomly shuffled myoglobin relative

to beta globin. We can express the authentic score in terms of how many standard

deviations above the mean it is. A Z score (Box 3.9) is calculated as:

Z ¼ x � m

s
(3:5)

where x is the score of two aligned sequences, m is the mean score of many sequence

comparisons using a scrambled sequence, and s is the standard deviation of those

measurements obtained with random sequences. We can do the shuffle test using a

computer algorithm such as PRSS. This calculates the score of a global pairwise

alignment, and also performs comparisons of one protein to a randomized ( jumbled)

version of the other.

If the scores are normally distributed, then the Z statistic can be converted to

a probability value. If Z ¼ 3, then we can refer to a table in a standard statistics resource

to see that 99.73% of the population (i.e., of the scores) arewithin three standard devi-

ations of the mean, and the fraction of scores that are greater than three standard devi-

ations beyond the mean is only 0.13%. We can expect to see this particular score by

Box 3.9
Statistical Concepts: Z Scores

The familiar bell-shaped curve is a Gaussian distribution or normal distribution.

The x axis corresponds to some measured values, such as the alignment score of

beta globin versus 100 randomly shuffled versions of myoglobin. The y axis

corresponds to the probability density (when considering measurements of an

exhaustive set of shuffled myoglobins) or to the number of trials (when

considering a number of shuffled myoglobins). The mean value is obtained

simply by adding all the scores and dividing by the number of pairwise

alignments; it is apparent at the center of a Gaussian distribution. For a set of

data points x1, x2, x3, . . . , xn the mean �x is the sum divided by n, or:

�x ¼

Pn
i¼1

xi

n

The sample variance s2 describes the spread of the data points from the mean. It is

related to the squares of the distances of the data points from the mean, and it is

given by:

s2 ¼ 1

n� 1

Xn

i¼1

(xi � �x)2

The sample standard deviation s is the square root of the variance, and thus its

units match those of the data points. It is given by:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

(Yi �m)2

N � 1

vuuut

Here s is the sample standard deviation (rather than the population standard

deviation, s); note that s2 is the sample variance. Population variance refers to

PRSS, written by William

Pearson, is available online at

Q http://fasta.bioch.virginia.edu/
fasta/prss.htm. For an example of

PRSS output for a comparison of

human beta globin and myoglo-

bin, see web document 3.7 at

Q http://www.bioinfbook.org/
chapter3.
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chance about 1 time in 750 (i.e., 0.13% of the time). The problem in adopting this

approach is that if the distribution of scores deviates from a Gaussian distribution,

the estimated significance level will bewrong. For global (but not local) pairwise align-

ments, the distribution is generally not Gaussian, and hence there is not a strong stat-

istical basis for assigning significance values to pairwise alignments. What can we

conclude from a Z score? If 100 alignments of shuffled proteins all have a score less

than the authentic score of RBP4 and b-lactoglobulin, this indicates that the prob-

ability ( p) value is less than 0.01 that this occurred by chance. (Thus we can reject

the null hypothesis that the two protein sequences are not significantly related.)

However, because of the concerns about the applicability of the Z score to sequence

scores, conclusions about statistical significance should be made with caution.

Another consideration involves the problem of multiple comparisons. If we com-

pare a query such as beta globin to one million proteins in a database, we have a million

opportunities tofindahigh-scoringmatchbetweenthequeryandsomedatabaseentry.

In such cases it is appropriate to adjust the significance levela, that is, the probabilityat

which the null hypothesis is rejected, to a more stringent level. One approach, called a

Bonferroni correction, is to dividea (nominally p , 0.05) by the numberof trials (106)

to set a new threshold for defining statistical significance at a level of 0.05/106, or 5 �
1028. The equivalent of a Bonferroni correction is applied to the probability value cal-

culation ofBLAST statistics (see Chapter 4), andwewill also encounter multiple com-

parison corrections in microarray data analysis (see Chapter 9).

Statistical Significance of Local Alignments
Most database search programs such as BLAST (Chapter 4) depend on local align-

ments. Additionally, many pairwise alignment programs compare two sequences

using local alignment. For local pairwise alignments, the best approach to defining

statistical significance is to estimate an expect value (E value), which is closely related

to a probability value ( p value). In contrast to the situation with global alignment, for

local alignment there is a thorough understanding of the distribution of scores. An E

value describes the number of matches having a particular score (or better) that are

expected to occur by chance. For example, if a pairwise alignment of a beta globin

the average of the square of the deviations of each value from the mean, while the

sample variance includes an adjustment from number of measurements N. m is

the sample mean (rather than the population mean, m).

Z scores (also called standardized scores) describe the distance from the

mean per standard deviation:

Zi ¼
xi � �x

s

If you compare beta globin to myoglobin, you can get a score (such as 43.9 as

shown in Fig. 3.5a) based on some scoring system. Randomly scramble the

sequence of myoglobin 1000 times (maintaining the length and composition of

the myoglobin), and measure the 1000 scores of beta globin to these scrambled

sequences. You can obtain a mean and standard deviation of the comparison to

shuffled sequences.

Many books and articles introduce statistical concepts, including Motulsky

(1995) and Cumming et al. (2007).
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and a myoglobin has some score with an associated E value of 1023, one can expect to

obtain that particular score (or better) one time in one thousand by chance. This is

the approach taken by the BLAST family of programs; we discuss E values in detail in

Chapter 4.

Percent Identity and Relative Entropy
One approach to deciding whether two sequences are significantly related from an

evolutionary point of view is to consider their percent identity. It is very useful to con-

sider the percent identity that two proteins share in order to get a sense of their degree

of relatedness. As an example, a global pairwise alignment of odorant-binding protein

from rat and cow share only 30% identity, although both are functionally able to bind

odorants with similar affinities (Pevsner et al., 1985). The rat protein shares just 26%

identity to its closest human ortholog. From a statistical perspective the inspection of

percent identities has limited usefulness in the “twilight zone” because it does not

provide a rigorous set of rules for inferring homology, and it is associated with false

positive or false negative results. A high degree of identity over a short region

might sometimes not be evolutionarily significant, and conversely a low percent iden-

tity could reflect homology. Percent amino acid identity alone is not sufficient to

demonstrate (nor to rule out) homology.

Still, it may be useful to consider percent identity. Some researchers have

suggested that if two proteins share 25% or more amino acid identity over a span

of 150 or more amino acids, they are probably significantly related (Brenner et al.,

1998). If we consider an alignment of just 70 amino acids, it is popular to consider

the two sequences “significantly related” if they share 25% amino acid identity.

However, Brenner et al. (1998) have shown that this may be erroneous, in part

because the enormous size of today’s molecular sequence databases increases the

likelihood that such alignments occur by chance. For an alignment of 70 amino

acid residues, 40% amino acid identity is a reasonable threshold to estimate that

two proteins are homologous (Brenner et al., 1998). If two proteins share about

Box 3.10
Relative Entropy

Altschul (1991) estimated that about 30 bits of information are required to

distinguish an authentic alignment from a chance alignment of two proteins of

average size (given that one protein is searched against a database of a

particular size). For each substitution matrix with its unique target frequencies

qij and background distributions pipj , it is possible to derive the relative entropy

H as follows (Altschul, 1991):

H ¼
X

i,j

qi, j si, j ¼
X
i, j

qi, j log2

qij

pipj

H corresponds to the information content of the target and background

distributions associated with a particular scoring matrix. The units of H

are nats. As shown in Fig. 3.28, for higher H values, it is easier to distinguish

the target from background frequencies. This analysis is consistent with the

analysis of the diagonals for the PAM1 and PAM250 mutation probability

matrices (Figs. 3.11 and 3.13) in which there is far less signal apparent in the

PAM250 matrix.

The accession numbers of rat and

bovine odorant-binding proteins

are NP_620258 and P07435; the

human protein closest to rat has

accession EAW50553. The align-

ments of these proteins are shown

in web document 3.8 at Q http://
www.bioinfbook.org/chapter3.
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20%–25% identity over a reasonably long stretch (e.g., 70 to 100 amino acid resi-

dues), they are in the “twilight zone” (Fig. 3.19), and it is more difficult to be

sure. Two proteins that are completely unrelated often share about 10% to 20% iden-

tity when aligned. This is especially true because the insertion of gaps can greatly

improve the alignment of any two sequences.

Altschul (1991) evaluated alignment scores from an information theory perspec-

tive. Target frequencies vary as a function of evolutionary distance. Recall that an

alignment of alanine with threonine is assigned a different score in a PAM10

matrix (23; see Fig. 3.15) than in a PAM250 matrix (þ1; see Fig. 3.14). The relative

entropy (H) of the target and background distributions measures the information

that is available per aligned amino acid position that, on average, distinguishes a

true alignment from a chance alignment (Box 3.10). For a PAM10 matrix, the

value of H is 3.43 bits. Assuming that 30 bits of information are sufficient to dis-

tinguish a true rather than a chance alignment in a database search, an alignment

of at least 9 residues is needed using a PAM10 matrix (Fig. 3.28). But for a

PAM250 matrix, the relative entropy is 0.36 and an alignment of at least 83 residues

is needed to distinguish authentic alignments.

We will see in Chapter 6 that multiple sequence alignments can offer far more

sensitivity than pairwise sequence alignment. We will also see in Chapter 5 that scor-

ing matrices (“profiles”) can be customized to a sequence alignment, greatly increas-

ing the sensitivity of a search.

PERSPECTIVE

The pairwise alignment of DNA or protein sequences is one of the most fundamental

operations of bioinformatics. Pairwise alignment allows one to determine the
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FIGURE 3.28. Relative entropy (H) as a function of PAM distance. For PAM matrices with low
value (e.g., PAM10), the relative entropy in bits is high and the minimum length required to
detect a signifantly aligned pair of sequences is short (e.g., about 10 amino acids). Thus,
using a PAM10 matrix, two very closely related proteins can be detected as homologous even
if only a relatively short region of amino acid residues is compared. For PAM250 and other
PAM matrices with high values, the relative entropy (or information content in the sequence)
is low, and it is necessary to have a longer region of amino acids (e.g., 80 residues) aligned in
order to detect significant relationships between two proteins. Adapted from Altschul (1991).
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TABLE 3-4 Global Pairwise Alignment Algorithms
Resource Description URL

ALIGN At the GENESTREAM server, France Q http://www2.igh.cnrs.fr/
bin/align-guess.cgi

GAP From the Genetics Computer Group
(GCG)

Q http://www.gcg.com

Needle From the Institut Pasteur; implements
Needleman–Wunsch global
alignment

Q http://bioweb.pasteur.fr/
docs/EMBOSS/needle.
html

Pairwise
alignment
(various)

From the University of Virginia (Bill
Pearson)

Q http://alpha10.bioch.
virginia.edu/fasta/

Pairwise Two Sequence Alignment Tool (global
and local options)

Q http://informagen.com/
Applets/Pairwise/

Pairwise
Sequence
Alignment

From the Baylor College of Medicine;
various tools

Q http://searchlauncher.bcm.
tmc.edu/

Stretcher From the Institut Pasteur; global
alignment

Q http://bioweb.pasteur.fr/
docs/EMBOSS/stretcher.
html

Vector NTI Suite
7

From Informax Q http://www.informaxinc.
com

Abbreviations: EMBOSS, The European Molecular Biology Open Software Suite (Q http://www.uk.
embnet.org/Software/EMBOSS/); ISREC, Swiss Institute for Experimental Cancer Research
(Q http://www.isrec.isb-sib.ch/).

TABLE 3-5 Local Pairwise Alignment Algorithms
Resource Description URL

BestFit From the Genetics Computer Group
(GCG)

Q http://www.gcg.com

BLAST At NCBI Q http://www.ncbi.nlm.nih.
gov/BLAST/

est2genome EMBOSS program from the Institut
Pasteur; aligns expressed sequence
tags to genomic DNA

Q http://bioweb.pasteur.fr/
docs/EMBOSS/
est2genome.html

LALIGN Finds multiple matching subsegments
in two sequences

Q http://www.ch.embnet.
org/software/LALIGN_
form.html

Pairwise Two Sequence Alignment Tool (global
and local options)

Q http://informagen.com/
Applets/Pairwise/

Pairwise
Sequence
Alignment

From the Baylor College of Medicine;
various tools

Q http://searchlauncher.bcm.
tmc.edu/

PRSS From the University of Virginia (Bill
Pearson)

Q http://fasta.bioch.virginia.
edu/fasta/prss.htm

SIM Alignment tool for protein sequences
from ExPASy

Q http://www.expasy.ch/
tools/sim-prot.html

SIM SIM, gap at the Department of
Computer Science, Michigan Tech

Q http://genome.cs.mtu.edu/
align.html

SSEARCH At the Protein Information Resource Q http://pir.georgetown.edu/
pirwww/

Abbreviations: EMBOSS, The European Molecular Biology Open Software Suite (Q http://www.uk.
embnet.org/Software/EMBOSS/); ISREC, Swiss Institute for Experimental Cancer Research
(Q http://www.isrec.isb-sib.ch/).
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relationship between any two sequences, and the degree of relatedness that is

observed helps one to form a hypothesis about whether they are homologous (des-

cended from a common evolutionary ancestor). Almost all of the topics in the rest

of this book are heavily dependent on sequence alignment. In Chapter 4, we intro-

duce the searching of large DNA and/or protein databases with a query sequence.

Database searching typically involves an extremely large series of local pairwise align-

ments, with results returned as a rank order beginning with most related sequences.

The algorithms used to perform pairwise alignment were developed in the 1970s,

beginning with the global alignment procedure of Needleman and Wunsch (1970).

Dayhoff (1978) introduced PAM scoring matrices that permit the comparison and

evaluation of distantly related molecular sequences. Scoring matrices are an integral

part of all pairwise (or multiple) sequence alignments, and the choice of a scoring

matrix can strongly influence the outcome of a comparison. By the 1980s, local align-

ment algorithms were introduced (see especially the work of Sellers [1974], Smith
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FIGURE 3.29. Substitution frequencies of globins (adapted from Zuckerkandl and Pauling,
1965, p. 118). Amino acids are presented alphabetically according to the three letter abbrevi-
ations. The rows correspond to an original amino acid in an alignment of several dozen hemo-
globin and myoglobin protein sequences from human, other primates, horse, cattle, pig, lamprey,
and carp. Numbers represent the percentages of residue sites at which a given substitution occurs.
For example, a glycine substitution was observed to occur in 33% of all the alanine sites.
Substitutions that were never observed to occur are indicated by squares colored red. Rarely
occurring substitutions (percentages ,20%) are indicated by empty white squares (numerical
values are not given). “Very conservative” substitutions (percentages �40%) are in boxes
shaded gray. For example, in 89% of the sites containing a methionine, lecuine was also observed
to be present. Identities are indicated by black solid squares. Values in parentheses indicate a very
small available sample size, suggesting that conclusions about those data should be made cau-
tiously. Used with permission.
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and Waterman [1981], and Smith et al. [1981]). Practically, pairwise alignment is

performed today with a limited group of software packages, most of which are

freely available on the World Wide Web.

The sensitivity and specificity of the available pairwise sequence alignment algor-

ithms continue to be assessed. Recent areas in which pairwise alignment has been

further developed include methods of masking low-complexity sequences (discussed

in Chapter 4) and theoretical models for penalizing gaps in alignments.

PITFALLS

The optional parameters that accompany a pairwise alignment algorithm can greatly

influence the results. A comparison of human RBP4 and bovine b-lactoglobulin

using BLAST results in no match detected if the default parameters are used.

Any two sequences can be aligned, even if they are unrelated. In some cases, two

proteins that share even greater than 30% amino acid identity over a stretch of 100

amino acids are not homologous (evolutionarily related). It is always important to

assess the biological significance of a sequence alignment. This may involve searching

for evidence for a common cellular function, a common overall structure, or if poss-

ible a similar three-dimensional structure.

WEB RESOURCES

DISCUSSION QUESTIONS

Pairwise sequence alignment can be performed using software

packages that implement global or local alignment algorithms. In

all cases, two protein or two nucleic acid sequences are directly

compared.

Many websites offer freely available pairwise local alignment

algorithms based on global alignment (Table 3.4) or local

alignment (Table 3.5). These sites include the NCBI’s BLAST,

the Baylor College of Medicine (BCM) launcher, the SIM pro-

gram at ExPASy, and SSEARCH at the Protein Information

Resource (PIR) at Georgetown University.

[3-1] If you want to compare any two proteins, is there any one

“correct” scoring matrix to choose? Is there any way to

know which scoring matrix is best to try?

[3-2] Many protein (or DNA) sequences have separate domains.

(We discuss domains in Chapter 10.) Consider a protein

that has one domain that evolves rapidly and a second

domain that evolves slowly. In doing a pairwise alignment

with another protein (or DNA) sequence, would you use

two separate alignments with scoring matrices such as

PAM40 and PAM250 or would you select one “intermedi-

ate” matrix? Why?

[3-3] Years before Margaret Dayhoff and colleagues published a

protein atlas with scoring matrices, Emile Zuckerkandl

and Linus Pauling (1965) produced a scoring matrix for sev-

eral dozen available globin sequences (Fig. 3.29). The rows

(y axis) of this Figure show the original globin amino acid,

and the columns show substitutions that were observed to

occur. Numerical values are entered in cells for which the

substitutions occur in at least 20% of the sites. Note that

for cells shaded red, these amino acid substitutions were

never observed, while for cells shaded gray the amino acid

substitutions were defined as very conservative.

How do the data in this matrix compare to those described

by Dayhoff and colleagues? Which substitutions occur

most rarely, and which most frequently? How would you

go about filling in this table today?

Joshua Lederberg helped Zuckerkandl and Pauling (1965) make

this matrix. They used an IBM 7090 computer, one of the first

commercial computers based on transistor technology. The com-

puter cost about $3 million. Its memory consisted of 32,768 binary

words or about 131,000 bytes. (To read about Lederberg’s Nobel

Prize from 1958, see Q http://nobelprize.org/nobel_prizes/

medicine/laureates/1958/.)
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PROBLEMS/COMPUTER LAB

SELF-TEST QUIZ

[3-1] Match the following amino acids with their single-letter codes:

Asparagine Q

Glutamine W

Tryptophan Y

Tyrosine N

Phenylalanine F

[3-2] Orthologs are defined as:

(a) Homologous sequences in different species that share an

ancestral gene

(b) Homologous sequences that share little amino acid identity

but share great structural similarity

(c) Homologous sequences in the same species that arose

through gene duplication

(d) Homologous sequences in the same species which have

similar and often redundant functions

[3-3] Which of the following amino acids is least mutable according

to the PAM scoring matrix?

(a) Alanine

(b) Glutamine

(c) Methionine

(d) Cysteine

[3-1] Viral reverse transcriptases, such as the pol gene product encoded

by HIV-1, have human homologs. The GenBank accession

number for HIV-1 reverse transcriptase is NP_057849. (Use

Entrez to confirm this is the correct accession number.) A

search of Entrez reveals many human viral-related gene pro-

ducts, including a retrovirus-related Pol polyprotein of 874

amino acid residues (P10266). Perform a pairwise alignment

using the blastp program.

The default conditions for this search include the use of the

BLOSUM62 scoring matrix. The expect value is about

1�10267, indicating that the proteins are closely related even

though they share only 28% identity over a span of 761

amino acids. Repeat the analysis using the BLOSUM62,

BLOSUM50, and BLOSUM90 scoring matrices. What is the

effect of changing the search parameters?

[3-2] Next perform pairwise alignments of the proteins described in

problem 3-1 using the PAM30, PAM70, and PAM250 matrices.

What are the expect values? What span of amino acid residues

is aligned? Are the search results using different PAM matrices

similar or different to the results of using different BLOSUM

matrices?

[3-3] Perform a local pairwise alignment between RBP and

b-lactoglobulin using BLAST 2 Sequences (or any of the pro-

grams listed in Table 3.5). Repeat the alignment using lower

gap penalties. What is the result?

[3-4] Compare modern human mitochondrial DNA to extinct

Neanderthal DNA. First obtain the nucleotide sequence of a

mitochondrially encoded gene, cytochrome oxidase. (Begin by

searching the taxonomy division of the NCBI website,

Q http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.

html/, and select “extinct organisms” to find Neanderthal

DNA.) Next, perform pairwise alignments and record the per-

cent nucleotide identities.

[3-5] We have seen that some gene families change slowly (e.g.,

GAPDH in Fig. 3.8) while others change rapidly (e.g., see Box

3.3). How can you determine whether the cytochrome oxidase

gene you studied in problem 3.4 changes relatively rapidly or

slowly? Try using pairwise blast p.

[3-6] Calculate the PAM250 log-odds scoring matrix score for the

alignment of a cysteine to a glutamate. Then, calculate the

score for changing a glutamate to a cysteine. Use Equation 3.1,

the PAM250 mutation probability matrix (Figure 3.13), and

the table of normalized amino acid frequencies (Table 3.2).

[3-7] A pairwise alignment of human alpha and beta globin is

described in Fig. 3.16. Try this pairwise alignment at the

NCBI protein BLAST site, using the available matrices

(PAM30, PAM70, BLOSUM45, BLOSUM62, BLOSUM80).

Which gives the highest bit score?

[3-8] Aphrodisin and odorant-binding protein are both examples of

lipocalins. First obtain the accession numbers for rodent forms

of these proteins, and then perform a pairwise sequence align-

ment. (Use pairwise BLAST.) Record the percent amino acid

identity, the percent similarities, the expect values, and bit

scores. Which metric is most useful in helping you evaluate

their relatedness?

[3-9] The coelacanth Latimeria chalumnae is a lobe-finned fish that has

been called a “living fossil.” Long thought to be extinct for at

least 90 million years, several specimens have now been discov-

ered lurking in the ocean. Surprisingly, some phylogenetic ana-

lyses of mitochondrial DNA sequences indicate that the

coelacanth is more closely related to humans than to herrings

(Lewin, 2001) (see also Chapter 18). Find the accession num-

bers for some mitochrondrial DNA from human, herring, and

coelacanth, and then perform pairwise alignments to decide if

you agree. Hint: Use PubMed to find the genus and species

name of an organism; herring is Clupea harengus. Next use this

species name in a search of Entrez nucleotides, such as

“Clupea harengus mitochondrion.”

[3-10] The PAM1 matrix (Fig. 3.11) is nonreciprocal: the probability

of changing an amino acid such as alanine to arginine is not

equal to the probability of changing an arginine to an alanine.

Why?

[3-11] Is a hippopotamus more closely related to a pig or to a whale?

To answer this question, first find the protein sequence of

hemoglobin from each of these three organisms. Next, perform

pairwise sequence alignments and record the percent amino

acid identities.
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[3-4] The PAM250 matrix is defined as having an evolutionary diver-

gence in which what percentage of amino acids between two

homologous sequences have changed over time?

(a) 1%

(b) 20%

(c) 80%

(d) 250%

[3-5] Which of the following sentences best describes the difference

between a global alignment and a local alignment between

two sequences?

(a) Global alignment is usually used for DNA sequences, while

local alignment is usually used for protein sequences.

(b) Global alignment has gaps, while local alignment does not

have gaps.

(c) Global alignment finds the global maximum, while local

alignment finds the local maximum.

(d) Global alignment aligns the whole sequence, while local

alignment finds the best subsequence that aligns.

[3-6] You have two distantly related proteins. Which BLOSUM or

PAM matrix is best to use to compare them?

(a) BLOSUM45 or PAM250

(b) BLOSUM45 or PAM10

(c) BLOSUM80 or PAM250

(d) BLOSUM80 or PAM10

[3-7] How does the BLOSUM scoring matrix differ most notably

from the PAM scoring matrix?

(a) It is best used for aligning very closely related proteins.

(b) It is based on global multiple alignments from closely

related proteins.

(c) It is based on local multiple alignments from distantly

related proteins.

(d) It combines local and global alignment information.

[3-8] True or false: Two proteins that share 30% amino acid identity

are 30% homologous.

[3-9] A global alignment algorithm (such as the Needleman–

Wunsch algorithm) is guaranteed to find an optimal alignment.

Such an algorithm:

(a) Puts the two proteins being compared into a matrix and

finds the optimal score by exhaustively searching every

possible combination of alignments

(b) Puts the two proteins being compared into a matrix and

finds the optimal score by iterative recursions

(c) Puts the two proteins being compared into a matrix and

finds the optimal alignment by finding optimal subpaths

that define the best alignment(s)

(d) Can be used for proteins but not for DNA sequences %

[3-10] In a database search or in a pairwise alignment, sensitivity is

defined as:

(a) The ability of a search algorithm to find true positives

(i.e., homologous sequences) and to avoid false positives

(i.e., unrelated sequences having high similarity scores)

(b) The ability of a search algorithm to find true positives

(i.e., homologous sequences) and to avoid false

positives (i.e., homologous sequences that are not

reported)

(c) The ability of a search algorithm to find true positives

(i.e., homologous sequences) and to avoid false

negatives (i.e., unrelated sequences having high similarity

scores)

(d) The ability of a search algorithm to find true positives

(i.e., homologous sequences) and to avoid false negatives

(i.e., homologous sequences that are not reported)

SUGGESTED READING

We introduced this chapter with the concept of homology, an often

misused term. A one-page article by Reeck et al. (1987) provides

authoritative, standard definitions of the terms homology and

similarity. Another discussion of homology in relation to phylo-

geny is provided by Tautz (1998).

All of the papers describing sequence alignment consider the

divergence of two homologous sequences in the context of a model

of molecular evolution. Russell F. Doolittle (1981) has written

a clear, thoughtful overview of sequence alignment. William

Pearson (1996) has reviewed sequence alignment. He provides

descriptions of the statistics of similarity scores, sensitivity and

selectivity, and search programs such as Smith–Waterman and

FASTA. Other reviews of pairwise alignment include short articles

by Altschul (1998) and Brenner (1998) in Bioinformatics: A Trends

Guide.

For studies of pairwise sequence alignment algorithms, an

important historical starting point is the 1978 book by Margaret

O. Dayhoff and colleagues (Dayhoff, 1978). Most of this book

consists of an atlas of protein sequences with accompanying phylo-

genetic reconstructions. Chapter 22 introduces the concept of

accepted point mutations, while Chapter 23 describes various

PAM matrices. By the early 1990s, when far more protein

sequence data were available, Steven and Jorja Henikoff (1992)

described the BLOSUM matrices. This article provides an excel-

lent technical introduction to the use of scoring matrices, usefully

contrasting the performance of PAM and BLOSUM matrices.

Later (in Chapters 4 and 5) we will use these matrices extensively

in database searching.

The algorithms originally describing global alignment are

presented technically by Needleman and Wunsch (1970) and

later local alignment algorithms were introduced by Smith and
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Chapter 4 describes the principal database search tool, BLAST. While BLASTwas first described by Altschul et al. in 1990, the

statistical interpretation of the scores you get in a BLAST search are based on mathematical models developed by the 1950s. In

many instances, the distribution of values in a population assumes a normal (Gaussian) distribution, as shown in this figure (see

curve labeled “normal”). However, for a wide variety of natural phenomena the distribution of extreme values is not normal.

Such is the case for database searches in which you search with a protein or DNA sequence of interest (the query) against a

large database, as will be described in this chapter. The maximum scores fit an extreme value distribution (EVD) rather than

a normal distribution. In 1958 Emil Gumbel described the statistical basis of the EVD in his book Statistics of Extremes.

This figure (Gumbel, 1958, p. 180) shows the EVD. Note that for the curve marked “largest” the tail is skewed to the right.

Also, as shown in the table, for a normal distribution, values that are up to three standard deviations above the mean occupy

99.865% of the area under the curve, while for the EVD values up to three standard deviations occupy only 98.810%. In

other words, the EVD is characterized by a larger area under the curve at the extreme right portion of the plot. We will see

how this analysis is applied to BLAST search results to let you assess whether a query sequence is significantly related to a

match in the database. Used with permission.



4

Basic Local Alignment Search
Tool (BLAST)

INTRODUCTION

Basic Local Alignment Search Tool (BLAST) is the main tool of the National Center

for Biotechnology Information (NCBI) for comparing a protein or DNA sequence to

other sequences in various databases (Altschul et al., 1990, 1997). BLAST searching

is one of the fundamental ways of learning about a protein or gene: the search reveals

what related sequences are present in the same organism and other organisms. The

NCBI website includes several excellent resources for learning about BLAST.

In Chapter 3, we described how to perform a pairwise sequence alignment between

two protein or nucleotide sequences. BLAST searching allows the user to select one

sequence (termed the query) and perform pairwise sequence alignments between the

query and an entire database (termed the target). Typically, this means that millions

of alignments are analyzed in a BLAST search, and only the most closely related

matches are returned. The Needleman–Wunsch (1970) global alignment algorithm

is not used for database searches because we are usually more interested in identifying

locally matching regions such as protein domains. The Smith–Waterman (1981) local

alignment algorithm finds optimal pairwise alignments, but we cannot generally use it

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

NCBI resources include a tutorial

and a course that can be accessed

through the main BLAST page

(Q http://www.ncbi.nlm.nih.gov/
BLAST/).
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for database searches because it is too computationally intensive. BLASToffers a local

alignment strategy having both speed and sensitivity, as described in this chapter. It also

offers convenient accessibility on the World Wide Web.

BLAST is a family of programs that allows you to input a query sequence and

compare it to DNA or protein sequences in a database. A DNA sequence can be

converted into six potential proteins (see below), and the BLASTalgorithms include

strategies to compare protein sequences to dynamically translated DNA databases or

vice versa. The programs produce high-scoring segment pairs (HSPs) that represent

local alignments between your query and database sequences. BLAST searching has

a wide variety of uses. These include:

† Determining what orthologs and paralogs are known for a particular protein or

nucleic acid sequence. Besides alpha and beta globin and myoglobin, what

other globins are known? When a new bacterial genome is sequenced and

several thousand proteins are identified, how many of these proteins are para-

logous? How many of the predicted genes have no significantly related

matches in GenBank?

† Determining what proteins or genes are present in a particular organism. Are there

any globins in plants? Are there any reverse transcriptase genes (such as HIV-1

pol gene) in fish? In some cases searching for remote homlogs requires the

use of specialized BLAST-like approaches; we describe some of these in

Chapter 5, including strategies to align entire genomes.

† Determining the identity of a DNA or protein sequence. For example, you may

perform a subtractive hybridization experiment or a microarray experiment

and learn that a particular DNA sequence is dramatically regulated under

the experimental conditions that you are using. This DNA sequence may be

searched against a protein database to learn what proteins are most related

to the protein encoded by your DNA sequence.

† Discovering new genes. A BLAST search of genomic DNA may reveal that

the DNA encodes a protein that has not been described before. In Chapter

5, we show how BLAST searching can be used to find novel, previously

uncharacterized genes.

† Determining what variants have been described for a particular gene or protein. For

example, manyviruses are extremelymutable;whatHIV-1pol variants are known?

† Investigating expressed sequence tags that may exhibit alternative splicing. There is

an EST database that can be explored by BLAST searching. Indeed, there are

dozens of specialized databases that can be searched. For example, specialized

databases consist of sequences from a specific organism, a tissue type, a

chromosome, a type of DNA (such as untranslated regions), or a functional

class of nucleic acids or proteins.

† Exploring amino acid residues that are important in the function and/or structure of

a protein. The results of a BLAST search can be multiply aligned (Chapter 6)

to reveal conserved residues such as cysteines that are likely to have important

biological roles.

There are four components to performing any BLAST search:

1. Selecting a sequence of interest and pasting, typing, or uploading it into the

BLAST input box.

You can go directly to the BLAST

site via Q http://www.ncbi.nlm.

nih.gov/BLAST/. Or go the main

page of NCBI (Q http://www.

ncbi.nlm.nih.gov), then select

BLAST from the toolbar.
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2. Selecting a BLAST program (most commonly blastp, blastn, blastx, tblastx,

tblastn).

3. Selecting a database to search. A common choice is the nonredundant (nr)

database, but there are many other databases.

4. Selecting optional parameters, both for the search and for the format of the

output. These options include choosing a substitution matrix, filtering of low-

complexity sequences, and restricting the search to a particular set oforganisms.

As we describe the steps of BLAST searching, we can begin with a specific

example. Select the link for protein BLAST and enter the accession number of

human beta globin (NP_000509), then click the “BLAST” button (Fig. 4.1). The

result lists the proteins that are most closely related to beta globin. We will now

describe the practical aspects of BLAST searching in detail.

BLAST SEARCH STEPS

Step 1: Specifying Sequence of Interest
A BLAST search begins with the selection of a DNA or protein sequence. There are

two main forms of data input: (1) cutting and pasting DNA or protein sequence

(e.g., in the FASTA format), and (2) using an accession number (e.g., a RefSeq or

1

2

3

4

FIGURE 4.1. Main page for a
blastp search at NCBI. The
sequence can be input as an acces-
sion number, GI identifier, or
fasta-formatted sequence as shown
here (arrow 1). The database
must be selected (arrow 2). The
search can be restricted to a par-
ticular organism or taxonomic
group, and Entrez queries can be
used to further focus the search
(arrow 3). We discuss the blastp
algorithm in this chapter, and
PSI-BLAST and PHI-BLAST in
Chapter 5. Many of the search par-
ameters can be modified (arrow 4).

As of January 2009, you can

search a database of over 7 million

protein sequences (and about

2.6 billion amino acid residues)

within several seconds.
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GenBank Identification [GI] number). A sequence in FASTA format begins with a

single-line description followed by lines of sequence data. The description line is dis-

tinguished from the sequence data by a greater than (“.”) symbol in the first

column. It is recommended that all lines of text be shorter than 80 characters in

length. An example of a sequence in FASTA format was shown in Fig. 2.9.

For BLAST searches, your query can be in uppercase or lowercase, with or with-

out intervening spaces or numbers. If the query is DNA, BLAST algorithms will

search both strands.

It is often convenient to input the accession number to a BLAST search. Note

that the BLAST programs can recognize and ignore numbers that appear in the

midst of the letters of your input sequence. The BLAST search also allows you to

select a subset of an entire query sequence, such as a region or domain of interest.

Step 2: Selecting BLAST Program
The NCBI BLAST family of programs includes five main programs, as summarized

in Fig. 4.2.

FIGURE 4.2. Overview of the five
main BLAST algorithms. Note
that the suffix p refers to protein
(as in blastp), n refers to nucleo-
tide, and x refers to a DNA query
that is dynamically translated
into six protein sequences. The
prefix t refers to “translating,” in
which a DNA database is dynami-
cally translated into six proteins.
We will discuss the use of these
BLAST algorithms later in this
chapter.

Program  

blastp 

Use blastp to compare a protein query to a database of proteins. 

blastn

 
Use blastn to compare both strands of a DNA query against a DNA database. 

blastx

Blastx translates a DNA sequence into six protein sequences using all six possible  
reading frames, and then compares each of these proteins to a protein database. 

tblastn

Tblastn is used to translate every DNA sequence in a database into six potential proteins, 
and then to compare your protein query against each of those translated proteins. 

tblastx

Tblastx is the most computational intensive BLAST algorithm. It translates DNA from both a 
query and a database into six potential proteins, then performs 36 protein-protein database 
searches. 

1

1

6

6

36

DNA 

DNA 

DNA 

DNA 

DNA 

DNA 

protein

proteinprotein

protein

Query Number of database searches Database

The FASTA format is further

described at Q http://www.ncbi.

nlm.nih.gov/BLAST/fasta.html.

Do not confuse the FASTA format

with the FASTA program, which

we described briefly in Chapter 3.
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1. The first program is blastp. This program compares an amino acid query

sequence against a protein sequence database. Note that for this type of

search there are optional parameters (see below) that are specifically relevant

to protein searches, such as the choice of various PAM and BLOSUM scoring

matrices.

2. The second program is blastn. This is used to compare a nucleotide query

sequence against a nucleotide sequence database.

Three additional BLAST algorithms rely on the fundamental relationship of

DNA to protein. Any DNA sequence can be transcribed and translated into six

potential reading frames (three on the top strand and three on the bottom strand;

Fig. 4.3). For BLAST searching, the query DNA sequence may be translated into

potential proteins, an entire DNA database may be translated, or both. In all three

cases, these algorithms perform protein–protein alignments.

3. The program blastx compares a nucleotide query sequence translated in all

reading frames against a protein sequence database. If you have a DNA

sequence and you want to know what protein (if any) it encodes, you can per-

form a blastx search. This automatically translates the DNA into six potential

proteins (see Figs. 4.2 and 4.3). The blastx program then compares each

of the six translated protein sequences to all the members of a protein data-

base (Gish and States, 1993).

4. The program tblastn compares a protein query sequence against a nucleotide

sequence database dynamically translated in all reading frames. One might

use this program to ask whether a DNA database encodes a protein that

matches your protein query of interest. Does a query with beta globin yield

any matches in a database of genomic DNA from the genome-sequencing

project of a particular organism?

5. The program tblastx compares the six-frame translations of a nucleotide query

sequence against the six-frame translations of a nucleotide sequence data-

base. The tblastx program is computationally very intensive. Consider a

         ATGAAGTGGGTGTGGGCGCTCTTGCTGTTGGCGGCGTGGGCAGCGGCCGAG 
      89 -+---------+---------+---------+---------+--------- 139 
         TACTTCACCCACACCCGCGAGAACGACAACCGCCGCACCCGTCGCCGGCTC 

a        M  K  W  V  W  A  L  L  L  L  A  A  W  A  A  A  E   - 
b         *  S  G  C  G  R  S  C  C  W  R  R  G  Q  R  P     - 
c          E  V  G  V  G  A  L  A  V  G  G  V  G  S  G  R    - 
      89 -+---------+---------+---------+---------+--------- 139 
d          H  L  P  H  P  R  E  Q  Q  Q  R  R  P  C  R  G  L - 
e            F  H  T  H  A  S  K  S  N  A  A  H  A  A  A  S  - 
f           S  T  P  T  P  A  R  A  T  P  P  T  P  L  P  R   - 

Top strand 

bottom strand 

FIGURE 4.3. DNA can poten-
tially encode six different proteins.
The two strands of DNA sequence
of human retinol-binding protein
(accession NM_006744) are
shown. From the top strand, three
potential proteins are encoded
(frames a, b, c). The protein
encoded in frame a is authentic
RBP. The first codon of potential
protein b, TGA, encodes a stop
codon (asterisk). On the bottom
strand, three additional proteins
are potentially encoded (frames d,
e, f). For example, the first amino
acid of protein d is leucine, encoded
by CTC.

UniGene uses blastx to compare

each nucleotide sequence in its

database to all known proteins from

eight organisms (Homo sapiens, Mus

musculus, Rattus norvegicus,

Drosophila melanogaster,

Caenorhabditis elegans,

Saccharomyces cerevisiae, Escherichia

coli, and Arabidopsis thaliana). The

E value cutoff (discussed below)

is 1026.

We discuss expressed sequence

tags (ESTs) in Chapter 8. Tblastx

can help you identify frameshifts

in ESTs, since all reading frames

are compared.
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situation in which you have a DNA sequence with no obvious database

matches, and you want to know if it encodes a protein with distant, statistically

significant database matches in a database of expressed sequence tags.

A blastx search would be more sensitive than blastn and thus useful to

reveal genes that encode proteins homologous to your query.

Step 3: Selecting a Database
The databases that are available for BLAST searching are listed on each BLAST

page. For protein database searches (blastp and blastx), the default option is the

nonredundant (nr) database. This consists of the combined protein records

from GenBank, the Protein Data Bank (PDB), SwissProt, PIR, and PRF (see

Chapter 2 for descriptions of these resources). Another option is to search only

Refeq proteins. Table 4.1 summarizes the available protein databases for BLAST

searching at NCBI.

For DNA database searches (blastn, tblastn, tblastx) the default option is to

search the human (or mouse) genomic plus transcript database. Other commonly

used options include the nucleotide nr database or the EST database. Nr includes

nucleotide sequences from GenBank, EMBL, DDBJ, and PDB. However, the

nr database does not have records from the EST, STS, GSS, or high-throughput

genomic sequence (HTGS) databases.

The nr databases are derived by merging several main protein or DNA databases.

These databases often contain identical sequences. Generally only one of these

sequences is retained by the nr database, along with multiple accession numbers.

(Even if two sequences in the nr database appear to be identical, they usually have

at least some subtle difference.) The nr databases are often the preferred sites for

searching the majority of available sequences.

A summary of all the nucleotide sequence databases that can be searched by

standard BLAST searching at NCBI is provided in Table 4.2.

Step 4a: Selecting Optional Search Parameters
We will initially focus our attention on a standard protein–protein BLAST search.

In addition to deciding on which sequence to input and which database to search,

there are many optional parameters that you can adjust (see Figs. 4.1 and 4.4).

TABLE 4-1 Protein Sequence Databases That Can Be Searched by BLAST Searching at NCBI
Database Description

nr Nonredundant GenBank coding sequences þ RefSeq
proteins þ PDB þ SwissProt þ PIR þ PRF

Month Sequence data released in the previous 30 days

Swissprot Most recent release from SwissProt

RefSeq RefSeq protein sequences from NCBI’s Reference Sequence Project

Pdb Protein data bank at Brookhaven (Q http://www.rcsb.org/pdb/)

pat Proteins from the Patent division of GenPept.

env_nr Protein sequences from environmental samples

Source: Modified from Q http://www.ncbi.nlm.nih.gov/blast/.
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1. Query. In addition to a choice of formats (accession number, gi identifier, or

fasta format), you can select a range of amino acid or nucleotide residues to search.

2. Limit by Entrez Query. Any NCBI BLAST search can be limited using

any terms that are used in an Entrez search. Enter the term “perutz mf[Author]” and

perform a blastp search using beta globin as a query (Fig. 4.1, arrow 3). Instead of

obtaining hundreds of hits, the matches are to entries that refer to Nobel laureate

Max Perutz. BLAST searches can also be restricted by organism. Some popular

groups are Archaea, Metazoa (multicellular animals), Bacteria, Vertebrata,

Eukaryota, Mammalia, Embryophyta (higher plants), Rodentia, Fungi, and

Primates. BLAST searches can be restricted to any genus and species or other taxo-

nomic grouping. We will illustrate some effects of applying optional features of blastp

by using human insulin (NP_000198) as a query, and restricting the output to the

worm C. elegans (type “elegans” into the Entrez Query box to choose C. elegans

from a pull-down menu, or enter txid6239).

3. Short Queries. If you select this option, the expect value and word size are

automatically adjusted. We discuss these concepts below.

4. Expect Threshold. The expect value E is the number of different align-

ments with scores equal to or greater than some score S that are expected to occur in a

TABLE 4-2 Nucleotide Sequence Databases That Can Be Searched Using BLAST at NCBI
Database Description

nr All GenBank þ RefSeq Nucleotides þ EMBL þDDBJ þ PDB sequences
(but no EST, STS, GSS, or phase 0, 1, or 2 HTGS sequences); no
longer “nonredundant”

chromosome A database with complete genomes and chromosomes from the NCBI
Reference Sequence project.

dbsts Database of GenBank þ EMBL þDDBJ sequences from STS divisions

env_nt Nucleotide sequences from environmental samples, including those from
Sargasso Sea and Mine Drainage projects

est Database of GenBank þ EMBL þDDBJ sequences from EST divisions

est_human Human subset of EST

est_mouse Mouse subset of EST

est_others Nonhuman, nonmouse subset of EST

gss Genome survey sequence, includes single-pass genomic data, exon-
trapped sequences, and Alu PCR sequences

htgs Unfinished high-throughput genomic sequences

month All new or revised GenBank þ EMBL þDDBJ þ PDB sequences released
in the last 30 days

pat Nucleotides from the Patent division of GenBank

pdb Sequences derived from the three-dimensional structure from Brookhaven
Protein Data Bank (Q http://www.rcsb.org/pdb/)

refseq_rna RNA entries from the NCBI Reference Sequence project

refseq_genomic Genomic entries from NCBI’s Reference Sequence project

wgs A database for whole genome shotgun sequence entries

Source: Modified from documentation in Q http://www.ncbi.nlm.nih.gov/blast/.

If you want to restrict your blast

search to a particular organism (or

group of organisms), use the box

labeled “organism” and type at

least part of the name to access a

dynamic pull-down menu. You

can also access a specific taxon-

omy identifier. To do this, try

beginning at the home page of

NCBI and selecting Taxonomy

Browser from the top bar (or visit

Q http://www.ncbi.nlm.nih.gov/
Taxonomy/taxonomyhome.html/).

Select from the list of commonly

studied organisms, or perform a

query in the taxonomy page. You

can thus find the appropriate tax-

onomy identifier (txid) for any

organism. Examples include

txid10090 for mouse, txid9606

for human, and txid33090 for

Viridiplantae (the plant kingdom).
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database search by chance. Look at the best match in Fig. 4.5a (a match between

human insulin and a worm ortholog). The score is 32.7 bits, and the E value is

0.034. This indicates that based on the particular search parameters used (including

the size of the database and the choice of the scoring matrix), a score of 32.7 bits or

better is expected to occur by chance 3.4 in 100 times (i.e., about 1 in 30 times). A

reasonable general guideline is that database matches having E values of �0.05 are

statistically significant.

The default setting for the expect value is 10 for blastn, blastp, blastx, and

tblastn. At this E value, 10 hits with scores equal to or better than the alignment

score S are expected to occur by chance. (This assumes that you search the database

using a random query with similar length to your actual query.) By changing the

expect option to a lower number (such as 0.01), fewer database hits are returned;

fewer chance matches are reported. Increasing E returns more hits. Consider a

very short protein or nucleotide query (e.g., 10 amino acids). There is no opportunity

for that query to accumulate a large score, and since the score is inversely related to

the expect value (see Equation 4.5 below), the E value cannot be very small. Indeed

an E value of 50 or 100 might occur for a database match of considerable biological

interest. Hence when you select the optional parameter “short queries” in blastp, the

E value is set to 20,000, or E ¼ 1,000 in blastn. We will describe the E value in more

detail in a discussion of BLAST search statistics later in this chapter, including a

comparison of searches with varying E values.

5. Word Size. For protein searches, a window size of 3 (default) or 2 may be

set. When a query is used to search a database, the BLASTalgorithm first divides the

FIGURE 4.4. Optional blastp par-
ameters. Numbered arrows refer to
discussion in the text.

1

2

3

4

5

6

7

8

9

The expect value is sometimes

also referred to as the expectation

value. We will discuss practical

examples of interpreting E values

later in this chapter. Note that E

values of higher than 0.05 may be

biologically relevant, homologous

matches, as discussed below.
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query into a series of smaller sequences (words) of a particular length (word size), as

will be described below. For blastp, a larger word size yields a more accurate search.

For any word size, matches made to each word are then extended to produce the

BLAST output. In practice, the word size can remain at 3 and should be reduced

to 2 only when your query is a very short peptide (i.e., a short string of amino

acids). Changing the size from 3 to 2 has no effect on the alignment (or the

scores) of human insulin with its nematode homolog.

For nucleotide searches, the default word size is 11 and can be raised (word size

15) or reduced (word size 7). Lowering the word size yields a more accurate but

slower search. Raising the word size is applied in MegaBLAST and discontiguous

MegaBLAST (see Chapter 5), two alternate programs at NCBI that perform nucleo-

tide searches. For MegaBLAST the default word size is 28, and can be set as high as

64. This is useful for speed when searching with long queries (e.g., many thousands

(a) Default

(d) Filter low-complexity region

(b) No compositional adjustment

(c) Conditional compositional score matrix adjustment

(e) Mask for lookup table only

1

2

FIGURE 4.5. Pairwise alignments
from blastp searches illustrating the
effects of changing compositional
matrices and filtering options.
Human insulin (NP_000198) was
used as a query in a blastp search
restricted to RefSeq proteins in the
nematode Caenorhabditis elegans.
(a) Default settings show a match
to a worm protein with a score of
32.7 bits and an E value of 0.034.
Results are shown using (b) no com-
positional adjustments and (c) con-
ditional compositional score matrix
adjustment. (d) The effect of filter-
ing low complexity regions is
shown, as well as (e) masking for
lookup table only, in which the
query is masked while producing
seeds to scan the database, but the
extensions of database hits are not
masked. Applying these various
adjustments can have dramatic
effects on the expect value, score,
percent identity, gap length and
gap placement (see arrows 1 and 2).
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of nucleotides) for nearly exact matches in a database. Very long word sizes match

relatively infrequently, encouraging a much faster search.

6. Matrix. Five amino acid substitution matrices are available for blastp protein–

protein searches: PAM30, PAM70, BLOSUM45, BLOSUM62 (default), and

BLOSUM80. Some alternative BLAST servers (discussed in Chapter 5, on advanced

BLAST searching) offer many more choices for substitution matrices such as PAM250.

It isusuallyadvisable to trya BLASTsearchusing severaldifferent scoring matrices. For

example, as described in Chapter 3, PAM40 and PAM250 matrices (Fig. 3.16) have

entirely distinct properties as scoring matrices for sequences sharing varying degrees

of similarity. For very short queries (e.g., 15 or fewer amino acid residues), a PAM30

matrix is recommended.

For blastn, the default scoring system is þ2 for a match and -3 for a mismatch.

A variety of other scoring schemes are available, including the default þ1, 21 for

Megablast (Chapter 5). For each scoring system, the BLAST family offers appropriate

gap opening and extension penalties.

7. Gap Penalties. A gap is a space introduced into an alignment to compen-

sate for insertions and deletions in one sequence relative to another (Chapter 3).

Since a single mutational event may cause the insertion or deletion of more than

one residue, the presence of a gap is frequently ascribed more significance than the

length of the gap. Hence, the gap introduction is penalized heavily, whereas a

lesser penalty is ascribed to each subsequent residue in the gap. To prevent the

accumulation of too many gaps in an alignment, introduction of a gap causes the

deduction of a fixed amount (the gap score) from the alignment score. Extension

of the gap to encompass additional nucleotides or amino acid is also penalized in

the scoring of an alignment.

Gap scores are typically calculated as the sum of G, the gap-opening penalty, and

L, the gap extension penalty. For a gap of length n, the gap cost would be G þ Ln. The

choice of gap costs is typically 10 to 15 for G and 1 to 2 for L. These are called affine

gap penalties, in which the penalty for introducing a gap is far greater than the penalty

for extending one.

8. Composition-Based Statistics. This option, which is selected as

default, generally improves the calculation of the E value statistic (see below).

Some proteins (whether queries or database matches) have nonstandard compo-

sitions such as having hydrophobic or cysteine-rich regions. For some organisms,

the entire genome has a very high guanine plus cytosine (GC) or adenine plus thy-

mine (AT) content. For example, the entire genome of the malaria parasite

Plasmodium falciparum is 80.6% AT, biasing its proteins towards having amino

acids encoded by AT-rich codons. A standard matrix such as BLOSUM62 is not

appropriate for the comparison of two proteins with nonstandard composition,

and the target frequencies qij (see Equation 3.4) need to be adjusted in the context

of new background frequencies pipj (Yu et al., 2003; Yu and Altschul, 2005).

In performing a blastp search, a default option is to use composition-based statistics.

This implements a slightly different scoring system for each database sequence in

which all scores are scaled by an analytically determined constant (Schäffer et al.,

2001). It is applicable to any BLAST protein search, including the position-specific

scoring matrix of PSI-BLAST (Chapter 5).

MegaBLAST (Chapter 5) uses

non-affine gap penalties, that is,

there is no cost for opening a gap.

We will further discuss the pro-

blem of gaps in multiple sequence

alignments in Chapter 6.

For examples of proteins that are

highly hydrophobic, very cysteine-

rich, or from P. falciparum, see

web documents 4.1, 4.2, and 4.3

at Q http://www.bioinfbook.org/
chapter4. We discuss P. falciparum

in Chapter 18; it is responsible for

over 2 million deaths a year.
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Compositional adjustments generally increase the accuracy of BLAST searches con-

siderably (Schäffer et al., 2001; Altschul et al., 2005). The improvement can be

quantitated using receiver operating characteristic (ROC) curves that plot the

number of true positives (based on an independent criterion such as expert

manual curation) versus false positives (Gribskov and Robinson, 1996). In addition

to using a composition-based statistics, a “compositional score matrix adjustment”

can be applied to blastp searches. This can reduce false positive search results in

specialized circumstances such as subjects matching queries of very different lengths

(Altschul et al., 2005). In that case the longer sequence may have a substantially

different composition than the shorter.

In the particular example of our insulin search, removing compositional adjust-

ments actually increases the bit score slightly and reduces the E value more than

threefold from 0.034 to 0.009 (Fig. 4.5b). Invoking a conditional compositional

score matrix adjustment alters the E value to 0.02 (Fig. 4.5c). The magnitude of

these effects depends on the composition of the particular query you choose, and

for some searches it is helpful to try a series of compositional adjustments.

9. Filtering and Masking. Filtering masks portions of the query sequence

that have low complexity (or highly biased compositions) (Wootton and Federhen,

1996). Low-complexity sequences are defined as having commonly found stretches

of amino acids (or nucleotides) with limited information content. Examples are dinu-

cleotide repeats (e.g., the repeating nucleotides CACACACA. . .), Alu sequences, or

regions of a protein that are extremely rich in one or two amino acids. Stretches of

hydrophobic amino acid residues that form a transmembrane domain are very

common, and a database search with such sequences results in many database

matches that are statistically significant but biologically irrelevant. Other motifs

that are masked by filtering include acidic-, basic-, and proline-rich regions.

The blastp and blastn programs offer several main options. Note that filtering is

applied to the query sequence, and not to the entire database. (1) Filter low-complexity

regions. For protein sequence queries, the SEG program is used; for nucleic acid

sequences, the DUST program is employed. (2) Filter repeats (for blastn only). This

is useful to avoid matching a query with Alu repeats orother repetitive DNA to spurious

database entries. (3) Mask for lookup table only. This option masks the matching of

words above threshold to database hits (discussed below). This avoids matches to

low-complexity sequences or repeats. Then, BLASTextensions occur without masking

(so hits can be extended even if they contain low complexity sequence). (4) Mask lower

case. This allows you to enter a query in the fasta format using upper case characters for

the search but filtering those residuesyou choose to filter byentering them in lowercase.

Adjusting the filtering option can have dramatic effects on BLAST search results.

When human insulin is searched against worm proteins, filtering low-complexity

regions results in an alignment of only 24 residues (in contrast to 101 aligned residues

in the default search) (Fig. 4.5d). Using the “mask for lookup table only” option

results in displaying a portion of the hydrophobic leader sequence on human insulin

in lower-case characters (Fig. 4.5e). Those hydrophobic residues can potentially

match thousands of database entries and in most cases would not reflect homology.

Thus, as in this case, using fiters can be helpful to avoid producing spurious database

matches. But in some cases, as shown in Fig. 4.5d, authentic matches may be missed.

The NCBI BLAST site offers a variety of other programs and options for

searching, such as the use of position-specific scoring matrices (PSSMs), pattern

We explore repetitive DNA

sequences in Chapter 16. Web

document 4.4 (at Q http://www.

bioinfbook.org/chapter4) offers

over a dozen spectacular examples

of repetitive DNA and protein

sequences.
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hit-initiated (PHI) blast, and searches of the Conserved Domain Database (CDD).

These are described in Chapter 5.

Step 4b: Selecting Formatting Parameters
There are many options for formatting the output of a BLAST search. These are

illustrated by performing a protein–protein blastp search with human beta globin

(NP_000509) as a query and restricting the search to RefSeq proteins from the

mouse (Mus musculus). The results of the search occur in several main parts. In

the top (Fig. 4.6), details of the search are provided, including the type of BLAST

search (Fig. 4.6, arrow 1), a description of the query and the database that were

searched (arrows 2 and 4), and a taxonomy link to the results organized by species

(arrow 3). There is also an option to display conserved domains (arrow 5).

The middle portion of a typical BLAST output provides a list of database

sequences that match the query sequence (Fig. 4.7). A graphical overview provides

a color-coded summary, with the length of the query sequence represented across

the x axis. Each bar drawn below the map represents a database protein (or nucleic

FIGURE 4.6. Top portion of a
BLAST output describes the search
that was performed (BLASTP
2.2.16 in this case; arrow 1), the
database (arrow 2; the RefSeq data-
base has about 3 million sequences
and 1 billion amino acid residues),
a link to a taxonomy report that
organizes the search results by
species (arrow 3), and the query
(human beta globin) (arrow 4).
There is an option to display con-
served domains (arrow 5).

1

2

3
4

5

FIGURE 4.7. Middle portion of a
typical blastp output provides a
graphical display of the results.
Database matches are color coded
to indicate relatedness (based on
alignment score), and the length
of each line corresponds to the
region in which that sequence
aligns with the query sequence.
This graphic can be useful to sum-
marize the regions in which data-
base matches align to the query.
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acid) sequence that matches the query sequence. The position of each bar relative to

the linear map of the query allows the user to see instantly the extent to which the

database matches align with a single or multiple regions of the query. The most simi-

lar hits are shown at the top in red. Hatched areas (when present) correspond to the

nonsimilar sequence between two or more distinct regions of similarity found within

the same database entry.

The alignments are next described by a list of one-line summaries called

“descriptions” (Fig. 4.8). The description lines are sorted by increasing E value;

thus, the most signficant alignments (lowest E values) are at the top. The description

consists of the following columns:

1. Identifier for the database sequence. Some of the common sequence

identifiers are:

RefSeq (e.g., refjNP_006735.1j),
Protein database (e.g., pdbj1RBPj),
Protein Information Resource (pirjA27786),

Swiss-Prot database (spjP27485j),
GenBank (e.g., gbjAAF69622.1j),
European Molecular Biology Lab (EMBL) (e.g., embjCAB64947.1j), and

Database of Japan (DBJ)(dbjjBAA13453.1j).
2. Brief description of the sequence.

3. The bit score of the highest scoring match found for each database sequence

(bit scores will be defined below).

4. The expect value E. The identifer is linked to the full GenBank entry. Clicking

on the score in a given description line will take the user to the corresponding

sequence alignment. The alignment can also be reached by scrolling down the

output page.

5. Links to Entrez Gene (G) and UniGene (U).

FIGURE 4.8. A typical blastp
output includes a list of database
sequences that match the query.
Links are provided to that database
entry (e.g., an Entrez Protein
entry) and to the pairwise align-
ment to the query. The bit score
and E value for each alignment
are also provided. Note that the
best matches at the top of the list
have large bit scores and small E
values. To the right, links are
given to UniGene (U) and Entrez
Gene (G).
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The lower portion of a BLAST search output consists of a series of pairwise

sequence alignments, such as the ones in Fig. 4.5. Here, one can inspect the pairwise

match between the query (input sequence) and the subject (i.e., the particular data-

base match that is aligned to the query). Four scoring measures are provided: the bit

score, the expect score, the percent identity, and the positives (percent similarity).

Without reperforming an entire BLAST search, the output can be reformatted to

provide a range of different output options. The number of descriptions and of align-

ments can be modified. There are several options for visualizing the aligned

sequences as a multiple sequence alignment (Fig. 4.9). This is an especially useful

way to identify specific amino acid residues that are conserved (or divergent)

within a protein or DNA family. For nucleotide searches (e.g., blastn), by selecting

the CDS (coding sequence) feature, the pairwise alignments also show the positions

of the corresponding protein, when that information is available. For example, a

search of human beta globin DNA (NM_000518) against human RefSeq nucleotide

sequences includes a match to delta globin (NM_000519). That alignment includes

information about the corresponding proteins (Fig. 4.10).

FIGURE 4.9. The lower part of a
blastp search (or other BLAST
family search) consists of a series
of pairwise sequence alignments
such as those shown in Fig. 4.5.
Using the reformat option, the
results can be displayed as a mul-
tiple sequence alignment as shown
here for a group of murine globins.
Other output format options are
available, allowing the user to
inspect regions of similarity as
well as divergent regions within
protein families.

FIGURE 4.10. For blastn searches,
the coding sequence (CDS) option in
the reformat page allows the amino
acid sequence of the coding regions
of the query and the subject (i.e.,
the database match) to be displayed.
Here, human beta globin DNA
(NM_000518) was used as a
query, and a match to the closely
related delta globin is shown.
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BLAST ALGORITHM USES LOCAL ALIGNMENT

SEARCH STRATEGY

The BLAST search identifies the matches in a database to an input query sequence.

Global similarity algorithms optimize the overall alignment of two sequences. These

algorithms are best suited for finding matches consisting of long stretches of low

similarity. In contrast, local similarity algorithms such as BLAST identify relatively

short alignments. Local alignment is a useful approach to database searching because

many query sequences have domains, active sites, or other motifs that have local

but not global regions of similarity to other proteins. Also, databases typically have

fragments of DNA and protein sequences that can be locally aligned to a query.

BLAST Algorithm Parts: List, Scan, Extend
The BLAST search algorithm finds a match between a query and a database

sequence and then extends the match in either direction (Altschul et al., 1990,

1997). The search results consist of both highly related sequences from the database

as well as marginally related sequences, along with a scoring scheme to describe the

degree of relatedness between the query and each database hit. The blastp algorithm

can be described in three phases (Fig. 4.11):

1. BLAST compiles a preliminary list of pairwise alignments, called word pairs.

2. The algorithm scans a database for word pairs that meet some threshold

score T.

3. BLASTextends the word pairs to find those that surpass a cutoff score S, at

which point those hits will be reported to the user. Scores are calculated

from scoring matrices (such as BLOSUM62) along with gap penalties.

In the first phase, the blastp algorithm compiles a list of “words” of a fixed length

w that are derived from the query sequence. A threshold value T is established for the

score of aligned words. Those words either at or above the threshold are collected and

used to identify database matches; those words below threshold are not further

pursued. For protein searches the word size typically has a default value of 3.

Since there are 20 amino acids, there are 203 ¼ 8000 possible words. The word

size parameter can be modified by the BLAST user, as described above (see option

3). The threshold score T can be lowered to identify more initial pairwise alignments.

This will increase the time required to perform the search and may increase the

sensitivity. You can modify the threshold and dozens of other parameters using the

command-line program netblast (Box 4.1).

For blastn, the first phase is slightly different. Threshold scores are not used in

association with words. Instead, the algorithm demands exact word matches. The

default word size is 11 (and can be adjusted by the user to values of 7 or 11).

Lowering the word length effectively accomplishes the same thing as lowering the

threshold score. Specifying a smaller word size induces a slower, more accurate search.

In the second phase, after compiling a list of word pairs at or above threshold T,

the BLAST algorithm scans a database for hits. This requires BLAST to search an

index of the database to find entries that correspond to words on the compiled list.

In the original implementation of BLAST, one hit was sufficient. In the current

versions of BLAST, the algorithm seeks two separate word pairs (i.e., two

In the BLAST papers by Steven

Altschul, David Lipman, and col-

leagues, the threshold parameter is

denoted T (Altschul et al., (1990),

1997). In the BLAST program

(e.g., in netblast), the threshold

parameter is called f.
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nonoverlapping hits) within a certain distance A from each other. It then generates an

ungapped extension of these hits (Altschul et al., 1997). The two-hit approach

greatly speeds up the time required to do a BLAST search. Compared to the one-

hit approach, the two-hit method generates on average about three times as many

hits, but the algorithm then needs to perform only one-seventh as many extensions

(Altschul et al., 1997).

In the third phase, BLAST extends hits to find alignments called high-scoring

segment pairs (HSPs). For sufficiently high-scoring alignments, a gapped extension

is triggered. The extension process is terminated when a score falls below a cutoff.

In summary, the main strategy of the BLASTalgorithm is to compare a protein or

DNA query sequence to each database entry and to form pairwise alignments

FIGURE 4.11. Schematic of the
original BLAST algorithm. In the
first phase a query sequence (such
as human beta globin) is analyzed
with a given word size (e.g.,
w ¼ 3), and a list of words is com-
piled having a threshold score (e.g.,
T ¼ 11). Several possible words
derived from the query sequence
are listed in the figure (from VTA
to NVD); in an actual BLAST
search there are 8000 words com-
piled for w ¼3. For a given word,
such as the portion of the query
sequence consisting of LWG, a list
of words is compiled with scores
greater than or equal to some
threshold T (e.g., 11). In this
example, 15 words are shown
along with their scores from a
BLOSUM62 matrix; ten of these
are above the threshold, and five
are below. In phase 2, a database
is scanned to find entries that
match the compiled word list. In
phase 3, the database hits are
extended in both directions to
obtain a high-scoring segment pair
(HSP). If the HSP score exceeds a
particular cutoff score S, it is
reported in the BLAST output.
Note that in this particular
example the word pair that triggers
the extension step is not an exact
match (see boxed residues LWG
aligned to AWG). The main idea
of the threshold T is to also allow
both exact and related but non-
exact word hits to trigger an
extension.

Phase 1: compile a list of words (w = 3) above threshold T

• Query sequence: human beta globin NP_000509 (includes ... VTALWGKVNVD...)

• words derived from query sequence (HBB):       

• generate a list of words matching query 
  (both above and below T). Consider LWG 

in the query and the scores (derived from a
BLOSUM62 matrix) for various words:      

VTA TAL ALW LWG WGK GKV KVN VNV NVD

LWG  4+11+6=21 
IWG  2+11+6=19
MWG  2+11+6=19
VWG  1+11+6=18
FWG  0+11+6=17
AWG  0+11+6=17
LWS  4+11+0=15
LWN  4+11+0=15
LWA  4+11+0=15
LYG  4+ 2+6=12
LFG  4+ 1+6=11
FWS  0+11+0=11
AWS -1+11+0=10
CWS -1+11+0=10
IWC  2+11-3=10 

LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV HBB
L+P +K+ V A WGKV  +  E G EAL R+ + +P T+ +F  F      D   G+ +V
LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV HBA

Phase 2: 

select all the words above threshold T

scan the database for entries that match the compiled list

examples of
words above
threshold 11

word pair from
first phases of search 

“hits” alpha globin,
triggers extension

extensionextension

examples of
words below
threshold 11

threshold

Phase 3: extend the hits in either direction. Stop when the score drops.

For the parameter A, the default

value is 0 (for blastn and mega-

blast) and 40 (for other programs

such as blastp).
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(HSPs). As a heuristic algorithm, BLAST is designed to offer both speed and sensi-

tivity. When the threshold parameter is raised, the speed of the search is increased,

but fewer hits are registered, and so distantly related database matches may be

missed. When the threshold parameter is lowered, the search proceeds far more

slowly, but many more word hits are evaluated, and thus sensitivity is increased.

We can demonstrate the effect of different threshold levels on a blastp search by

changing the f parameter from its default value (11) to a range of other values. The

results are dramatic (Fig. 4.12). With the default threshold value of 11, there are

about 47 million hits to the database and 1.8 million extensions. When the threshold

is lowered to just 3, there are about 1.9 billion hits to the database and 582 million

extensions. This occurs because many additional words have scores above T. With

the threshold raised to 15 or higher, there are only about 6 million hits and 50,000

Box 4.1
Netblast

Most BLASTusers rely on the convenient web-based server at the NCBI website.

An alternative is to use Netblast, a stand-alone client that you download directly

from the NCBI BLAST website. It is available for Windows, Macintosh, Linux,

or other platforms. The installation takes only a matter of seconds, and the

download includes extensive documentation and examples. Netblast operates

from the command line only. First, save a text file containing your query of

interest in the fasta format. We provide several examples in the problems at the

end of this chapter, along with web documents that provide sample text files.

The second step is to invoke a command line editor and execute a blast search

of interest. There are four required parameters: the input, the database to be

searched, the BLAST program, and the output file. A typical Netblast search

has a syntax as follows:

.blastcl3 -i hbb.txt -p blastp -d nr -o hbb1.txt

Here blastcl3 (for blast client 3) is the program; the four required parameters

are -i (for the input or query file), -p (for the program), -d (the database), and -o

(the output file; here it is called hbb1.txt). The results are returned as a text file in

the folder in which you installed Netblast. You can modify 40 different optional

parameters of a Netblast search. Examples include:

-p tblastn (changes the program to tblastn)

-f 16 (changes the threshold of a blastp search)

-d “nr refseq_protein” (searches both the nr and the refseq_protein

databases)

-e 2e-5 (changes the expect value cutoff to 2 � 1025)

Other options control gap penalties, the output format, the filters used for

masking sequences, the scoring matrix, and dozens of additional parameters.

A potential disadvantage of Netblast is that it uses only a command line, and

does not have a graphical user interface (GUI). However, this limitation is offset

by the great flexibility it offers in specifying the parameters of a BLAST search.

Another strength of Netblast is that it allows batch queries. Simply create a

text file with multiple queries in the fasta format; the output file includes a

series of BLAST results. We provide an example in Problem 4.4.

Netblast is available at Q http://www.ncbi.nlm.nih.gov/BLAST/download.

shtml with documentation at Q ftp://ftp.ncbi.nlm.nih.gov/blast/documents/
netblast.html.
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extensions. The final results of the search are not dramatically different with the

default value compared to the lowered or raised threshold values, as the number of

gapped HSPs is comparable. With the high threshold some matches were missed,

although the reported matches are more likely to be true positives; with the lower

threshold values there were somewhat more successful extensions. This supports

the conclusion that a lower threshold parameter yields a more accurate search,

though a slower one. This trade-off between sensitivity and speed is central to the

BLAST algorithm. Practically, for most users of BLAST the default threshold

parameters are always appropriate.

BLAST Algorithm: Local Alignment Search
Statistics and E Value
We care about the statistical significance of a BLAST search because we want some

quantitative measure of whether the alignments represent significant matches or

whether they would be expected to occur bychance alone.For local alignments (includ-

ing BLAST searches), rigorous statistical tests have been developed (Altschul and Gish,

1996; Altschul et al., 1990, 1994, 1997; Pagni and Jongeneel, 2001).

We have described how local, ungapped alignments between two protein

sequences are analyzed as HSPs. Using a substitution matrix, specific probabilities

are assigned for each aligned pair of residues, and a score is obtained for the overall

alignment. For the comparison of a query sequence to a database of random

sequences of uniform length, the scores can be plotted and shown to have the

shape of an extreme value distribution (see Fig. 4.13, where it is compared to the

normal distribution). The normal, or Gaussian, distribution forms the familiar,

symmetric bell-shaped curve. The extreme value distribution is skewed to the

right, with a tail that decays in x (rather than x2, which describes the decay of

the normal distribution). The properties of this distribution are central to our

understanding of BLAST statistics because they allow us to evaluate the likelihood

that the highest scores from a search (i.e., the values at the right-hand tail of the

distribution) occurred by chance.

We will next examine the extreme value distribution so that we can derive a

formula (Equation 4.5 below) that describes the likelihood that a particular

BLAST score occurs by chance.

FIGURE 4.12. The effect of vary-
ing the threshold (x axis) on the
number of database hits (black
line) and extensions (red line).
A series of blastp searches were per-
formed using human beta globin as
a query.
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Because of the rapid tailing of the

normal distribution in x2, if we

tried to use the normal distri-

bution to describe the significance

of a BLAST search result (for

example by estimating how many

standard deviations above the

mean a search result occurs) we

would tend to overestimate the

significance of the alignment.
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The shape of the extreme value distribution shown in Fig. 4.13 is described by

two parameters: the characteristic value u and the decay constant l. The extreme

value distribution is sometimes called the Gumbel distribution, after the person

who described it in 1958. The application of the extreme value distribution to

BLAST searching has been reviewed by Altschul and colleagues (1994, 1996) and

others (Pagni and Jongeneel, 2001). For two random sequences m and n, the cumu-

lative distribution function of scores S is described by the formula

P(S , x) ¼ exp (�e�l(x�u)) (4:1)

To use this equation, we need to know (or estimate) the values of the parameters u

and l. For ungapped alignments, the parameter u is dependent on the lengths of

the sequences being compared and is defined as

u ¼ ln Kmn

l
(4:2)

In Equation 4.2, m and n refer to the lengths of the sequences being compared and K

is a constant. Combining Equations 4.1 and 4.2, the probability of observing a score

equal to or greater than x by chance is given by the formula

P(S � x) ¼ 1� exp (�Kmne�lx) (4:3)

Our goal is to understand the likelihood that a BLAST search of an entire

database produces a result by chance alone. The number of ungapped alignments
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FIGURE 4.13. Normal distribution (solid line) is compared to the extreme value distribution
(dotted line). Comparing a query sequence to a set of uniform-length random sequences usually
generates scores that fit an extreme value distribution (rather than a normal distribution). The
area under each curve is 1. For the normal distribution, the mean (m) is centered at zero, and the
probability Z of obtaining some score x is given in terms of units of standard deviation (s) from x
to the mean: Z ¼ (x2m)/s. In contrast to the normal distribution, the extreme value distri-
bution is asymmetric, with a skew to the right. It is fit to the equation f(x) ¼ (e2x)(e2e-x).
The shape of the extreme value distribution is determined by the characteristic value u and
the decay constant l (u ¼ 0, l ¼1).

The characteristic value u relates

to the maximum of the distri-

bution, although it is not the mean

m (mu).
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with a score of at least x is described by the parameter Kmne –lx. In the context of a

database search, m and n refer to the length (in residues) of the query sequence and

the length of the entire database, respectively. The product m . n defines the size of the

search space. The search space represents all the sites at which a query sequence can

be aligned to any sequence in the database. Because the ends of a sequence are not as

likely to participate in an average-sized alignment, the BLAST algorithm calculates

the effective search space in which the average length of an alignment L is subtracted

from m and n (Altschul and Gish, 1996):

Effective Search Space ¼ (m� L) � (n� L) (4:4)

We now arrive at the main mathematical description of the significance of scores

from a BLAST search. The expected number of HSPs having some score S (or

better) by chance alone is described using the equation

E ¼ Kmne�lS (4:5)

Here, E refers to the expect value, which is the number of different alignments with

scores equivalent to or better than S that are expected to occur by chance in a data-

base search. This provides an estimate of the number of false positive results from a

BLAST search. From Equation 4.5 we see that the E value depends on the score and

l, which is a parameter that scales the scoring system. Also, E depends on the length

of the query sequence and the length of the database. The parameter K is a scaling

factor for the search space. The parameters K and l were described by Karlin and

Altschul (1990) and so are often called Karlin–Altschul statistics.

Note several important properties of Equation 4.5:

† The value of E decreases exponentially with increasing S. The score S reflects

the similarity of each pairwise comparison and is based in part on the scoring

matrix selected. Higher S values correspond to better alignments; we saw in

Fig. 4.8 that BLAST results are ranked by score. Thus, a high score on a

BLAST search corresponds to a low E value. As E approaches zero, the prob-

ability that the alignment occurred by chance approaches zero. We will relate

the E value to probability (p) values below.

† The expected score for aligning a random pair of amino acids must be nega-

tive. Otherwise, very long alignments of two sequences could accumulate

large positive scores and appear to be significantly related when they are not.

† The size of the database that is searched—as well as the size of the query—

influences the likelihood that particular alignments will occur by chance.

Consider a BLAST result with an E value of 1. This value indicates that in a

database of this particular size one match with a similar score is expected to

occur by chance. If the database were twice as big, there would be twice the

likelihood of finding a score equal to or greater than S by chance.

† The theory underlying Equation 4.5 was developed for ungapped alignments.

For these, BLAST calculates values for l, K, and H (entropy; see Fig. 3.28).

Equation 4.5 can be successfully applied to gapped local alignments as well

(such as the results of a BLAST search). However, for gapped alignments l,

K and H cannot be calculated analytically, but instead they are estimated by

simulation and looked up in a table of precomputed values.

We will see how BLAST uses this

definition of search space in

Fig. 4.14.

Equation 4.5 is described online in

the document “The Statistics of

Sequence Similarity Scores”

available in the help section of the

NCBI BLAST site.
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Making Sense of Raw Scores with Bit Scores
A typical BLAST output reports both E values and scores. There are two kinds of

scores: raw and bit scores. Raw scores are calculated from the substitution matrix

and gap penalty parameters that are chosen. The bit score S0 is calculated from the

raw score by normalizing with the statistical variables that define a given scoring

system. Therefore, bit scores from different alignments, even those employing differ-

ent scoring matrices in separate BLAST searches, can be compared. A raw score from

a BLAST search must be normalized to parameters such as the size of the database

being queried. The raw score is related to the bit score by the equation

S0 ¼ lS � ln K

ln 2
(4:6)

where S0 is the bit score, which has a standard set of units. The E value corresponding

to a given bit score is given by

E ¼ mn� 2�S0 (4:7)

Why are bit scores useful? First, raw scores are unitless and have little meaning

alone. Bit scores account for the scoring system that was used and describe the

information content inherent in a pairwise alignment. Thus, they allow scores to

be compared between different database searches, even if different scoring matrices

are employed. Second, bit scores can tell you the E value if you know the size of the

search space, m . n. (The BLAST algorithms use the effective search space size,

described above.)

BLAST Algorithm: Relation between E and p Values
The p value is the probability of a chance alignment occurring with the score in

question or better. It is calculated by relating the observed alignment score S to

the expected distribution of HSP scores from comparisons of random sequences of

the same length and composition as the query to the database. The most highly

significant p values are those close to zero. The p and E values are different ways of

representing the significance of the alignment. The probability of finding an HSP

with a given E value is

p ¼ 1� e�E (4:8)

Table 4.3 lists several p values corresponding to E values. While BLAST reports

E values rather than p values, the two measures are nearly identical, especially for very

small values associated with strong database matches. An advantage of using E values

is that it is easier to think about E values of 5 versus 10 rather than 0.99326205 versus

0.99995460.

A p value below 0.05 is traditionally used to define statistical significance (i.e.,

to reject the null hypothesis that your query sequence is not related to any database

sequence). If the null hypothesis is true, then 5% of all random alignments will result

in an apparently significant score. Thus, an E value of 0.05 or less may be considered

significant.

It is also possible to approach E values with conservative corrections. We

discussed probability ( p) values in Chapter 3, and we will return to the topic in

Chapter 9 when we discuss microarray data analysis. The significance level a is

typically set to 0.05, such that a p value of 0.05 suggests that some observation

Bit scores are displayed in a

column to the right in the BLAST

output window, next to

corresponding E values for each

database match.

Some BLAST servers (such as

those at the European Molecular

Biology Laboratory; see Chapter

5) use p values in the output.
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(e.g., the score of a protein query to a match in a database) is likely to have occurred

by chance 1 time in 20. The null hypothesis is that your query is not homologous

to the database match, and the alternate hypothesis is that they are homologous. If

the p value is sufficiently small (e.g., ,0.05), we can reject the null hypothesis.

When you search a database that has one million proteins, there are many oppor-

tunities for your query to find matches. Five percent of 1 million proteins is

50,000 proteins, and we might expect to obtain that many matches (with a ¼

0.05) by chance. A related issue arises in microarray data analysis when we compare

two conditions (e.g., normal versus diseased sample) and measure the RNA tran-

script levels of 20,000 genes: 1,000 transcripts (i.e., 5%) may be differentially

expressed by chance.

This situation involves multiple comparisons: you are not hypothesizing that

your query will match one particular database entry, you are interested in knowing

if it matches any entries. A solution is to correct for multiple comparisons by adjust-

ing the a level. Avery conservative way to do this (called the Bonferroni correction) is

to divide a by the number of measurements (e.g., divide a by the size of the data-

base). In the case of BLAST searches this is done automatically, as shown in

Equation 4.5, because the E value is multiplied by the effective search space.

Beyond this multiple comparison correction inherent in BLAST, some research-

ers consider it appropriate to adjust the significance level a for search results from

0.05 to some even lower value. In analyses of completed microbial genomes,

BLAST or FASTA search E values were reported as significant if they were below

10–4 (Ferretti et al., 2001) or below 10–5 (Chambaud et al., 2001; Tettelin et al.,

2001; Ermolaeva et al., 2001). In the public consortium analysis of the human

genome, Smith–Waterman alignments were reported with an E value threshold of

TABLE 4-3 Relationship of E to
p Values in BLAST Using Equation 4.8
E p

10 0.99995460

5 0.99326205

2 0.86466472

1 0.63212056

0.1 0.09516258

0.05 0.04877058

0.001 0.00099950

0.0001 0.0001000

Small E values (0.05 or less) corre-
spond closely to the P values.

n

m – L
n – L

1
T

(m – L)(n – L)

L

w

A

FIGURE 4.14. BLAST search statistics. The NCBI search summary (using human beta globin
NP_000509 as a query) includes search parameters (such as word size, arrow labeled w; scoring
matrix, arrow 1; threshold value, arrow T; window size indicating the length that separates two
independent hits to trigger an extension, arrow A). Database features include the number of
sequences in the database and the total database size (arrow n). Karlin–Altschul statistics
are provided and can be used following equation 4.5 to relate scores to expect values. Result stat-
istics include the length adjustment of the query (here beta globin is 147 amino acids and the
length adjustment is 110; arrow L), the effective length of the query (m 2 L ¼ 147 2 110 ¼
37 in this example), the effective length of the database, and the effective search space (obtained
by multiplying the effective length of the query by the effective length of the database). For a
related figure, see Pagni and Jongeneel (2001).

See Q http://www.ncbi.nlm.nih.

gov/Education/BLASTinfo/
rules.html for a description of

significant scores.
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10–3, and tblastn searches used a threshold of 10–6 (International Human Genome

Sequencing Consortium, 2001). You can choose how conservatively to interpret

BLAST results.

Parameters of a BLAST Search
Each of the various BLAST algorithms provides a summary of the search statistics.

An example based on a blastp search using beta globin (NP_000509) as a query is

shown in Fig. 4.14. In the problems at the end of this chapter, we will try varying sev-

eral parameters in a BLAST search. The summary statistics provide a way to evaluate

how the parameters modified the search results.

BLAST SEARCH STRATEGIES

General Concepts
BLAST searching is a tool to explore databases of protein and DNA sequence. We

have introduced the procedure. It is essential that you define the question you want

to answer, the DNA or protein sequence you want to input, the database you want

to search, and the algorithm you want to use. We will now address some basic

principles regarding strategies for BLAST searching (Altschul et al., 1994). We will

illustrate these issues with globin, lipocalin, and HIV-1 pol searches. Key issues

include how to evaluate the statistical significance of BLAST search results and

how to modify the optional parameters of the BLAST programs when your search

yields too little or too much information. An overview of the kinds of searches that

can be performed with RBP4 DNA (NM_006744) or protein (NP_006735)

sequence is presented in Fig 4.15.

Principles of BLAST Searching

How to Evaluate Significance of Your Results
When you perform a BLAST search, which database matches are authentic? To

answer this question, we first define a true positive as a database match that is hom-

ologous to the query sequence (descended from a common ancestor). Homology is

inferred based on sequence similarity, with support from statistical evaluation of the

search results. A consistent finding of several research groups is that the error rate of

database search algorithms is reduced by using statistical scores such as expect values

rather than relying on percentage identity (or percent similarity) (Brenner, 1998;

Park et al., 1998; Gotoh, 1996). Thus, we focus on inspection of E values.

The problem of assigning homology between genes or proteins is not solved by

sequence analysis alone: it is also necessary to apply biological criteria to support

the inference of homology. One can supplement BLAST results with evaluations of

protein structure and function. The sequences of genuinely related proteins can

diverge greatly, even while these proteins retain a related three-dimensional structure.

Thus, we expect that database searches (and pairwise protein alignments) will result

in a number of false negative matches. Many members of the lipocalin family, such as

RBP4 and odorant-binding protein (OBP), share very limited sequence identity,

although their three-dimensional structures are closely related and their functions

as carriers of hydrophobic ligands are thought to be the same.
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Consider a blastp search of the nr database restricted to human entries using

human RBP4 as a query. There are 29 entries in this case. The first way to evaluate

the results is to inspect the E value list (Fig. 4.16). The entries with the lowest E

values (beginning with 7e10–116) are all named RBP. This redundancy occurs

because the alignments involve closely related versions of RBP. In some cases, the

alignment may involve identical regions of the RBP database sequences that differ

elsewhere in the sequence outside the aligned region. (For example, a fragment of

a protein sequence may be deposited in the database.) Inspecting the alignment of

the 14th entry (E value 2 � 10–13) shows that it is a very short fragment of 36

amino acids that is aligned to the full-length RBP (Fig. 4.17). The next database

match is apolipoprotein D. The RBP fragment and apolipoprotein D have similar

expect values, but in this case they have very different percent identities to RBP

(94% versus 31%; Fig. 4.17). In analyzing any BLAST search results, it is important

to carefully inspect the alignments as well as the scores.

Further down the list (Fig. 4.16) we see a database match of complement

component 8 gamma (NP_000597). The alignment has a high, nonsignificant E

value of 0.27 and a low score of 33.9 bits, and the protein shares only 25% amino

acid identity with RBP over a span of 114 amino acid residues—including three

FIGURE 4.15. Overview of BLAST
searching strategies. There are many
hundreds of questions that can be
addressed with BLAST searching,
from characterizing the genome of
an organism to evaluating the
sequence variation in a single gene.

RBP (DNA or protein,
from any species)

blastp

blastp: What other proteins are related to RBP protein?
blastn: Is the 3' untranslated (noncoding) region of human RBP DNA 
 homologous to the 3' untranslated region of RBP paralogs or orthologs?
blastx: what known protein is a lipocalin EST most related to?
tblastx: Does human RBP DNA match a protein predicted to be encoded from 
 a gene in a DNA library such as bacterial ESTs?
tblastn: Is there an RBP ortholog represented in a genomic DNA database?

blastn blastx tblastx tblastn

Starting point:
a molecular 

sequence

Search
strategies

Goals:
Results that can
be obtained by 

BLAST searching

Modifiable
search

paramaters

Sample 
questions

Find other proteins (or genes) that are clearly related to RBP
Find other proteins that are distantly related to my favorite protein
Discover a novel gene homologous to my input (Chapter 5)
Find domains in my favorite protein that are present in other proteins
Visualize the relationship of my protein family in a multiple sequence 
 alignment (Chapter 6) or a phylogenetic tree (Chapter 7)

Restrict the search
to one species

(e.g. human) or one 
group (e.g. bacteria)

Change the scoring
matrices to discover

very distant homologs
(e.g. PAM250, 
BLOSUM30)

Change the gap penalties 
to help find homologs or

short regions of the 
protein that are present 

in other proteins

We will see in Chapter 5 how the

PSI-BLAST program at NCBI

can generate a score of over 100

bits and an E value of about 10221

for the same match of RBP4 to

complement component 8

gamma. In general, PSI-BLAST is

preferable to blastp for many

typical database searches.
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gaps in the alignment (Fig. 4.18). One might conclude that these two proteins are not

homologous. But in this case they are. In deciding whether two proteins (or DNA

sequences) are homologous, one can ask several questions:

† Is the expect value significant? In this particular case it is not, because the

proteins are distantly related. Search techniques such as PSI-BLAST or

HMMer (based on hidden Markov models), introduced in Chapter 5, can

typically assign higher scores and lower E values to distant matches.

FIGURE 4.16. Results of a blastp
nr search using human RBP as a
query, restricting the output to
human proteins. Note that there
are 21 hits, and inspection of the
E values suggests that in addition
to RBP itself, several authentic
paralogs may have been identified
by this search. Are complement
component 8 and a progestagen-
associated protein likely to be hom-
ologous to RBP?

FIGURE 4.17. Two pairwise
alignments returned from the
human RBP4 search (see Fig.
4.16, halfway down the list). An
RBP4 fragment of just 36 amino
acids yields a similar score and
expect value as the longer match
between RBP4 and apolipoprotein
D. This result highlights the need
to inspect each pairwise alignment
from a BLAST search.

BLAST SEARCH STRATEGIES 125



† Are the two proteins approximately the same size? It is not at all required that

homologous proteins have similar sizes, and it is possible for two proteins to

share only a limited domain in common. Indeed, local alignments search

tools such as BLAST are specialized to find limited regions of overlap.

However, it is also important to develop a biological intuition about the like-

lihood that two proteins are homologous. A 1000 amino acid protein with

transmembrane domains is relatively unlikely to be homologous to RBP,

and the vast majority of lipocalins are approximately 200 amino acids in

length (20 to 25 kilodaltons).

† Do the proteins share a common motif or signature? In this case, both RBP4

and complement component 8 gamma have a glycine-X-tryptophan (GXW)

signature that is characteristic of the lipocalin superfamily.

† Are the proteins part of a reasonable multiple sequence alignment? We will see

in Chapter 6 that this is the case.

† Do the proteins share a similar biological function? Like all lipocalins, both

proteins are small, hydrophilic, abundant, secreted molecules.

† Do the proteins share a similar three-dimensional structure? Although there is

great diversity in lipocalin sequences, they share a remarkably well-conserved

structure. This structure, a cuplike calyx, allows them to transport hydro-

phobic ligands across an aqueous compartment (see Chapter 11).

† Is the genomic context informative? The human complement component

gamma gene has a similar number and length of exons as other lipocalins

(Kaufman and Sodetz, 1984). It is mapped to chromosome 9q34.3, immedi-

ately adjacent to another lipocalin gene (LCN12) in the vicinity of 10 other

lipocalin genes on 9q34. This information suggests that the blastp match is

biologically significant, even if the E value is not statistically significant.

FIGURE 4.18. Alignment of
human RBP4 (query) with progesta-
gen-associated endometrial protein.
The bit score is relatively low, the
expect value (0.27) is not significant,
and in the local alignment the two
proteins share only 25% amino
acid identity over 114 amino acids.
Nonetheless, these proteins are hom-
ologous. Their homology can be con-
firmed because (1) the two proteins
are approximately the same size;
(2) they share a lipocalin signature,
including a GXW motif; (3) they
can be multiply aligned; (4) they
are both soluble, hydrophilic, abun-
dant proteins that probably share
similar functions as carrier proteins;
and (6) they are very likely to share a
similar three-dimensional structure
(see Chapter 11).

The accession number for the

x-ray structure of human comp-

lement protein C8g is 1IW2, while

for RBP4 an accession is 1RBP.

We discuss Protein Data Bank

accession numbers (such as these)

in Chapter 11.
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† If a BLAST search results in a marginal match to another protein, perform a

new BLAST search using that distantly related protein as a query. A blastp

nr search using complement component 8 gamma as a query results in the

identification of several proteins (complex-forming glycoprotein HC and

a-1-microglobulin/bikunin) that are also detected by RBP4 (Fig. 4.19).

This finding increases our confidence that RBP4 and complement component

8 gamma are in fact homologous members of a protein superfamily. If the

blastp search using complement component 8 gamma had shown that protein

to be part of another characterized family, this would have greatly lessened our

confidence that it is authentically related to RBP4.

Historically, early database searches yielded results that were entirely

unexpected. In 1984, the b-adrenergic receptor was found to be homologous to rho-

dopsin (Dixon et al., 1986). This was surprising because of the apparent differences

between these receptors in terms of function and localization: rhodopsin is a retina-

specific receptor for light, and the adrenergic receptors were known to bind epineph-

rine (adrenalin) and norepinephrine, stimulating a signal transduction cascade that

results in cyclic adenosine monophosphate (AMP) production. Alignment of the

protein sequences revealed that they share similar structural features (seven predicted

transmembrane domains). It is now appreciated that rhodopsin and the b-adrenergic

receptor are prototypic members of a superfamily of receptors that bind ligands, initi-

ating a second messenger cascade. Another surprising finding was that some viral

genes that are involved in transforming mammalian cells are actually derived from

FIGURE 4.19. Results of a blastp
nr search (restricted to human pro-
teins) using progestagen-associated
endometrial protein as a query
(NP_002562). This protein is
related to several proteins (com-
plex-forming glycoprotein HC, a-1-
microglobulin/bikunin) that also
appear in the output of an RBP4
blastp search. This overlap supports
the hypothesis that progestagen-
associated endometrial protein and
RBP4 are indeed homologous. It is
often important to perform recipro-
cal BLAST searches separately
using two possibly related sequences
as queries.

We will define motifs and signa-

tures in Chapter 10 and trees in

Chapter 7.

Go to Entrez Gene and enter

“rhodopsin,” restricting the

organism to human. There are

about 700 entries, mostly consist-

ing of members of this family of

receptors thought to have seven

transmembrane spans. We will see

how to explore protein families in

Chapter 10.
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the host species. The human epidermal growth factor receptor was sequenced and

found to be homologous to an avian retroviral oncogene, v-erb-B (Downward

et al., 1984). There are many more examples of database searches that revealed

unexpected relationships. In many other cases, the reported relationships represented

false positive results. The false positive error rate will yield occasional matches

that are not authentic, and comparison of the three-dimensional structures of the

potential homologs can be used as a criterion for deciding whether two proteins

are in fact homologous.

How to Handle Too Many Results
A common situation that is encountered in BLAST searching is that too many results

are returned. There are many strategies available to limit the number of results, but

to make the appropriate choices, you must focus on the question you are trying

to answer.

† Select a “refseq” database and all the hits that are returned will have RefSeq

accession numbers. This will often eliminate redundant database matches.

† Limit the database returns by organism, when applicable. One convenient

approach is to select the taxonomy identifier (txid) of interest through the

Taxonomy Browser. This may eliminate extraneous information. If you use

the options feature of the BLAST server to limit a search by organism, the

same size search is performed; in contrast, if you choose an organism-specific

database, this may increase the speed of the search. (We present some

organism-specific BLAST servers in Chapter 5.) You can use the Boolean

operator NOT to ignore matches from an organism or group of interest.

† Use just a portion of the query sequence, when appropriate. A search of a

multidomain protein can be performed with just the isolated domain

sequence. If you are studying HIV-1 pol, you may be interested in the entire

protein or in a specific portion such as the reverse transcriptase domain.

† Adjust the scoring matrix to make it more appropriate to the degree of

similarity between your query and the database matches.

† Adjust the expect value; lowering E reduces the number of database matches

that are returned.

How to Handle Too Few Results
Many genes and proteins have no significant database matches or have very few. As

new microbial genomes are sequenced, as many as half the predicted proteins have

no matches to any other proteins (Chapter 15). Some strategies to increase the

number of database matches from BLAST searching are obvious: remove Entrez

limits, raise the expect values, and try scoring matrices with higher PAM or lower

BLOSUM values. One can also search a large variety of additional databases.

Within the NCBI website, one can search all available databases (e.g., HTGS and

GSS). Many genome-sequencing centers for a variety of organisms maintain separate

databases that can be searched by BLAST. These are described in Chapter 5

(advanced BLAST searching). Most importantly, there are many database searching

algorithms that are more sensitive than BLAST. These include position-specific

scoring matrices (PSSMs) and hidden Markov models (HMMs) and are also

described in Chapter 5.
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BLAST Searching With Multidomain Protein: HIV-1 pol
The gag-pol protein of HIV-1 (NP_057849) has 1435 amino acid residues and

includes separate protease, reverse transcriptase, and integrase domains. Thus, it is

an example of a multidomain protein. Figure 4.20 previews the kinds of searches

we can perform with a viral protein such as this one.

What happens upon blastp searching the nonredundant protein database with

this protein? We input the RefSeq accession number (NP_057849) and click

submit. The program reports that putative conserved domains have been detected,

and a schematic of the protein indicates the location of each domain (Fig. 4.21).

Clicking on any of these domains links to the NCBI conserved domain database as

well as to the Pfam and SMART databases (see Chapters 6 and 10). Continuing

with the BLAST search, we see that there are many hits, all with extremely low

expect values, and all correspond to HIV matches from various isolates (Fig.

4.22). Reformatting the output to “query-anchored with letters for identities” is

one way to view the dramatic conservation of these viral proteins (Fig. 4.23).

These highly conserved HIV-1 variants of gag-pol obscure our ability to evaluate

non-HIV-1 matches. We can repeat the blastp search, setting the database to RefSeq

proteins. Now gag-pol orthologs are evident across a variety of virus species. Clicking

Taxonomy Reports from the main blastp search result page shows that surprisingly

Query various databases 
with HIV-1 pol protein
(NP_057849)

blastp nr (all proteins)

blastp nr (Bacterial proteins)

blastp nr (human proteins)

tblastn human EST database
hundreds of significant hits

tblastx viral genomes
ovine virus

detect many HIV pol variants

detect several dozen partial matches

analyze one human EST

tblastn nr (Bacterial genomes)

many significant hits

detect additional bacterial matches
FIGURE 4.20. Overview of
BLAST searches beginning with
HIV-1 pol protein. A series of
BLAST searches can often be per-
formed to pursue questions about
a particular gene, protein, or
organism. The number of database
matches returned by a BLAST
search can vary from none to thou-
sands and depends entirely on the
nature of the query, the database,
and the search parameters.

FIGURE 4.21. A blastp search with viral pol (NP_057849) shows conserved domains in the
protein. These blocks are clickable and link to the Conserved Domain Database at NCBI
(Chapter 6). The links are to protein domains (Gag_p17, Gag_p24) and abbreviations include
rvp, retroviral aspartyl protease; rvt, reverse transcriptase (RNA-dependent DNA polymerase);
rnaseH, ribonuclease H; rve, integrase core domain.
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there are even some homologs in the chimpanzee Pan troglodytes, the chicken Gallus

gallus, and the opossum Monodelphis domestica (Fig. 4.24).

To learn more about the distribution of pol proteins throughout the tree of life,

we may further ask what bacterial proteins are related to the viral HIV-1 pol poly-

protein. Repeat the blastp search with NP_057849 as the query, but limit the

search to “Bacteria” (txid2[Organism]). Here, the graphical overview of BLAST

search results is extremely helpful to show that two domains of viral pol have the

majority of matches to known bacterial sequences, corresponding to amino acids

1000–1100 and 1200–1300 of pol (Fig. 4.25). Comparison of this output to the

domain architecture of HIV-1 pol (Fig. 4.21) suggests that the two viral protein

domains with matches to bacterial proteins are RNAse H and an integrase.

Indeed, the bacterial matches aligned to viral pol include ribonuclease H and inte-

grases (Fig. 4.26). Inspection of the pairwise alignments indicates that the viral

FIGURE 4.22. A blastp nr search
with HIV-1 pol results in a very
large number of database hits that
all appear to be variants of HIV-
1. Note that all the E values
shown are zero. This result
obscures any possible hits that are
not from HIV-1.

FIGURE 4.23. Portion of the out-
put of a blastp search using the
HIV-1 pol protein as a query
(NP_057849). The flat query-
anchored output format reveals sub-
stituted amino acid residues as well
as those that remain invariant.
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and bacterial proteins are homologous, sharing up to 30% amino acid identity over

spans of up to 166 amino acids.

Let us now turn our attention to human proteins that may be homologous to

HIV-1 pol. The search is identical to our search of bacteria, except that we restrict

the organism to Homo sapiens. Interestingly, there are many human matches

(Fig. 4.27a). These human proteins have been annotated as zinc finger proteins

Color key for alignment scores

Query
<40

0 250 500 750 1000 1250

40-50 50-80 80-200 >=200

FIGURE 4.25. Result of a blastp
search with HIV-1 pol as a query,
restricting the output to bacteria.
The graphical output of the
BLAST search allows easy identifi-
cation of the domains within HIV-
1 that have bacterial matches.

FIGURE 4.24. The taxonomy re-
port for a blastp search shows an
overview of which species have pro-
teins matching the HIV-1 query.
These include cow, opossum, chicken,
and chimpanzee.

Some researchers have suggested

that neuropsychiatric diseases

such as schizophrenia are associ-

ated with elevated levels of

endogenous retroviral gene

expression (Karlsson et al., 2001).
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FIGURE 4.27. (a) Graphical out-
put of a blastp search using HIV-1
pol protein to search for matches
against human proteins. (b) Note
that some human hits have very
low expect values.

FIGURE 4.26. Bacterial proteins
that are identified in a blastp
search with HIV-1 pol include inte-
grases and ribonuclease H proteins.
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(Fig. 4.27). Are these human genes expressed? If so, they should produce RNA tran-

scripts that may be characterized as ESTs from cDNA libraries. Perform a search of

human ESTs with the viral pol protein; it is necessary to use the translating BLAST

website with the tblastn algorithm, and the database must be set to EST (Fig. 4.28).

There are hundreds of human transcripts, actively transcribed, that are predicted to

encode proteins homologous to viral pol (Fig. 4.29). In Chapter 8, we will see how to

evaluate these human ESTs to determine where in the body they are expressed and

when during development they are expressed.

Could the human ESTs that are homologous to HIV-1 pol be even more closely

related to other viral pol genes? To answer this question, select a human EST that we

found is related to HIV-1 pol (from Fig. 4.29; we will choose accession AI636743).

Perform the computationally intensive tblastx search using this EST’s accession as an

input and restrict the organism of the search to viruses. At the present time, this

search results in the identification of many endogenous human retroviral sequences

(i.e., DNA sequences that are part of the human genome) that are mistakenly left

in the viruses division of GenBank. The virus that is most closely related to this

particular human EST is a virus that afflicts sheep (accession AF105220). We initially

performed a BLAST search with an HIV query and have used a further series of

BLAST searches to gain insight into the biology of HIV-1 pol.

Color key for alignment scores

Query

0 250 500 750 1000 1250

<40 40-50 50-80 80-200 >=200

FIGURE 4.28. Are human tran-
scripts expressed that encode pro-
teins homologous to HIV-1 pol
protein? The results of a tblastn
search with viral pol protein
against a human EST database
are shown. Many human genes
are actively transcribed to generate
transcripts predicted to make pro-
teins homologous to HIV-1 pol.
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PERSPECTIVE

BLAST searching has emerged as an indispensable tool to analyze the relation of a DNA

or protein sequence to millions of sequences in public databases. All database search

tools confront the issues of sensitivity (i.e., the ability to minimize false negative results),

selectivity (i.e., the ability to minimize false positive results), and time. As the size of the

public databases has grown exponentially in recent years, the BLAST tools have evolved

to provide a rapid, reliable way to screen the databases. For protein searches we have

focused on blastp. However, for most biologists performing even routine searches with

a protein query, the PSI-BLAST program described in Chapter 5 is strongly preferred.

This is because of its more optimally constructed scoring matrices.

PITFALLS

There are several common pitfalls to avoid in BLAST searching. The most common

error among novice BLASTusers is to search protein or DNA sequences against the

wrong database. It is also important to understand the basic BLAST algorithms.

These concepts are summarized in Fig. 4.3.

An important issue in BLAST searching is deciding whether an alignment is sig-

nificant. Each potential BLAST match should be compared to the query sequence to

FIGURE 4.29. (a) Result of a
tblastn search showing human
ESTs matching HIV-1 pol. Many
ESTs encode proteins having high
scoring matches to the query (low
E values). (b) The highest-scoring
human match shares 35% amino
acid identity.
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evaluate whether it is reasonable from both a statistical and a biological point of view.

It is more likely that two proteins are homologous if they share similar domain archi-

tecture (i.e., motifs or domains; Chapter 10).

WEB RESOURCES

DISCUSSION QUESTIONS

COMPUTER LAB/PROBLEMS

The main website for BLAST searching is that of the National

Center for Biotechnology Information (Q http://www.ncbi.nlm.

nih.gov/blast/). Within this site are links to the main programs

(blastn, blastp, blastx, tblastn, and tblastx). There are other

specialized BLAST programs at NCBI, which are discussed in

Chapter 5. As an alternative approach, one may query other

databases that employ position-specific scoring matrices (rather

than fixed matrices such as BLOSUM62). These database

search tools are also discussed in Chapter 5.

An important web resource is the set of BLAST

tutorials, courses, and references available at the NCBI BLAST

site.

[4-1] Why doesn’t anyone offer “Basic Global Alignment Search

Tool” (BGAST) to complement BLAST? Would BGAST

be a useful tool? What computational difficulties might

there be in setting it up?

[4-2] Should you consider a significant expect value to be 1, 0.05,

or 10–5? Does this depend on the particular search you are

doing?

[4-3] Why is it that database programs such as BLAST must make

a trade-off between sensitivity and selectivity? How does the

blastp algorithm address this issue? Refer to Altschul et al.

(1990).

[4-1] Perform a blastp search at NCBI using the following query of just

12 amino acids: PNLHGLFGRKTG. By default, the par-

ameters are adjusted for short queries. Inspect the search sum-

mary of the output. What is the E value cutoff? What is the

word size? What is the scoring matrix? How do these settings

compare to the default parameters?

[4-2] Protein searches are usually more informative than

DNA searches. Do a blastp search using RBP4 (NP_006735),

restricting the output to Arthropoda (insects). Next, do a

blastn search using the RBP4 nucleotide sequence

(NM_006744; select only the nucleotides corresponding to the

coding region of the DNA). Which search is more informative?

How many databases matches have an E value less than 1.0 in

each search?

[4-3] The NCBI BLAST site offers the netblast program. Download

this and locally install it (on a Windows, Apple, or Linux

platform). This process takes only a matter of seconds, and

the download includes extensive documentation and examples.

Netblast operates from the command line only. First, save

a text file (called hbb.txt) containing human beta globin

protein in the fasta format. This is available as web document

4.5 at Q http://www.bioinfbook.org/chapter4. Next, invoke a

command line editor and execute a search of the nonredun-

dant (nr) database as follows: “.blastcl3 -i hbb.txt -p blastp

-d nr -o hbb1.txt” (do not use the quotation marks, and the .

sign indicates a command editor prompt). blastcl3 is the pro-

gram; the four required parameters are -i (for the input or

query file), -p (for the program), -d (the database), and -o

(the output file; here it is called hbb1.txt). The results are

returned as a text file in the folder in which you installed net-

blast. Note the E value of the best match, and also note the

effective length of the search space (shown in the search sum-

mary of the output). Repeat this search adding the command

-Y 40000000. This changes the effective length of the search

space to 40,000,000. What is the E value of the best match,

using this search space?

[4-4] Netblast is useful to do batch queries. Create a text file named

3proteins.txt having three protein sequences: human beta

globin, bovine odorant-binding protein, and cytochrome b

from the malaria parasite Plasmodium falciparum. (These are

available at web document 4.6.) Enter the search “blastcl3 -i

3proteins.txt -p blastp -d refseq_protein -o 3proteins_out.txt”;

this performs blastp against the RefSeq protein database.

The output file includes the results of three separate blastp

searches.

[4-5] The largest gene family in humans is said to be the olfactory

receptor family. Do a BLAST search to evaluate how large

the family is. Hint: As one strategy, first go to Entrez Gene

and enter “olfactory receptor” limiting the organism to Homo

sapiens. There are over 2600 entries, but this does not tell you
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SELF-TEST QUIZ

[4-1] You have a reasonably short, typical, double-stranded DNA se-

quence. Basically, how many proteins can it potentially encode?

(a) 1

(b) 2

(c) 3

(d) 6

[4-2] You have a DNA sequence. You want to know which protein in

the main protein database (“nr,” the nonredundant database) is

most similar to some protein encoded by your DNA. Which

program should you use?

(a) blastn

(b) blastp

(c) blastx

(d) tblastn

(e) tblastx

[4-3] Which output from a BLAST search provides an estimate of the

number of false positives from a BLAST search?

(a) E value

(b) Bit score

(c) Percent identity

(d) Percent positives

[4-4] Match up the following BLAST search programs with their

correct descriptions:

blastp_(a) Nucleotide query against a nucleotide sequence

database

blastn_(b) Protein query against a translated nucleotide

sequence database

blastx_(c) Translated nucleotide query against a protein

database

tblastn_(d) Protein query against a protein database

tblastx_(e) Translated nucleotide query against a translated

nucleotide database

[4-5] Changing which of the following BLAST parameters would

tend to yield fewer search results?

(a) Turning off the low-complexity filter

(b) Changing the expect value from 1 to 10

(c) Raising the threshold value

(d) Changing the scoring matrix from PAM30 to PAM70

[4-6] You can limit a BLAST search using any Entrez term. For

example, you can limit the results to those containing a

researcher’s name.

(a) True

(b) False

[4-7] An extreme value distribution:

(a) Describes the distribution of scores from a query against a

database

(b) Has a larger total area than a normal distribution

(c) Is symmetric

(d) Has a shape that is described by two constants: m (mu, the

mean) and l (a decay constant)

[4-8] As the E value of a BLAST search becomes smaller:

(a) The value K also becomes smaller

(b) The score tends to be larger

(c) The probability P tends to be larger

(d) The extreme value distribution becomes less skewed

[4-9] The BLAST algorithm compiles a list of “words” typically of

three amino acids (for a protein search). Words at or above a

threshold value Tare defined as:

(a) “Hits” and are used to scan a database for exact matches

that may then be extended

(b) Hits and are used to scan a database for exact or partial

matches that may then be extended

(c) Hits and are aligned to each other

(d) Hits and are reported as raw scores

[4-10] Normalized BLAST scores (also called bit scores):

(a) Are unitless

(b) Are not related to the scoring matrix that is used

(c) Can be compared between different BLAST searches, even

if different scoring matrices are used

(d) Can be compared between different BLAST searches, but

only if the same scoring matrices are used

whether they are related to each other. Select one accession

number and perform a blastp search restricting the organism

to human.

[4-6] For the search you just performed in problem 4.5, what happens

if you use a scoring matrix that is more suited to finding distantly

related proteins?

[4-7] Is the pol protein of HIV-1 more closely related to the pol protein

of HIV-2 or to the pol protein of simian immunodeficiency virus

(SIV)? Use the blastp program to decide. Hint: try the Entrez

command “NOT hiv-1[organism]” to focus the search away

from HIV-1 matches.

[4-8] “The Iceman” is a man who lived 5300 years ago and whose

body was recovered from the Italian Alps in 1991. Some fungal

material was recovered from his clothing and sequenced. To

what modern species is the fungal DNA most related?

[4-9] You perform a BLAST search and a result has an E value of

about 1 � 10–4. What does this E value mean? What are some

parameters on which an E value depends?
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talline, and pepsin. He noted that the composition of globulin (i.e., hemoglobin) was not yet known.



5

Advanced Database Searching

INTRODUCTION

In Chapters 3 and 4 we introduced pairwise alignments and BLAST searching.

BLAST searching allows one to search a database to find what proteins or genes

are present. BLAST searches can be very versatile, and in this chapter we will

cover several advanced database searching techniques.

Let us introduce two problems for which the five main NCBI BLAST programs

are not sufficient. (1) We know that myoglobin is homologous to alpha globin and

beta globin; all are vertebrate members of a globin superfamily. We have seen in

Fig. 3.1 that myoglobin shares a very similar three-dimensional structure with

alpha and beta globin. However, if you use beta globin (NP_000509) as a query

and perform a blastp search (restricting the output to human and setting the database

to nr [nonredundant] or RefSeq), myoglobin does not appear in the results.

Fortunately there are programs such as PSI-BLAST and HMMER that can easily

find such homologous but distantly related proteins. (2) Suppose we want to compare

very long query sequences (e.g., 20,000 base pairs or more) against a database. We

might also want to perform a pairwise alignment between two long sequences,

such as human chromosome 20 (62 million base pairs long) versus mouse chromo-

some 2. We will need an algorithm that is faster than blastn, and we need to explore

both global and local strategies. For this problem we can expect some regions of the

alignment to have regions of high conservation, but other regions will have diverged

substantially. Finding solutions to such searching and alignment problems becomes

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner
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Using human myoglobin

(NP_005359) as a query in a

blastp result against human

RefSeq proteins, beta globin does

not appear.
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more critical with the very recent availability of thousands of completed genome

sequences.

We begin with a brief overview of the kinds of specialized BLAST resources that

are available to help solve many kinds of research questions. Next, we will introduce

PSI-BLASTand hidden Markov models as tools to find distantly related proteins. We

will then consider BLAST-like tools for the alignment of genomic DNA. We will also

address the problem of how to discover novel genes using BLAST searches.

SPECIALIZED BLAST SITES

So far, we have used two BLAST resources, both from the NCBI website: pairwise

BLAST (Chapter 3) and the five standard BLAST programs (Chapter 4).

Other, related programs are available, including organism-specific BLAST sites,

BLAST sites that allow searches of specific molecules, and specialized database

search algorithms.

Organism-Specific BLAST Sites
We have seen that for standard BLAST searches at the NCBI website the output can

be restricted to a particular organism. BLAST searches focused on dozens of promi-

nent organisms can also be performed through the NCBI Map Viewer site.

There are many other databases that consist of molecular sequence data from a

specific organism, and many of these offer organism-specific BLAST servers. In

some cases the data include unfinished sequences that have not yet been deposited

in GenBank. If you have a protein or DNA sequence with no apparent matches in

standard NCBI BLAST searches, then searching these specialized databases can

provide a more exhaustive search. Also, as described below, some of these databases

present unique output formats and/or search algorithms.

Ensembl BLAST
Project Ensembl is a joint effort of the Wellcome Trust Sanger Institute (WTSI)

and the European Bioinformatics Institute (EBI). The Ensembl website provides

a comprehensive resource for studying the human genome and other genomes

(see Chapters 16, 18, and 19). The Ensembl BLAST server allows the user to

search the Ensembl database. As an example, paste in the FASTA-formatted

amino acid sequence of human beta globin (accession NP_000509) and perform

a tblastn search. The output also consists of a graphical output showing the

location of the database matches by chromosome (Fig. 5.1). This conveniently

shows the chromosomal location of the best hits, including chromosome 11 for

beta globin. An alignment summary is provided (Fig. 5.2) with an emphasis on

genomic loci. One can see reasonably high-scoring matches to chromosome 16,

corresponding to alpha globin. The output links include pairwise alignments

between the query and each match, and a link to the ContigView. That is the

genome browser consisting of assorted graphics and dozens of fields of infor-

mation (e.g., an ideogram of the chromosome band, a view of neighboring

genes, protein and DNA database links, polymorphisms, mouse homologies,

and expression data).

You can access the Map Viewer

from the home page of NCBI or

Q http://www.ncbi.nlm.nih.gov/
mapview/.

Web document 5.1 at Q http://
www.bioinfbook.org/chapter5

lists several dozen organism-

specific BLAST servers.

The Wellcome Trust Sanger

Institute website is Q http://www.

sanger.ac.uk/. The EBI is at

Q http://www.ebi.ac.uk/.

Ensembl’s human BLAST server

is at Q http://www.ensembl.org/
Homo_sapiens/blastview, and

Ensembl BLAST servers for

mouse and other organisms can

also be found through Q http://
www.ensembl.org/.
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Wellcome Trust Sanger Institute
The WTSI has a major role in genome sequencing. Its website offers BLAST

searches specific for over 100 organisms. There are also BLAST servers for the

Vertebrate Genome Annotation (VEGA) project that focuses on high quality,

manual annotation of selected vertebrate genomes (currently human, mouse, dog,

pig, and zebrafish) (Ashurst et al., 2005; Loveland, 2005).

Specialized BLAST-Related Algorithms
We have focused on the standard BLASTalgorithms at NCBI, but many other algor-

ithms are available.

1 2 3 4 5 6 7 8 9

10

19 20 21 22 X Y MT

11 12 13 14 15 16 17 19 FIGURE 5.1. Output of a BLAST
search of the Ensembl database
using human beta globin as a
query. The results are presented
in a graphical format by chromo-
some, showing the best match to
the short arm of chromosome 11
(boxed). Weaker matches to para-
logs on other chromosomes are
also evident.

FIGURE 5.2. The Ensembl
BLAST server (available at
Q http://www.ensembl.org/) pro-
vides an output summary with
scores, E values, and links to pair-
wise alignments (labeled A), the
query sequence (S), the genome
(matching) sequence (G), and an
Ensembl ContigView (C).

The WSTI blast resources are

available at Q http://www.sanger.

ac.uk/DataSearch/blast.shtml.

The VEGA homepage is Q http://
vega.sanger.ac.uk/.
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WU BLAST 2.0
Developed by Warren Gish at Washington University, WU BLAST 2.0 is related to

the traditional NCBI BLAST algorithms, as both were developed from the original

NCBI BLAST algorithms that did not permit gapped alignments. WU BLAST 2.0

may provide faster speed and increased sensitivity, and it includes a variety of options,

such as a full Smith–Waterman alignment on some pairwise alignments of database

matches. The command line version of WU BLAST 2.0 offers dozens of options,

comparable in scope to the client blastall at NCBI (Chapter 4). WU BLAST 2.0

runs on a variety of computer servers (Table 5.1).

European Bioinformatics Institute (EBI)
The EBI website provides access to BLAST and other related database search tools

(Fig. 5.3):

† The WU BLAST 2.0 tools

† FASTA (fAST-All), which we introduced in Chapter 3, is, like BLAST, a

heuristic algorithm for searching DNA or protein databases. The default

word size (ktup) is 6 for nucleotide searches and 2 for protein searches.

A larger ktup is faster but less sensitive.

† MPsearch is a fast implementation of the Smith–Waterman algorithm. While

the run time is relatively slow, this provides a more sensitive algorithm than

BLASTor FASTA.

† ScanPS (Scan Protein Sequence) also implements the Smith–Waterman

algorithm. It also includes iterative profile searching (similar to PSI-

BLAST, which we introduce below).

† PSI-BLAST and PHI-BLAST (introduced below)

† BLASTand/or FASTA searches of specialized databases are offered, such as

the Alternative Splicing Database (ASD), a ligand gated ion channel database,

and a single nucleotide polymporphism database.

Specialized NCBI BLAST Sites
The main BLAST site at NCBI offers access to specialized searches of immunoglo-

bulins, vectors, single nucleotide polymorphisms (SNPs; see Chapter 16), or the

trace archives of raw genomic sequence (see Chapter 13). For example, IgBLAST

reports the three germline V genes, two D and two J genes that show the closest

match to the query sequence.

TABLE 5-1 Examplesof Servers RunningWU-BLAST2.0
Site URL

Institut Pasteur http://bioweb.pasteur.fr/seqanal/
interfaces/wublast2.html

European Bioinformatics Institute
(EBI)

http://www.ebi.ac.uk/Tools/similarity.html

Saccharomyces Genome Database
(SGD)

http://seq.yeastgenome.org/cgi-bin/
blast-sgd.pl

You can learn more about WU

BLAST 2.0 at Q http://blast.

wustl.edu. This includes a com-

parison of its function to the

NCBI BLAST tools.

You can also access MPsearch

through the EBI Sequence and

Retrieval System (SRS) site at

Q http://srs.ebi.ac.uk/. Look

under tools for similiarity search

tools.

ScanPS was written by Geoffrey J.

Barton of the University of

Dundee.

The alternative splicing database

(Stamm et al., 2006) is available at

Q http://www.ebi.ac.uk/asd/.
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FINDING DISTANTLY RELATED PROTEINS: POSITION-SPECIFIC

ITERATED BLAST (PSI-BLAST)

Many homologous proteins share only limited sequence identity. Such proteins may

adopt the same three-dimensional structures (based on methods such as x-ray crys-

tallography), but in pairwise alignments they may have no apparent similarity. We

have seen that scoring matrices are sensitive to protein matches at various evolution-

ary distances. For example, we compared the PAM250 to the PAM10 log-odds

matrices (Figs. 3.14 and 3.15) and saw that the PAM250 matrix provides a superior

scoring system for the detection of distantly related proteins. In performing a data-

base search with BLAST, we can adjust the scoring matrix to try to detect distantly

related proteins. Even so, many proteins in a database are too distantly related to a

query to be detected using a standard blastp search. In many other cases protein

matches are detected but are so distant that the inference of homology is unclear.

We saw that a blastp search using RBP4 as a query returned a statistically marginal

match to complement component 8 gamma (Fig. 4.19). We would like an algorithm

that can assign statistical significance to distantly related proteins that are true posi-

tives, while minimizing the numbers of both false positive results (e.g., reporting two

proteins as related when they are not) and false negative results (e.g., failing to report

that two proteins are significantly related, as was done by blastp).

FIGURE 5.3. The European
Bioinformatics Institute (EBI;
Q http://www.ebi.ac.uk/) offers
a variety of programs for searching
DNA and protein sequences,
including BLAST and more rigor-
ous (but slower) Smith–
Waterman implementations.
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Position-specific iterated BLAST (abbreviated PSI-BLAST or c-BLAST) is a

specialized kind of BLAST search that is often more sensitive than a regular

BLAST search (Zhang et al., 1998; Altschul et al., 1997; Schaffer et al., 2001).

The purpose of using PSI-BLAST is to look deeper into the database to find distantly

related proteins that match your protein of interest. In many cases, when a complete

genome is sequenced and the predicted proteins are analyzed to search for homologs,

PSI-BLAST is the algorithm of choice.

PSI-BLAST is performed in five steps:

1. A normal blastp search uses a scoring matrix (such as BLOSUM62, the

default scoring matrix) to perform pairwise alignments of your query

sequence (such as RBP) against the database. PSI-BLAST also begins with

a protein query that is searched against a database at the NCBI website.

2. PSI-BLAST constructs a multiple sequence alignment from an initial blastp-

like search using composition-based statistics (Schaffer et al., 2001). It then

creates a specialized, individualized search matrix (also called a profile)

based on that multiple alignment.

3. This position-specific scoring matrix (PSSM) is then used as a query to search

the database again. (Your original query is not used.)

4. PSI-BLAST estimates the statistical significance of the database matches,

essentially using the parameters we described for gapped alignments.

5. The search process is continued iteratively, typically about five times. At each

step a new profile is used as the query. You must decide how many iterations to

perform; simply press the button labeled “Run PSI-BLAST Iteration.” You

can stop the search process at any point—whenever few new results are

returned or when the program reports convergence because no new results

are found.

We can illustrate the dramatic results of the PSI-BLAST process as follows. Go to

the protein blast page at NCBI, enter the protein accession number of human RBP4

(NP_006735), and select the PSI-BLASToption and the RefSeq database. Using the

default parameters, there are about 100 hits (as of October 2007; your results will

likely vary) (Table 5.2). About half of these have significant E value lower than the

inclusion threshold (set as a default at E ¼ 0.005), and by inspection these are

all called RBP (from various species) or apolipoprotein D (another lipocalin).

There are also dozens of database matches that are worse than the inclusion

TABLE 5-2 PSI-BLAST Produces Dramatically More HitsWith
Significant E ValuesThan blastp
Iteration Hits with E , 0.005 Hits with E . 0.005

1 34 61

2 314 79

3 416 57

4 432 50

5 432 50

Human retinol-binding protein 4 (RBP4; NP_006735) was used as a query
in a PSI-BLAST search of the RefSeq database.

You can access PSI-BLASTat Q

http://www.ncbi.nlm.nih.gov/
BLASTand at other servers such

as the Pasteur Institute (Q http://
bioweb.pasteur.fr/seqanal/
interfaces/psiblast.html) and

CMBI, Netherlands (Q http://
www.cmbi.kun.nl/bioinf/tools/
psiblast.shtml).

We have seen a multiple sequence

alignment from a BLASToutput

in Fig. 4.12, and we will examine

this topic in Chapter 6.

PSSM is sometimes pronounced

“possum.”

You can adjust the inclusion

threshold. Try E values of 0.5 or

0.00005 to see what happens to

your search results. If you set the E

value too low, you will only see

very closely related homologs. If

you set E too high, you will prob-

ably find false positive matches.
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threshold: These do not have significant E values. Some of these distantly related

matches (such as insecticyanins) are authentic lipocalins, based on criteria such as

having similar three-dimensional structures and related biological functions as

carrier proteins. Other proteins on this list are viral and appear to be true negatives.

Through this initial step, the PSI-BLAST search is performed in a manner

nearly identical to a standard blastp search, using some amino acid substitution

matrix such as BLOSUM62. However, the program creates a multiple sequence

alignment from the initial database matches. By analyzing this alignment, the

PSI-BLAST program then creates a PSSM. The original query sequence serves as

a template for this profile.

Consider a portion of the BLAST output so far viewed as a multiple sequence

alignment (Fig. 5.4). In one column, the amino acid residues R, I, and K are

found. Substitutions of R and K are quite common in general, but it is rare to sub-

stitute I for either of these basic residues. The key idea of PSI-BLAST is that the

aligned residues at each position of the multiple sequence alignment provide infor-

mation about the unique profile of accepted mutations in the query and its nearest

database matches. That information forms the basis of a matrix that can be used

to search the database with more sensitivity than a standard BLOSUM or PAM

matrix can provide.

For a query of length L, PSI-BLAST generates a PSSM of dimension L � 20.

The rows of each matrix have a length L equal to the query sequence. Redundant

sequences (having at least 94% amino acid identity in a pairwise alignment of any

two sequences in the matrix) are eliminated. This ensures that a group of very closely

related sequences will not overly bias the construction of the PSSM. The same gap

scores are applied as in blastp, rather than implementing position-specific gap

scores. A unique scoring matrix (profile) is derived from the multiple sequence align-

ment (Box 5.1). For each iteration of PSI-BLAST, a separate scoring matrix is created.

K,R,TD,E,T N,L,Y,GCR,I,K

FIGURE 5.4. PSI-BLAST search begins with a standard blastp-like search. The output is used to
generate a profile or PSSM. A PAM or BLOSUM matrix describes the likelihood that one amino
acid will be substituted for another, based on a statistical analysis of thousands of proteins. The
PSSM is created specifically for the protein query of the PSI-BLAST search. The figure shows a
portion of the initial PSI-BLAST output (shown using a query anchored without identities align-
ment view). The arrows point to examples of columns of amino acids in the alignment and the
actual amino acid residues that are tolerated in each position. Some of the positions are invariant
(such as C), while other columns show aligned residues (such as R, I, K) that tolerate amino acid
substitutions that may be unique to this particular group of proteins.
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A portion of a PSSM derived from a PSI-BLAST search using RBP4 as a query is

shown in Fig. 5.5. The columns have the 20 common amino acids. Look at the scores

given to alanine (at positions 6, 11, 12, 14–16, and 42). In some cases, alanine scores

a þ4 (this is also the score from a BLOSUM62 matrix, as shown in Fig. 3.17).

However, alanine occasionally scores a þ2, þ3, or þ5 at various positions in the

query sequence, indicating that this residue is more or less favored at these positions.

The scoring matrix is thus customized to a query. Next consider the tryptophan at

position 40 that is part of the nearly invariant GXW pattern present in hundreds

of lipocalins. This W (as well as several other tryptophans) scores a þ12 in position

40, but a different W (at position 13) scores only a þ7. These examples illustrate

one of the main advantages of PSI-BLAST: the PSSM reflects a more customized

estimate of the probabilities with which amino acid substitutions occur at various

positions.

The unique profile that PSI-BLAST identifies is next used to perform an iterative

search. Press the button “run PSI-BLAST iteration 2.” The search is repeated using

the customized profile, and new proteins are often added to the alignment. This is

seen in the second iteration as the number of database hits better than the threshold

rises from 34 to 314 (Table 5.2). In subsequent iterations, the number of database

hits better than the threshold rose to over 400. By inspection, all of these are auth-

entic members of the lipocalin family. One can halt the search once such a plateau

is reached, or continue the iteration process until the program reports that conver-

gence has been reached. This indicates that no more database matches are found,

and the PSI-BLAST search is ended.

Box 5.1
PSI-BLAST Target Frequencies

Scores are derived for each specific column position in the form log(qi/pi), where

qi is the estimated probability for residue i to be found in that column position and

pi is the background probability for that residue (Altschul et al., 1997). The key

problem is to estimate the target frequencies qi. This is accomplished in two steps

using a method of pseudocounts (Tatusov et al., 1994). First, pseudocount

frequencies gi are obtained for each column position as follows:

gi ¼
X

j

fj

pj

qij

where fj are the observed frequencies, pj are the background frequencies, and qij

are the target frequencies implicit in the substitution matrix (as described in

Equation 3.1). Next, the target frequencies qi (corresponding to the likelihood of

observing residue i in the position of a column) are given by:

qi ¼
afi þ bgi

aþ b

In this equation, a and b are relative weights assigned to the observed frequencies

fi and the pseudocount residue frequencies gi. Having estimated the target

frequencies, it is now possible to assign a score for a given aligned column as

(ln[qi/pi]/l).
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What did this search achieve? After a series of position-specific iterations,

hundreds of additional database matches were identified. Many distantly related

proteins are now shown in the alignment. We can understand how the sensitivity

of the search increased by examining the pairwise alignment of the query

(RBP4) with a match, human apolipoprotein D (Fig. 5.6). In the first

PSI-BLAST iteration, the bit score was 57.4, the expect value was 3e-07 (i.e.,

3 � 1027), and there were 47 identities and 39 gaps across an alignment of 151

residues (Fig. 5.6a). After the second iteration, the score rose to 175 bits, the

E value dropped (to 10242), the length of the alignment increased (to 163

residues), and the number of gaps decreased. In the second iteration, larger por-

tions of the amino- and carboxy-terminials of the two proteins were included in

the alignment. We previously discussed a questionable match between retinol

binding protein 4 (RBP4) and complement component 8 g (Fig. 4.19). The E

value was 0.27 and the score was 33.9 bits. Here in the third PSI-BLAST iteration

the E value for this pairwise alignment is 2�10221 (Fig. 5.6c). The E value was

dramatically lower as a result of using a scoring matrix specially constructed for

this family of proteins.

We can visualize the PSI-BLAST process by imagining each lipocalin in the data-

base as a point in space (Fig. 5.7). An initial search with RBP4 detects other RBP

homologs as well as several apolipoprotein D proteins. The PSSM of PSI-BLAST

allows the detection of other lipocalins related to apolipoprotein D. Odorant-binding

proteins are not detected by a blastp search using RBP4 as a query, but they are found

by PSI-BLAST.

As another example of the usefulness of PSI-BLAST, consider a search using

RBP4 as a query, with the output restricted to bacteria. Currently (January 2009),

there is no match better than threshold after the first iteration. By the second iteration

there are two matches better than threshold, and by the third iteration there are over

300 sequences.

           A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V 
    1 M   -1 -2 -2 -3 -2 -1 -2 -3 -2  1  2 -2  6  0 -3 -2 -1 -2 -1  1 
    2 K   -1  1  0  1 -4  2  4 -2  0 -3 -3  3 -2 -4 -1  0 -1 -3 -2 -3 
    3 W   -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2  1 -4 -3 -3 12  2 -3 
    4 V    0 -3 -3 -4 -1 -3 -3 -4 -4  3  1 -3  1 -1 -3 -2  0 -3 -1  4 
    5 W   -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2  1 -4 -3 -3 12  2 -3 
    6 A    5 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
    7 L   -2 -2 -4 -4 -1 -2 -3 -4 -3  2  4 -3  2  0 -3 -3 -1 -2 -1  1 
    8 L   -1 -3 -3 -4 -1 -3 -3 -4 -3  2  2 -3  1  3 -3 -2 -1 -2  0  3 
    9 L   -1 -3 -4 -4 -1 -2 -3 -4 -3  2  4 -3  2  0 -3 -3 -1 -2 -1  2 
   10 L   -2 -2 -4 -4 -1 -2 -3 -4 -3  2  4 -3  2  0 -3 -3 -1 -2 -1  1 
   11 A    5 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
   12 A    5 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
   13 W   -2 -3 -4 -4 -2 -2 -3 -4 -3  1  4 -3  2  1 -3 -3 -2  7  0  0 
   14 A    3 -2 -1 -2 -1 -1 -2  4 -2 -2 -2 -1 -2 -3 -1  1 -1 -3 -3 -1 
   15 A    2 -1  0 -1 -2  2  0  2 -1 -3 -3  0 -2 -3 -1  3  0 -3 -2 -2 
   16 A    4 -2 -1 -2 -1 -1 -1  3 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2 -1 
   ...
   37 S    2 -1  0 -1 -1  0  0  0 -1 -2 -3  0 -2 -3 -1  4  1 -3 -2 -2 
   38 G    0 -3 -1 -2 -3 -2 -2  6 -2 -4 -4 -2 -3 -4 -2  0 -2 -3 -3 -4 
   39 T    0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -3 -2  0 
   40 W   -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2  1 -4 -3 -3 12  2 -3 
   41 Y   -2 -2 -2 -3 -3 -2 -2 -3  2 -2 -1 -2 -1  3 -3 -2 -2  2  7 -1 
   42 A    4 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
   ...

FIGURE 5.5. Portion of a PSSM
from a PSI-BLAST search using
RBP4 (NP_006735) as a query.
The 199 amino acid residues of
the query are represented in rows;
the 20 amino acids are in columns.
Note that for a given residue such
as alanine the score can vary (com-
pare A14, A15, and A16, which
receive scores of 3, 2, and 4). The
tryptophan in position 40 is invar-
iant in several hundred lipocalins.
Compare the score of W40, W3,
or W5 (each receives þ12) with
W13 (þ7); in the W3, W5, and
W40 positions a match is rewarded
more highly, and the penalties for
mismatches are substantially
greater. A PSSM such as this one
allows PSI-BLAST to perform
with far greater sensitivity than
standard blastp searches.

You can see the results of nine

iterations for the pairwise align-

ment of RBP4 to apolipoprotein D

in web document 5.2 at Q http://
www.bioinfbook.org/chapter5.

The accession number for human

RBP4 is NP_006735. To restrict

the search to bacteria, use the

command Bacteria (taxid:2).
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The number of iterations that a PSI-BLAST search performs relates to the

number of hits (sequences) in the database that running the program reports.

After each PSI-BLAST iteration, the results that are returned describe which

sequences match the input PSSM.

Assessing Performance of PSI-BLAST
There are several ways to assess the performance of PSI-BLAST. When a query is

searched against a large database such as SwissProt, the PSSMs can be searched

against versions of the database that either are shuffled or have the order of each

sequence reversed. When this is done, the PSI-BLASTexpect values are not signifi-

cant (Altschul et al., 1997).

In another approach, several groups have compared the relationships detected

using PSI-BLAST to those detected by the rigorous structural analysis of

homologous proteins that share limited amino acid identity. Park and colleagues

(1998) used the structural classification of proteins (SCOP) database. They found

FIGURE 5.6. PSI-BLAST search
detects distantly related proteins
using progressive iterations with a
PSSM. (a) A search with RBP4
as a query (NP_006735) detects
the lipocalin apolipoprotein D
(NP_001638) in the first iteration.
(b) As the search progresses to the
second iteration, the length of the
alignment increases, the bit score
becomes higher, the expect value
decreases, and the number of gaps
in the alignment decreases. (c) By
the third iteration, the match to
human complement component 8
gamma achieves a significant E
value (2e-21), while previously
(Fig. 4.19) in a standard blastp
search it had been 0.27.

>ref|NP_001638.1| apolipoprotein D precursor [Homo sapiens]
Length=189

 Score = 57.4 bits (137),  Expect = 3e-07, Method: Composition-based stats.
 Identities = 47/151 (31%), Positives = 78/151 (51%), Gaps = 39/151 (25%)

Query  29   VKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVC  88
            V+ENFD  ++ G WY + +K P        I A +S+ E G        ++++LN  ++ 
Sbjct  33   VQENFDVNKYLGRWYEI-EKIPTTFENGRCIQANYSLMENG--------KIKVLNQ-ELR  82

Query  89   ADMVGTFTDTE---------DPAKFKMKY-WGVASFLQKGNDDHWIVDTDYDTYAVQYSC  138
            AD  GT    E         +PAK ++K+ W + S        +WI+ TDY+ YA+ YSC
Sbjct  83   AD--GTVNQIEGEATPVNLTEPAKLEVKFSWFMPS------APYWILATDYENYALVYSC  134

Query  139  ----RLLNLDGTCADSYSFVFSRDPNGLPPE  165
                +L ++D      ++++ +R+PN LPPE
Sbjct  135  TCIIQLFHVD------FAWILARNPN-LPPE  158

(a) Iteration 1

(b) Iteration 2
>ref|NP_001638.1| apolipoprotein D precursor [Homo sapiens]
Length=189

 Score =  175 bits (443),  Expect = 1e-42, Method: Composition-based stats.
 Identities = 45/163 (27%), Positives = 77/163 (47%), Gaps = 31/163 (19%)

Query  14   GSGRAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSA  73
              G+A    +  +  V+ENFD  ++ G WY + +K P        I A +S+ E G++  
Sbjct  18   AEGQAFHLGKCPNPPVQENFDVNKYLGRWYEI-EKIPTTFENGRCIQANYSLMENGKIKV  76

Query  74   TAK-----GRVRLLNNWDVCADMVGTFTDTEDPAKFKMKY-WGVASFLQKGNDDHWIVDT  127
              +     G V  +           T  +  +PAK ++K+ W + S        +WI+ T
Sbjct  77   LNQELRADGTVNQIEG-------EATPVNLTEPAKLEVKFSWFMPS------APYWILAT  123

Query  128  DYDTYAVQYSCR----LLNLDGTCADSYSFVFSRDPNGLPPEA  166
            DY+ YA+ YSC     L ++D      ++++ +R+PN LPPE 
Sbjct  124  DYENYALVYSCTCIIQLFHVD------FAWILARNPN-LPPET  159

(c) Iteration 3
>ref|NP_000597.1| complement component 8, gamma polypeptide [Homo sapiens]
Length=202

 Score =  104 bits (260),  Expect = 2e-21, Method: Composition-based stats.
 Identities = 40/186 (21%), Positives = 74/186 (39%), Gaps = 29/186 (15%)

Query  24   VSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETG-QMSATAKGRVRLL  82
            +S+ + K NFD  +F+GTW  +A         +    AE +      Q +A A    R L
Sbjct  33   ISTIQPKANFDAQQFAGTWLLVAVGSACRFLQEQGHRAEATTLHVAPQGTAMAVSTFRKL  92

Query  83   NNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQY------  136
            +   +C  +   + DT    +F ++  G      +G     + +TDY ++AV Y      
Sbjct  93   DG--ICWQVRQLYGDTGVLGRFLLQARGA-----RGAVHVVVAETDYQSFAVLYLERAGQ  145

Query  137  -SCRLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGR  195
             S +L       +DS    F +       EA       ++++    +Y      G+C+  
Sbjct  146  LSVKLYARSLPVSDSVLSGFEQRVQ----EA----HLTEDQIFYFPKY------GFCEAA  191

Query  196  SERNLL  201
             + ++L
Sbjct  192  DQFHVL  197

In a related approach, Schaffer

et al. (2001) plotted the number of

PSI-BLAST false positives versus

true positives to generate a sensi-

tivity curve. They used this plot to

assess the accuracy of PSI-BLAST

using a variety of adjustments to

the parameters.
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that PSI-BLAST searches of this database were more accurate using an E value

of 0.0005 (the default inclusion threshold for E is 0.005). They estimated the

false-positive rate for PSI-BLAST matches by assessing how many false predictions

were made out of 432,680 possible matches. At a low rate of false positives (1 in

100,000), PSI-BLAST detected 27% of homologous matches in the database; at

a higher rate of false positives (1 in 1000), PSI-BLAST detected 44% of the

homologous matches. This performance is comparable to that observed for SAM-

T98, an implementation of a hidden Markov model procedure (see below), and

PSI-BLAST was far more sensitive than the standard gapped BLAST or FASTA

algorithms.

all lipocalins

retinol-binding 
protein

odorant-binding 
protein

apolipoprotein D

human rbp

rabbit rbp

chicken rbp

fish rbp

frog rbp

obp

ApoD

ApoD

ApoDApoD

ApoD

ApoD

ApoD

ApoD

ApoD

ApoD

obp

obp
obp

obp
obp

obp

obp

obp

Results of an initial iteration
of PSI-BLAST (or blastp)
include RBP and some other
lipocalins

Results of a later iteration
of PSI-BLAST include many
additional lipocalins (such 
as OBP) that were not
detected initially

FIGURE 5.7. PSI-BLAST algorithm increases the sensitivity of a database search by detecting
homologous matches with relatively low sequence identity. In this figure, each dot represents a
single protein, some of which are labeled RBP (retinol-binding protein), ApoD (apolipoprotein
D), or OBP (odorant-binding protein). All these proteins are homologous by virtue of their mem-
bership in the lipocalin family. A standard blastp search with RBP returns matches that are rela-
tively close to RBP in sequence identity, and the result (represented by the circle at left) may
include additional matches to lipocalins such as ApoD. However, many other lipocalins such
as OBP are not detected. The fundamental limitation in standard BLAST search sensitivity is
the reliance on standard PAM and BLOSUM scoring matrices. In a PSI-BLAST search, a
PSSM generates a scoring system that is specific to the group of matches detected using the initial
query sequence (e.g., RBP). While the initial iteration of a PSI-BLAST search results in an iden-
tical number of database matches as a standard BLAST search, subsequent PSI-BLAST iter-
ations (represented by the dashed oval) using a customized matrix extend the results to allow
the detection of more distantly related homologs.

SCOP (Chapter 11) is available at

Q http://scop.mrc-lmb.cam.ac.

uk/scop/. It was developed by

Cyrus Chothia and colleagues.

Park et al. (1998) used the

PDBD40-J database, which con-

tains proteins of known structure

with �40% amino acid identity.
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Friedberg and colleagues (2000) assessed the accuracy of PSI-BLAST align-

ments. They selected proteins from two structure databases. Fifty-two sequences

out of 123 successfully detected their known structural matches using PSI-

BLAST, even though the aligned pairs shared less than 25% amino acid identity

and none of the pairs could be detected by the Smith–Waterman algorithm. They

then compared the alignments generated by PSI-BLAST with the alignments

measured using x-ray crystallography and found that, on average, about 44% of

the residues were correctly aligned.

PSI-BLAST Errors: The Problem of Corruption
PSI-BLAST is useful to detect statistically weak but biologically meaningful relation-

ships between proteins. The main source of error in PSI-BLAST searches is the spur-

ious amplification of sequences that are unrelated to the query. This problem most

often arises when the query (or the profile generated after PSI-BLAST iterations)

contains regions with highly biased amino acid composition. Once the program

finds even one new protein hit having an E value even slightly above the inclusion

threshold, that new hit will be incorporated into the next profile and will reappear

in the next PSI-BLAST iteration. If the hit is to a protein that is not homologous

to the original query sequence, then the PSSM has been corrupted. We can define

corruption as occurring when, after five iterations of PSI-BLAST, the PSSM pro-

duces at least one false positive alignment of E ,1024.

There are three main approaches to stopping corruption of PSI-BLAST queries.

(1) You can apply a filtering algorithm that removes biased amino acid regions. These

“low entropy” regions include stretches of amino acids that are highly basic, acidic, or

rich in a residue such as proline. The NCBI PSI-BLAST site employs the SEG pro-

gram for this purpose, applying the filtering algorithm to database sequences that are

detected by the query. (2) You can adjust the expect level from its default value (e.g.,

E ¼ 0.005) to a lower value (e.g., E ¼ 0.0001). This may suppress the appearance

of false positives, although it could also interfere with the detection of true positives.

(3) You can visually inspect each PSI-BLAST iteration. Each protein listed in the

PSI-BLAST output has a checkbox; you can select and remove suspicious ones. As

an example, your query protein may have a generic coiled-coil domain, and this

may cause other proteins sharing this motif (such as myosin) to score better than

the inclusion threshold even though they are not homologous.

If a protein has several motifs, such as both a kinase domain and a C2 domain,

PSI-BLAST may find database matches related to both. The results must be inter-

preted carefully. One should not conclude that the kinase domain is related to the

C2 domain. For PSI-BLAST searches with multidomain proteins, it may be helpful

to search using just one region of interest, such as the reverse transcriptase domain of

HIV-1 pol protein. In problem 5.1 at the end of this chapter, we consider a hybrid

protein as a query having both a lipocalin and a C2 domain. In problem 5.4 we

explore fungal globins that are typically multidomain proteins as large as 1000 resi-

dues in length. PSI-BLAST searches using a vertebrate globin as a query successfully

identify many fungal globin-containing proteins, but the PSSM does not extend into

the non-globin regions of these fungal proteins, and so corruption does not occur.

Reverse Position-Specific BLAST
Reverse position-specific BLAST (RPS-BLAST) is used to search a single protein

query against a large database of predefined PSSMs. The purpose is to identify

Friedberg et al. (2000) used the

fold classification based on struc-

ture–structure alignment of pro-

teins (FSSP) and Distant Aligned

Protein Sequences (DAPS) (see

Chapter 11). Their study included

several lipocalins: bovine RBP

identified bovine odorant-binding

protein; bovine RBP detected

both mouse major urinary protein

and a bilin-binding protein.

This definition of corruption is

adapted from Schaffer et al.

(2001).

SEG was described by Wootton

and Federhen (1996). An example

of its output is shown at Q http://
www.ncbi.nlm.nih.gov/
Education/BLASTinfo/Seg.html.
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conserved protein domains in the query. RPS-BLAST searches are implemented in

the Conserved Domain Database at NCBI (Marchler-Bauer et al., 2009). A typical

result, based on using human beta globin as a query, shows the globin family

(Fig. 5.8). Annotations are by CDD and by the protein family database PFAM,

which we describe in Chapter 6.

Pattern-Hit Initiated BLAST (PHI-BLAST)
Often a protein you are interested in contains a pattern, or “signature,” of amino acid

residues that help define that protein as part of a family. For example, a signature

might be an active site of an enzyme, a string of amino acid residues that define a

structural or functional domain of a protein family, or even a characteristic signature

of unknown function (such as the three amino acids GXW that is almost always pre-

sent in the lipocalin family, where X refers to any residue). Pattern-hit initiated

BLAST (PHI-BLAST) is a specialized BLAST program that allows you to search

with a query and to find database matches that both match a pattern and are signifi-

cantly related to the query (Zhang et al., 1998). PHI-BLAST may be preferable to

simply searching a database with a short query corresponding to a pattern, because

such a search could result in the detection of many random matches or proteins

that are unrelated to your query protein.

Consider a blastp search of bacterial sequences using human RBP4 as a query

(NP_006735), restricted to the refseq database. The result (as of April 2007) is

that there are two database matches having small E values (0.004 and 0.059). We

know that there are many bacterial lipocalins distantly related to human RBP4;

one way to confirm this is to perform an Entrez protein query with the words “bac-

teria lipocalin.” Select the two best-scoring bacterial lipocalin protein sequences

and align them with human RBP4 (Fig. 5.9a; we describe how to make multiple

sequence alignments in Chapter 6). This alignment shows us which amino acid

residues are actually shared between RBP4 and the two bacterial proteins.

Focusing on the GXW motif that is shared between almost all lipocalins, we can

FIGURE 5.8. Reverse position-
specific BLAST is used to search a
query (here human beta globin)
against a collection of predefined
position-specific scoring matrices.
The result includes an E value, a
pairwise alignment of the query
to the consensus PSSM, and a
description of the family of proteins
in the PSSM. This BLAST tool is
available at NCBI.

CDD is available atQhttp://www.

ncbi.nlm.nih.gov/Structure/cdd/
cdd.shtml or through the main

BLAST page (Qhttp://www.ncbi.

nlm.nih.gov/BLAST/). Currently

(April 2007) there are over 12,500

PSSMs in the CDD database. We

will discuss protein domains in

Chapter 10.

PHI-BLAST is launched from the

NCBI blastp web page.
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try to define a pattern (or signature) of amino acids that is shared by RBP4, the two

bacterial lipocalins, and possibly many other bacterial lipocalins. The purpose of

defining a signature is to customize a PSI-BLAST algorithm to search for proteins

containing that signature.

How is the signature or pattern defined? We do not expect the signature to be

exactly identical between all bacterial lipocalins, and so we want to include freedom

for ambiguity. We can define any pattern we want; as an example we will examine the

multiple alignment in Fig. 5.9a and create the pattern GXW[YF]X[VILMAFY]

A[RKH]. Note that the pattern you choose must not occur too commonly; the algor-

ithm only allows patterns that are expected to occur less frequently than one time for

every 5000 database residues. In general, it is acceptable to choose any pattern with

four completely specified residues or three residues with average background fre-

quencies of �5.8% (Zhang et al., 1998).

The BLAST search output is restricted to a subset of the database consisting of

proteins that contain that specified pattern. By inspection of the pattern we have

chosen, each database match must have a G; the X allows any residue to come

next; the W specifies that the third amino acid residue of the pattern must be a W.

Next, we write [YF] to specify that the next amino acid must be either a Yor an F;

we choose this because it is very common for tyrosines to be substituted with phenyl-

alanine (see Chapter 3). In the next position, we select X to accommodate any resi-

due. We select [VILMAFY] to correspond to the residues in the alignment (I, M) as

well as additional hydrophobic residues that we add based on the intuition that any

(a)

ZP_01613353  ------------MKAITTILLITGL-FLLTACTSAPEGITPVKNFDLEQYKGKWYEIARL 47
ZP_01006814  MYLLLENGALAMMAVLRRWFLIVGL-MGLASCTSLPEGIEPVSGFDSDRYLGTWYEIARL 59
human        ------------MKWVWALLLLAALGSGRAERDCRVSSFRVKENFDKARFSGTWYAMAKK 48
                         *  :   :*:..*    :   .  ..:   ..**  :: *.** :*: 

PHI pattern: GXW[YF]X[VILMAFY]A[RKH]

(b)

FIGURE 5.9. Choosing a pattern for a PHI-BLAST search. (a) Human RBP4 (accession
NP_006735) was used as a query in a blastp search against bacterial sequences, then multiply
aligned with two bacterial lipocalins (these are Alteromonadales bacterium outer membrane lipopro-
tein [ZP_01613353] and Prochlorococcus marinus lipoprotein Blc [ZP_01006814]). The purpose
of evaluating these three protein sequences together is to try to identify a short, sequential pattern of
amino acid residues that consistently occurs in a protein family. This pattern then is included in a new
PHI-BLAST search to increase its sensitivity and specificity. The alignment was performed using
ClustalW (Chapter 6), and a portion of the alignment is shown. By inspection, the invariant
GXW motif that is typical of lipocalins is evident (red box). A PHI pattern can be selected that
includes these residues and several more. As an example, we select the pattern
GXW[YF]X[VILMAFY]A[RKH], in which, following GXW, the next position contains either Y
or its closely related residue F, then X denoting any residue, then a set of hydrophobic residues,
then an alanine, and finally a basic residue (R, K, or H). The user can select any pattern by trial
and error. (b) A PHI-BLAST search is selected from the NCBI protein blast page, and the PHI pat-
tern is entered. The database will then be searched, with a requirement that all database matches
include the selected pattern.

The syntax for a PHI-BLAST

pattern is derived from the Prosite

dictionary (Chapter 10) and is

described at Q http://www.ncbi.

nlm.nih.gov/blast/html/
PHIsyntax.html. We provide a

detailed example of using PHI-

BLAST in web document 5.3 at

Q http://www.bioinfbook.org/
chapter5.
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hydrophobic residue might occur in this position. We conclude the PHI pattern by

specifying an invariant alanine, then a basic residue (arginine, lysine, or histidine).

We next use PHI-BLASTand enter the “PHI pattern” GXW[YF]X[VILMAFY]

A[RKH] (Fig. 5.9b). The result of this search is about a dozen database matches con-

sisting of bacterial lipocalins having scores better than threshold (Fig. 5.10a). This

contrasts with the results in the absence of a PHI-BLAST pattern, where only one

match is found (Fig. 5.10b). The pairwise alignment output of the PHI-BLAST

search has the identical format to the PSI-BLAST output, except that information

about where both the query and each database sequence match the PHI pattern is

shown by a series of asterisks (Fig. 5.10c). The ensuing PSI-BLAST iteration,

which no longer uses the PHI pattern but instead uses a search-specific PSSM,

will successfully identify a large family of bacterial lipocalins.

The PHI-BLAST algorithm employs a statistical analysis based on identifying

alignment A0 spanned by the input pattern and regions A1 and A2 to either side of

the pattern, which are scored by gapped extensions. Scores S0, S1, and S2 corre-

sponding to these regions are calculated, and PHI-BLAST scores are ranked by

the score S0 ¼ S1 þ S2 (ignoring S0). The alignment statistics are closely related to

those used for blastp searches (Zhang et al., 1998).

PROFILE SEARCHES: HIDDEN MARKOV MODELS

PSI-BLASTemploys scoring matrices that are customized because of their position-

specific nature in a manner that is dependent on the particular input sequence(s).

Hence PSI-BLAST is more sensitive at detecting significantly related aligned

FIGURE 5.10. Results of a PHI-
BLAST search of bacterial RefSeq
proteins using human RBP4 as a
query. (a) The output includes
about a dozen proteins having
both an E value better than the
default threshold and a successful
match to the PHI pattern. (b)
The same search performed using
PSI-BLAST (but without a PHI
pattern) yielded just one hit better
than the threshold. (c) The pair-
wise alignments in the output
include a row of asterisks showing
where the selected PHI pattern
occurs in both the query (here
human RBP4) and a database
match (here a bacterial lipocalin).
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residues than PAM or BLOSUM matrices. PSSMs are examples of profiles, a con-

cept introduced by Gribskov and others (Gribskov et al., 1987, 1990). Profile

hidden Markov models (HMMs) are even more versatile than PSSMs to generate

a position-specific scoring system useful for the detection of remote sequence simi-

larities (Krogh et al., 1994; Eddy, 1998; Baldi et al., 1994). HMMs have been

widely used in a variety of signal detection problems ranging from speech detection

to sonar. Within the field of bioinformatics they have been used for applications as

diverse as sequence alignment, prediction of protein structure, prediction of trans-

membrane domains in proteins, analysis of chromosomal copy number changes,

and gene-finding algorithms.

The main strength of a profile HMM is that it is a probabilistic model. This

means that it assesses the likelihood of matches, mismatches, insertions and deletions

(i.e., gaps) at a given position of an alignment. By developing a stastistical model that

is based on known sequences, we can use a profile HMM to describe the likelihood

that a particular sequence (even one that was previously unknown) matches the

model. In contrast, PSI-BLAST does not specify a full probabilistic model. A profile

HMM can convert a multiple sequence alignment into a position-specific scoring

system. A common application of profile HMMs is the query of a single protein

sequence of interest against a database of profile HMMs. Another application is to

use a profile HMM as the query in a database search. PFAM and SMART

(Chapters 6 and 10) are examples of prominent databases that are based on HMMs.

A Markov chain is a data structure that consists of a computational model with a

start state, a finite, discrete set of possible states, and transition functions that

describe how to move from one state to the next. This type of computational

model is also called a finite state machine. A basic feature of Markov chains is that

the process occupies one state at any given unit of time, and remains in that state

or moves to another allowable state.

In the case of a hidden Markov model (HMM), we cannot observe the states

directly. However, we do have observations from which we can infer the hidden

states. A common introduction to the use of HMMs is the scenario of predicting

the weather in a distant city. The hidden states have discrete values, such as 1 for

sunny and 2 for rainy across a series of days. Assume you have no access to that infor-

mation, but your goal is to infer the weather over time. The observed state might be

the information you get from a friend in that city who tells you whether his dog has

gone outside. This represents the observed output that depends on the hidden

states. In the case of molecular sequences, the observed states are the positions of

amino acids (or nucleotides) in a multiple sequence alignment. The hidden states

are the match states, insert states, and delete states. Together, such states define a

model for the sequence of that protein family.

An HMM thus consists of a series of defined states. Consider the five amino acid

residues taken from an alignment of five globin proteins (Fig. 5.11a). An HMM can

be calculated by estimating the probability of occurrence of each amino acid in the

five positions (Fig. 5.11b). In this sense, the HMM approach resembles the

position-specific scoring matrix calculation of PSI-BLAST. From the HMM prob-

abilities, a score can be derived for the occurrence of any specific pattern of a related

query, such as HARTV (Fig. 5.11c). The HMM is a model that can be described in

terms of “states” at each position of a sequence (Fig. 5.11d).

A profile HMM is constructed from an initial multiple sequence alignment

to define a set of probabilities. The structure of a profile HMM is shown in

Fig. 5.12a (Krogh et al., 1994). Along the bottom row is a series of main states

Markov chains were introduced by

Andrei Andreyevich Markov

(1856–1922), a Russian mathe-

matician. HMMs were introduced

into the field of bioinformatics by

Anders Krogh, David Haussler,

and colleagues (Krogh et al.,

1994), Gary Churchill (1989) and

others.
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(from “begin” to m1 to m5, then “end”). These states might correspond to residues

of an amino acid sequence such as HAEKL. The second row consists of insert states

(Fig. 5.12, diamond-shaped objects labeled i1 to i5). These states model variable

regions in the alignment, allowing sequences to be inserted as necessary. The third

row, at the top, consists of circles called delete states. These correspond to gaps:

they provide a path to skip a column (or columns) in the multiple sequence

alignment. The emissions lead to the observed sequences in the alignment.

The sequence of an HMM is defined by a series of states that are influenced by

two main parameters: the transition probability and the emission probability. The

transition probability describes the path followed along the hidden state sequence

of the Markov chain (Fig. 5.12a, solid arrows). Each state also has a “symbol emis-

sion” probability distribution for matching a particular amino acid residue. The

1D8U       HAMSV
1OJ6A      HIRKV
2hhbB      HGKKV
1FSL       HAEKL
2MM1       HGATV

(a)

(b)

(c)

position
Probability 1

1.0
2 3

0.4
0.2
0.4

4 5
p(H)
p(A)
p(I)
p(G)
p(M) 0.2

0.2
0.2
0.2
0.2

p(R)
p(K)
p(E)
p(A)
p(S) 0.2

0.6p(K)
p(T) 0.2
p(V) 0.8
p(L) 0.2

p(HARTV) = (1.0)(0.4)(0.2)(0.2)(0.8) = 0.0128
Log odds score = ln(1.0) + ln(0.4) + ln(0.2) + ln(0.2) + ln(0.8) = –4.4

(d)

H:1.0
A:0.4
I:0.2
G:0.4

M:0.2
R:0.2
K:0.2
E:0.2
A:0.2

S:0.2
K:0.6
T:0.2

V:0.8
L:0.2

FIGURE 5.11. Hidden Markov models describe alignments based on the probability of amino
acids occurring in an aligned column. This is conceptually related to the position-specific scoring
matrix used by PSI-BLAST. (a) An alignment of five globins is shown (see Fig. 6.3, open arrow-
head). The five proteins are a nonsymbiotic plant hemoglobin from rice (Oryza sativa) (1D8U),
human neuroglobin (1OJ6A), human beta globin (2hhbB), leghemoglobin from the soybean
Glycine max (1FSL), and human myoglobin (2MM1). (b) The probability of each residue occur-
ring in each aligned column of residues is calculated. (c) From these probabilities, a score is
derived for any query such as HARTV. Note that the actual score will also account for gaps
and other parameters. Also note that this is a position-specific scoring scheme; for example,
there is a different probability of the amino acid residue lysine occurring in position 3 versus
4. (d) The probabilities associated with each position of the alignment can be displayed in
boxes representing states.
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symbol sequence of an HMM is an observed sequence that resembles a consensus for

the multiple sequence alignment. Note that profile HMMs, unlike PSI-BLAST,

include probabilities associated with insertions and deletions. The HMM is called

a “hidden” model because it consists of both observed symbols (such as the amino

acid residues in a sequence modeled by the HMM) and a hidden state sequence

which is inferred probabilistically from the observed sequence.

HMMs can also be applied to pairwise alignments (Fig. 5.12b). In addition to

beginning and end states, there is a match state M with emission probability xi, yj

for emitting an aligned pair of residues i, j. State I has the emission probability pi

for emitting a symbol i aligned to a gap; state J corresponds to residue j aligned to

a gap. The gaps may be extended with probability 1. The alignment is modeled

through a process of choosing sequential states from beginning to end according to

the highest transition probabilities, with aligned residues added according to the

emission probabilities.

FIGURE 5.12. The structure of a
hidden Markov model. (a) The
HMM consists of a series of states
associated with probabilities
(adapted from Krogh et al.,
1994). The “main states” are
shown in boxes along the bottom
(from begin to end, with m1 to
m5 in between). These main
states model the columns of a mul-
tiple sequence alignment, and the
probability distribution is the fre-
quency of amino acids (see Fig.
5.11d). The “insert states” are in
diamond-shaped objects and rep-
resent insertions. For example, in
a multiple sequence alignment
some of the proteins might have
an inserted region of amino acids,
and these would be modeled by
insert states. The “deletion states”
(d1 to d5) represent gaps in the
alignment. (b) Pair hidden
Markov model (Pair-HMM) for
the alignment of sequences X and
Y having residues xi and yj. State
M corresponds to the alignment
between two amino acids; this
state emits two letters. State I corre-
sponds to a position in which a resi-
due xi is aligned to a gap, while
state J corresponds to an alignment
of yj to a gap. The logarithm of the
emission probability function P(xi ,
yj) at state M corresponds to a sub-
stitution scoring matrix. The tran-
sition penalties d and 1 define the
transition probabilities.

begin m1 m2 m3 m4 m5 end

i0 i1 i2 i3 i4 i5

d1 d2 d3 d4 d5

(a)

(b)

δ

1 - ε

1 - 2δ

δ
1 - ε

observed
sequences

H
H
H
H
H

A
I
G
A
G

M
R
K
E
A

S
K
K
K
T

V
V
V
L
V

emissions

ε
J

P(y )j

εI
P(x )

i

begin endP(x , y )
i j

M

HMMER is available at Q http://
hmmer.janelia.org/. It was written

by Sean Eddy. The program is

designed to run on UNIX or

MacOS platforms. We will discuss

how to create multiple sequence

alignments (used as an input to

HMMER) in Chapter 6. You can

obtain the two sets of vertebrate

and bacterial/fungal/vertebrate

globin sequences, as web docu-

ments 5.4 and 5.5 at Q http://
www.bioinfbook.org/chapter5.

The multiple sequence alignments

that we use as input to HMMER

are in web documents 5.6 and 5.7.
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Mac:/globins plab$ hmmbuild 01.hmm vertebrate_globins.fasta 
hmmbuild - build a hidden Markov model from an alignment
HMMER 2.3.2 (Oct 2003)
Copyright (C) 1992-2003 HHMI/Washington University School of Medicine
Freely distributed under the GNU General Public License (GPL)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Number of sequences: 10
Number of columns:   149

Determining effective sequence number    ... done. [2]
Weighting sequences heuristically        ... done.
Constructing model architecture          ... done.
Converting counts to probabilities       ... done.
Setting model name, etc.                 ... done. [vertebrate_abglobins]

Constructed a profile HMM (length 148)
Average score:      356.46 bits
Minimum score:      339.74 bits
Maximum score:      367.43 bits
Std. deviation:      11.40 bits

Finalizing model configuration           ... done.
Saving model to file                     ... done.

FIGURE 5.13. The HMMER pro-
gram can be used to create a profile
HMM using a multiple sequence
alignment as input. The program
was obtained from Q http://
hmmer.wustl.edu and downloaded
on a MacO/S X machine. Ten ver-
tebrate globin proteins were multi-
ply aligned with T-Coffee (see
Chapter 6) and entered into
HMMER. A profile HMM was
built with the hmmbuild program
(then in a separate step it is cali-
brated against a database of 5000
sequences to provide statistical
evaluations of the HMM). The
average score of the profile HMM
was 356 bits; bit scores vary accord-
ing to the sequences you input.

(a)
Scores for complete sequences (score includes all domains):
Sequence                         Description            Score    E-value  N 
--------                         -----------            -----    ------- ---
gi|4504349|ref|NP_000509.1|      beta globin [Homo sa   361.9     4e-105   1
gi|4504351|ref|NP_000510.1|      delta globin [Homo s   349.1   2.7e-101   1
gi|4504347|ref|NP_000549.1|      alpha 1 globin [Homo   336.8    1.3e-97   1
gi|4504345|ref|NP_000508.1|      alpha 2 globin [Homo   336.8    1.3e-97   1
gi|6715607|ref|NP_000175.1|      G-gamma globin [Homo   331.3    6.3e-96   1
gi|28302131|ref|NP_000550.2|     A-gamma globin [Homo   328.8    3.5e-95   1
gi|4885393|ref|NP_005321.1|      epsilon globin [Homo   328.8    3.7e-95   1
gi|4885397|ref|NP_005323.1|      zeta globin [Homo sa   247.3    1.2e-70   1
gi|4885395|ref|NP_005322.1|      theta 1 globin [Homo   233.6    1.7e-66   1
gi|51510893|ref|NP_001003938.1|  hemoglobin mu chain    184.5      1e-51   1
gi|19549331|ref|NP_599030.1|     cytoglobin [Homo sap    87.2    1.9e-22   1
gi|4885477|ref|NP_005359.1|      myoglobin [Homo sapi    55.4      7e-13   1
gi|44955888|ref|NP_976312.1|     myoglobin [Homo sapi    55.4      7e-13   1
gi|44955885|ref|NP_976311.1|     myoglobin [Homo sapi    55.4      7e-13   1
gi|10864065|ref|NP_067080.1|     neuroglobin [Homo sa    -0.8     0.0004   1
gi|48675813|ref|NP_038461.2|     transportin 2 (impor   -40.5        1.5   1

(b)

gi|4885477|ref|NP_005359.1|: domain 1 of 1, 1 to 148: score 55.4, E = 7e-13
                   *->vvLsaeeKsnvkglWgKvggnvdEvGaEALeRllvvYPwTkryFpsf
                      + Ls+ e ++v ++WgKv ++    G E L Rl+   P T   F+ f
  gi|4885477     1    MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKF 47   

                   GDLSsadAimGsaqVKaHGKKVldalaealkhlDdlkgtlakLSdLHadK
                     L s d +  s   K HG  Vl+al+  lk        +  L + Ha K
  gi|4885477    48 KHLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATK 97   

                   LrVDPvNFkLLgnvLlvvLAsHfpkdfTPavqAaldKflasVatvLahkY
                    ++      + +++++ vL s +p+df  ++q a +K l    + +a+ Y
  gi|4885477    98 HKIPVKYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNY 147  

                   r<-*
                   +   
  gi|4885477   148 K    148 

FIGURE 5.14. (a) The output of
a HMMER search against all
human RefSeq proteins includes a
variety of globins. Results vary
when the same database is searched
with different HMMs. (b) The
alignment of the HMM to myoglo-
bin has a significant E value.
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Profile HMMs are important because they provide a powerful way to search

databases for distantly related homologs. Thus HMM methods complement stan-

dard BLAST searching. Profile HMMs can define a protein or gene family, and data-

bases of profile HMMs are searchable. Practically, HMMs can be created using the

HMMER program. You can build a profile HMM with the hmmbuild program,

which reads a multiple sequence alignment as input (Fig. 5.13). We illustrate the

use of HMMER by selecting a group of vertebrate alpha and beta globin proteins

and aligning them to use as input. Separately, we use a group of highly divergent glo-

bins, including human, fungal, and bacterial proteins. By default, for each model that

is built, the resulting profile HMM is global with respect to the HMM and local with

respect to the sequences it matches in a database search. The HMM model does not

invoke Needleman–Wunsch (global) and Smith–Waterman (local) algorithms sep-

arately, but rather uses a model that has the properties of both (and has sometimes

been called “glocal”). You can adjust the sensitivity of a HMMer search by building

an HMM that is, for example, local with respect to both the sequence and the

HMM, thus focusing on local alignments rather than on complete domains.

Next, the hmmcalibrate program matches a set of 5000 random sequences to the

profile HMM, fits the scores to an extreme value distribution (EVD; Chapter 4), and

calculates the EVD parameters that are necessary to estimate the statistical signifi-

cance of database matches. The profile HMM can then be used to search a database

using the hmmsearch program.

When the profile HMM was built from a multiple sequence alignment of ver-

tebrate alpha and beta globins and used to search the human RefSeq database,

there were many database matches (Fig. 5.14a), including myoglobin, that we

FIGURE 5.15. The SAM program
generates linear HMMs for
sequence alignment. Human beta
globin protein sequence
(NP_000509) was submitted to
the SAM web server. The output
files included the graphic of the
HMM model structure created the
makelogo program. The y axis cor-
responds to the negative entropy in
bits of each match state. The rela-
tive frequencies of the amino acids
at each position are displayed
along the x axis. The overall
height of each amino acid residue
reflects the degree of conservation
at that position. Highly conserved
residues include a histidine at pos-
ition 64 that participates in coordi-
nation to the heme group.
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The full results of the HMMER

searches for (1) vertebrate, (2)

bacterial plus fungal, and (3) bac-

terial plus fungal plus vertebrate

globins are shown in web docu-

ments 5.8, 5.9, and 5.10 at

Q http://www.bioinfbook.org/
chapter5. The HMM match to

human myoglobin had a higher

score and lower E value in search

(3) than in (1). HMMer searches

are run locally. This search was

run against all human RefSeq

proteins. You can download NCBI

databases such as RefSeq by visit-

ing the file transfer protocol (FTP)

site from the home page of NCBI

or going directly to Q http://www.

ncbi.nlm.nih.gov/ftp/. Place the

downloaded database into the

same directory as your input

sequences for HMMER.
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could not detect with blastp (Fig. 5.14b). In contrast, when an alignment of bacterial

and fungal globins was used to generate a profile HMM, the output consisted of one

result with a nonsignficant expect value. Combining several human globins with the

bacterial and fungal globins in a multiple sequence alignment resulted in the creation

of an HMM that readily detected human globins. Thus, the profile HMM is a model

that is sensitive to the choice of sequences that are used as input for the multiple

sequence alignment.

As an alternative to HMMER, you can use the Sequence Alignment and

Modeling Software System (SAM). SAM includes a suite of tools that can train a

group of sequences and create a new model using a linear HMM to represent the

family. The target2k program allows you to input a single protein sequence to

create a model. We can submit human beta globin protein sequence as a query to

the SAM web server. The model structure can be viewed using makelogo

(Fig. 5.15) or drawmodel. Makelogo displays the negative entropy (in bits) of each

match state and the relative frequencies of the amino acids at each position. This

model is built with a target entropy weighting of 0.5 bits per column. An alternative

SAM output format shows an HMM architecture such as those in Fig. 5.12.

BLAST-LIKE ALIGNMENT TOOLS TO SEARCH GENOMIC

DNA RAPIDLY

As genomic DNA databases grow in size (Chapters 13 to 19), it becomes increasingly

common to search them using protein queries or DNA sequences corresponding to

expressed transcripts as queries. This is a specialized problem:

1. The genomic DNA includes both exons (regions corresponding to the coding

sequence) and introns (intervening, noncoding regions of genes). Ideally, an

alignment tool should find the exons in genomic DNA.

2. Genomic DNA often has sequencing errors that should be taken into

account.

3. We may want to compare genomic DNA between closely related organisms,

such as mouse and rat, or distantly related organisms (e.g., fish and

tomato). In any comparison, genomic changes may have occurred, such as

deletions, duplications, inversions, or translocations. Algorithms should

solve problems such as the alignment of 10 million base pairs containing a

1 million base pair inversion.

4. Algorithms are needed to find small differences between DNA sequences,

such as single-nucleotide polymorphisms (SNPs; Chapter 16).

Several BLAST-like algorithms have been written to address these needs. The

algorithms are available in programs that are useful for pairwise alignments and/or

searches of entire databases with a query. We will illustrate several of these programs

using a query of 50,000 base pairs from human chromosome 11p (the short arm of

chromosome 11). This region contains five globin genes (HBE1, HBD, HBB,

HBG2, and HBG1 corresponding to 1, d, b, g2, and g1 globins) and a beta globin

pseudogene (HBBP1). A convenient way to view this region of 50,000 base pairs is

to visit the UCSC Genome Browser.

SAM was developd by Richard

Hughey, Kevin Karplus, Anders

Krogh, and others at the

University of California, Santa

Cruz (UCSC). A SAM web server

is available at Q http://www.soe.

ucsc.edu/research/compbio/
SAM_T06/T06-query.html.

Documentation is available at

Q http://www.soe.ucsc.edu/
research/compbio/sam.html.

We will discuss exons and introns

in Chapters 8 (on gene

expression), and 16 (on the

eukaryotic chromosome).

The UCSC Genome Browser is

available at Q http://genome.

ucsc.edu. Set the genome to

human (May 2004 build), and

enter chr11:5,200,001-5,250,000

to specify the genomic position.

For an explanation of how to view

and obtain this in the UCSC

Genome Brower, see web docu-

ment 5.11 at Q http://www.

bioinfbook.org/chapter5. For

some software such as BLAT (see

below), the query cannot be

longer than 25,000 base pairs; files

with both 50 kilobase (kb) and 25

kb queries are available in web

documents 5.12 and 5.13.
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Benchmarking to Assess Genomic Alignment Performance
Throughout this book we will describe benchmark datasets that allow one to assess

the specificity and sensitivity of a method. We discussed this for PSI-BLAST

above. For the multiple sequence alignment of proteins (Chapter 6) several databases

contain information on the trusted members of homologous protein families based

on their three-dimensional crystal structures as rigorously determined by x-ray crys-

tallography. And in finding genes in genomic DNA (Chapter 16) we will describe the

EGASP project that provides a “gold standard” for assessing gene prediction soft-

ware. In the case of tools for the alignment of genomic DNA, often including large

regions of noncoding DNA, there are not experimentally derived databases of correct

alignments of large genomic regions. Nonetheless in each case sensitivity and speci-

ficity are evaluated. For example, Schwartz et al. (2003) compared human to mouse

genomic DNA using BLASTZ, finding that about 39% of the human and mouse

genomes could be aligned. Then they reversed the mouse sequence (without comple-

menting it), obtaining a mouse test set with the same size and compositional com-

plexity as the real mouse sequences; only 0.164% of the human sequence now

aligned to this reversed set.

A benchmark dataset for noncoding genomic DNA can be created using a strat-

egy of computational simulations rather than using experimentally obtained stan-

dards. Pollard et al. (2004a) examined noncoding DNA in the fruitfly Drosophila

melanogaster (a well-characterized genome that lacks many of the ancestral repeats

and lineage-specific transposition events found in vertebrates), assembling a group

of 10 kilobase fragments. They used the ROSE software package (Stoye et al.,

1998) to create a set of simulated sequences having a variety of insertions, deletions,

point substitutions, and interspersed blocks of constrained sequences, that is, vari-

ations in evolutionary rate estimated across a range of species divergence times.

They then tested the ability of eight pairwise genomic alignments tools, including

BLASTZ (Pollard et al., 2004b). They concluded that global alignment tools

(such as Lagan) have the highest overall sensitivity, while local alignment tools

(such as BLASTZ) more accurately align variable regions.

PatternHunter
Blastn uses a short seed, typically consisting of a word size of 11 consecutive nucleo-

tides. Exact matches are identified in a DNA database and then extended into longer

alignments (Chapter 4). PatternHunter (Ma et al., 2002) achieves improvements in

both speed and sensitivity by creatively using nonconsecutive letters as seeds. If we

denote 1 for a match and 0 for a mismatch, the blastn word (w ¼ 11) has a form

11111111111 (Fig. 5.16a). No mismatches are tolerated. For PatternHunter, the

pattern of its seed is 110100110010101111 (Fig. 5.16b). There are still 11 matches,

but they are distributed over a range of 18 nucleotide positions. If a query aligns with

a database entry having the sequence a mismatch corresponding to a 0 position,

which is ignored, an extension can still occur. The reason for the improved sensitivity

of a nonconsecutive mismatch becomes clear if we consider a particular region of

length 64 nucleotides having 70% identity, as described by Ma et al. (2002). For

blastn the probability of having at least one hit is 0.30, while for the nonconsecutive

seed model the probability is 0.466. This is illustrated in Fig. 5.16c, which shows

greater sensitivity for a given of amount similarity. Within some region of 64 nucleo-

tides, the consecutive seed model is disrupted for a mismatch across a group of adja-

cent seeds which all share a group of 1s. For the nonconsecutive seed model, the seed

The Pollard et al., data are avail-

able at Q http://rana.lbl.gov/
AlignmentBenchmarking/data.

html. ROSE is available at

Q http://bibiserv.techfak.uni-

bielefeld.de/rose/.

Other implementations of

PatternHunter use slightlydifferent

models such as

111010010100110111.

PatternHunter software is available

commercially at Q http://www.

bioinformaticssolutions.com.
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matches occur at different positions, helping to increase sensitivity. This occurs

because fewer bases are shared between neighboring seed matches, making the

matches more independent than for a consecutive seed strategy.

The innovative approach to seed models introduced by Ma et al. (2002) has been

adopted by other homology search algorithms, including BLASTZ and Megablast,

discussed below.

BLASTZ
BLASTZ was developed to align human and mouse genomic DNA sequences based

on modifications of the gapped BLAST program (Schwartz et al., 2003). It is useful

for comparing long genomic sequences from a variety of organisms. Like gapped

BLAST, it searches for short near-exact matches, extends them without allowing

gaps, and then performs further extensions using dynamic programming.

BLASTZ occurs as follows (Schwartz et al., 2003):

1. Lineage-specific interspersed repeats (further described in Chapter 16)

are removed from both sequences. Also, to improve its execution

speed, when one region of the human genome aligns to multiple regions of

the mouse genome, that human segment is dynamically masked. This
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110100110010101111

11111111111

1111111111

11111111111
ATGGTGCATCT (example of a seed)(extended)
ATTGTGCATCT (example of a mismatch)(not extended)

110100110010101111
ATGGTGCATCTGACTCCT (example of a seed)(extended)
ATTGTGCATCTGACTCCT (example of an acceptable match)(extended)

(a)

(b)

(c)

FIGURE 5.16. Nonconsecutive
seeds in PatternHunter improve its
sensitivity in database searches. (a)
In a typical blastn search with a
word size of 11, the matching
nucleotides occur consecutively
and may be represented with a
series of 1s. An example of a seed
from a database query is shown; if
the database target has a single
nucleotide substitution, there is no
perfect match and an extension
does not occur. (b) The Ma et al.
(2005) approach uses nonconsecu-
tive letters as seeds. The values 1
correspond to matches, while the 0
positions are ignored. For some
nucleotide mismatches, as shown
here, the seed nonetheless matches
successfully and extension occurs.
(c) A plot of similarity versus sensi-
tivity for the consecutive model
with 10 letters (black line), 11
letters (black dotted line), or the
spaced model having 11 matches
(red line). The sensitivity is higher
over a range of similarities for the
nonconsecutive seed approach.
Adapted from Ma et al. (2005).
Used with permission.
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was helpful in processing regions of the mouse genome that have a large

number of highly related genes (e.g., zinc finger genes or olfactory

receptor genes).

2. Matches are identified using a word size of 12 (either identically matching or

allowing one transition), and are extended without allowing gaps. When the

score exceeds some threshold, extensions are repeated with gaps allowed.

Following the innovation introduced in PatternHunter, BLASTZ uses

a seed of 12 matches in 19 consecutive positions having the string

1110100110010101111.

3. Step (2) is repeated for regions adjacent to successful alignments using a lower

(more sensitive) word size, such as 7.

BLASTZ was used to align the mouse genome (2.5 billion bases or gigabases

[Gb]) with the human genome (2.8 Gb of sequence) (Schwartz et al., 2003). To

accomplish this, the human genome was divided into �3000 segments of about

1 megabase (1 Mb) each, while the mouse genome was divided into �100 segments

of 30 Mb. BLASTZ alignments between a variety of species are represented as tracks

on the UCSC Genome Browser. For the 50,000 base pairs containing the human

HBB region, an example of the features one can view are as follows (Fig. 5.17): (1)

the chromosome band (11p15.4); (2) the genes in the region (HBB, HBD,

HBG1, HBE1); (3) a vertebrate conservation track, showing in particular high-

scoring regions of conservation across multiple species at the location of the

globin genes (and in some noncoding regions having regulatory functions); (4)

mouse chains, showing the regions aligned well by BLASTZ; and (5) mouse nets,

showing a summary of the best-scoring chains. By clicking on the chains or nets

you can access the pairwise sequence alignments. In this example, there are 380

distinct blocks of aligned genomic DNA sequence, separated by regions that could

not be reliably aligned.

BLASTZ has been employed for various projects, including an analysis of

13 million base pairs of DNA from the extinct woolly mammoth (Mammuthus

primigenius) to the modern African elephant (Loxodonta africana) (Poinar et al.,

2006) and an analysis of transcription units on human chromosome 22 (Lipovich

and King, 2006). The BLASTZ program is available for local use. An alignment

of 25,000 nucleotides of human chromosome 11, including a portion of the beta

globin locus, to the corresponding region of the rhesus monkey (Macaca mulatta)

is shown in Fig. 5.18.

MegaBLAST and Discontiguous MegaBLAST
MegaBLAST is an NCBI program optimized for the rapid alignment of very large

DNA queries (Zhang et al., 2000). The program offers a default word size of 28

(and can accommodate a word size as large as 64), in contrast to the default word

size of 11 for blastn. This greatly increases the speed of MegaBLAST, since the

word size corresponds to the minimal length of an exact match required to initiate

an extension. Blastn, with its smaller word size, is more sensitive but slower. For

MegaBLAST you can also specify the percent identity threshold to be reported

(e.g., only alignments sharing values such as 99%, 90%, or 80% identity) as well

as the corresponding match and mismatch scores. For example, for sequences shar-

ing 95% to 99% identity, a match score of þ1 and mismatch of 23 is applied; for

alignments sharing 85% or 90% identity the mismatch score is instead set to 22.

Transitions are substitutions

between the purines (the nucleo-

tides A$G) and between the

pyrimidines (C $T).

Transversions are substitutions

between purines and pyrimidines

(A$C, A$T, G$C, or G$T).

Transitions occur more com-

monly than transversions (see

Chapter 7).

You can obtain BLASTZ at Webb

Miller’s web site at Pennsylvania

State University, Q http://www.

bx.psu.edu/miller_lab/. The laj

interactive viewer (used to create

Fig. 5.18) is also available at that

site. For a text file containing

20,000 base pairs of Macaca

mulatta chromosome 14 sequence

that you can use to align to the

human beta globin region, see web

document 5.14 at Q http://www.

bioinfbook.org/chapter5. That

region is chr14:68,158,001-

68,177,377 at the UCSC Genome

Browser (Q http://genome.ucsc.

edu, January 2006 Rhesus build).
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Non-affine gapping parameters are used: the gap opening penalty is 0 (thus causing

MegaBLAST to have alignments with more gaps but with the benefit of enhanced

speed), and the gap extension penalty is based on the selected match and

mismatch scores.

Discontiguous MegaBLAST is a related algorithm at NCBI that is designed to

align more distantly related genomic sequences. It employs a “discontiguous

word” strategy of Ma et al. (2002) described for PatternHunter. It is useful for com-

paring relatively divergent sequences (e.g., from different organisms).

We can demonstrate the use of MegaBLAST selecting as a query 50,000 base

pairs of DNA from the short arm of human chromosome 11, and selecting an orang-

utan (Pongo pygmaeus) nonredundant nucleotide collection (abbreviated nr/nt). This

query region contains five globin genes (HBE1, HBD, HBB, HBG2, HBG1) and a

beta globin pseudogene (HBBP1). Using the default settings of MegaBLAST (word

size 28, match score þ1, mismatch score 22, and gap opening and extension penal-

ties zero), we find matches ranging from about 80% to 97% nucleotide identity to the

human genomic DNA query (Fig. 5.19).

FIGURE 5.17. Precomputed alignments of genomic sequence, aligned by BLASTZ, can be visu-
alized using the UCSC Genome Browser. The genome browser is set to the May 2004 assembly of
the human genome, and 50,000 base pairs on chromosome 11p are displayed. The tracks include
the following: (1) base pair positions; (2) the chromosome band (11p15.4); (3) RefSeq genes in
this region (there are five); (4) vertebrate multiz alignment and conservation (precomputed
BLASTZ results showing an overall conservation score as well as alignments from human to
mouse, rat, dog, opossum, chicken, frog, and fish); (5) mouse chained alignments, showing
BLASTZ alignment results; and (6) Mouse Alignment Net showing a summary of the high-
est-scoring alignments between mouse and human genomic DNA using BLASTZ. Note that
the UCSC Genome Browser annotation tracks can be interactively added or removed, and infor-
mation can be displayed in a more or less compressed form. Here it is evident that the most highly
conserved segments in this 50 kilobase region correspond to the five globin genes, while intergenic
regions tend to be less well conserved.

BLAST-LIKE ALIGNMENT TOOLS TO SEARCH GENOMIC DNA RAPIDLY 165



BLAT
BLAT is designed to perform extremely rapid genomic DNA searches (Kent, 2002).

Like SSAHA, the BLATalgorithm is in some ways a mirror image of BLAST. BLAST

parses a query sequence into words and then searches a database with words above a

threshold score. Two proximal hits are extended. BLAT parses an entire genomic

DNA database into an index of words. These words consist of all nonoverlapping

11-mers in the genome (excluding repetitive DNA sequences). BLAT then searches

a query using words from the database.

FIGURE 5.18. BLASTZ alignment of genomic DNA. BLASTZ was installed on a MacO/S and
used to align 23,000 base pairs of genomic DNA from the human beta globin locus on chromo-
some 11 with 20,000 base pairs of genomic DNA from rhesus monkey (Macaca mulatta)
chromosome 14. The alignment was visualized using Laj software. The alignment proceeds
along the top strand of the human sequence (x axis) and the bottom strand of the monkey
sequence (y axis) along a diagonal (beginning at arrow 1 and proceeding to arrow 6). Gaps
are evident (e.g., arrow 2), as well as two inverted repeats (arrows 3 and 5). The cursor is
placed on one inverted repeat (see circle at arrow 3); the graphic directly below confirms that
the selected region is duplicated. The bottom-most panel shows the nucleotide alignment in the
region indicated by arrow 3. It proceeds from nucleotides 14,806 to 15,027 along the human
sequence (i.e., along the top strand), and from nucleotides 5601 to 5821 of the monkey sequence
(i.e., also along the top strand). Most of the monkey sequence aligns to human along the bottom
strand (from nucleotide 46 at arrow 6 to nucleotide 19,956 at arrow 1), showing that the repeats
at arrows 3 and 5 are indeed inverted.
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BLAToffers a variety of additional features (Kent, 2002):

† While BLAST triggers an extension with two hits, BLAT triggers extensions

on multiple strong hits.

† BLAT is designed to find matches between queries that share 95% nucleotide

identity or more. While it is in some ways similar to the Megablast, Sim4, and

SSAHA programs, it is orders of magnitude faster.

† BLAT searches for intron–exon boundaries, essentially building a model of a

gene structure. It only uses each nucleotide derived from an mRNA query

once (as is appropriate from a biological perspective), rather than searching

only for highest scoring segment pairs.

An example of a BLAT search using human beta globin protein as a query is

shown in Fig. 5.20. Human genomic DNA is translated in six frames, and the best

match is to the HBB gene on chromosome 11 that encodes the HBB protein. By

adjusting the coordinates on the genome browser to display 50,000 base pairs in

the beta globin locus region, we can see that the BLAT search resulted in matches

to genes encoding other globin proteins as well.

FIGURE 5.19. Megablast is an
NCBI tool specialized for rapidly
searching long DNA queries
against genomic DNA databases.

FIGURE 5.20. The BLAST-Like
Tool (BLAT) at the UCSC
Genome Bioinformatics website.
(a) DNA or protein sequence can
be pasted or uploaded from a text
file. The output settings include a
hyperlink option to access the
Genome Browser view. (b) The
Browser view includes a custom
track (“Your Sequence from
BLAT Search”) which shows a
series of matches to five globin
genes (HBB, HBD, HBG1,
HBG2, HBE1) in a 50,000 base
pair segment of human chromo-
some 11. The genomic location is
indicated as well as the cytoband.

BLAT is accessible on the web at

Q http://genome.ucsc.edu. This

is one of the main human genome

browsers, introduced in Chapter 2.

We will explore it in Chapter 16.
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LAGAN
LAGAN (Limited Area Global Alignment of Nucleotides) is a pairwise alignment

tool for genomic DNA (Brudno et al., 2003). We discuss its companion Multi-

LAGAN in Chapter 6 (multiple sequence alignment). LAGAN creates a global pair-

wise alignment (Fig. 5.21a) in three steps. First, it generates local alignment between

two sequences, thus identifying a set of anchors (Fig. 5.21b). This strategy permits

the matching of multiple short inexact words rather than long, exact words.

Second, LAGAN creates a rough global map consisting of a maximally scoring

ordered subset of the alignments (anchors) (Fig. 5.21c). Third, it computes a final

global alignment, restricting the operation to the limited area defined by the rough

map (Fig. 5.21d). This focused search strategy avoids the inefficiency of performing

a global alignment with the Needleman–Wunsch algorithm on the two input

sequences.

SSAHA
Sequence Search and Alignment by Hashing Algorithm, abbreviated SSAHA, is

designed to search large DNA databases very rapidly (Ning et al., 2001). The

SSAHA converts a DNA database into a hash table, which can then be searched

quickly for matches.

(a) (b)

(c) (d)
▼

▼

▼

▼

FIGURE 5.21. The LAGAN algorithm for pairwise alignment of genomic DNA sequences. (a)
LAGAN uses a combined local/global strategy to produce a global alignment of two sequences.
The x and y axes correspond to the physical position (e.g., chromosomal coordinates) of two DNA
queries. (b) A local alignment search strategy identifies conserved regions (solid downward-slant-
ing lines). Note that an inversion in one of the sequences would be represented by a line having a
positive slope. (c) Locally aligned segments are joined in chains. Anchors, or maximally scoring
ordered subsets of locally aligned regions, are identified and joined to create a rough global map.
(d) LAGAN computes an optimal alignment within the boxed areas, ignoring the hatched
regions. Adapted from Brudno et al. (2003). Used with permission.

SSAHA is available at the

Ensembl web server (Q http://
www.ensembl.org). The SSAHA

home page is Q http://www.

sanger.ac.uk/Software/analysis/
SSAHA/. A hash table contains

data (e.g., a list of words having a

length of 14 nucleotides in a DNA

database) and associated infor-

mation (e.g., the positions in

genomic DNA of each of those

words).

168 ADVANCED DATABASE SEARCHING



SIM4
Sim4 uses a BLAST-like algorithm to determine high-scoring segment pairs (HSPs;

Chapter 4) and to extend them in both directions (Florea et al., 1998). A dynamic pro-

gramming algorithm identifies a chain of HSPs that could represent a gene. For

example, the program searches for potential splice signals at exon–intron boundaries.

USING BLAST FOR GENE DISCOVERY

A common problem in biology is finding a new gene. Traditionally, genes and pro-

teins were identified using the techniques of molecular biology and biochemistry.

Complementary DNAs were cloned from libraries, or proteins were purified then

sequenced based on some biochemical criteria such as enzymatic activity. Such

experimental biology approaches will always remain essential. Bioinformatics

approaches can also be useful to provide evidence for the existence of new genes.

For our purposes a “new” gene refers to the discovery of some DNA sequence in a

database that is not annotated (described). You may want to find new genes for

many reasons:

† You want to study a globin or lipocalin that no one has characterized before,

perhaps in a specific organism of interest such as a plant or archaeon.

† You are interested in the lipocalins, and you see that one has been described in

the tears of hamsters. Could there be a new, undiscovered gene that encodes a

lipocalin protein expressed in human tears? (At present, there is one!)

† You want to know if bacteria have globins or lipocalins. If so, this might give

you insight into the evolution of these families of carrier proteins.

† You study diseases in which sugars are not processed properly, and as part of

this research, you study sugar transport in cell lines from some organism. You

know that glucose transporters have been characterized by biochemical assays

(e.g., sugar uptake). You also know that there is a family of glucose transporter

genes (and proteins) that have been deposited in GenBank. You cloned all the

known transporters, expressed them in cells, and found that none of the

recombinant proteins transports your sugar. You hypothesize that there

must be at least one more transporter that has not yet been described. Is

there a way to search the database to find genes encoding novel transporters?

† You are studying the HIV pol protein, in particular its reverse transcriptase

domain. You would like to identify an example of this domain in a eukaryotic

protein. However, rather than studying a known eukaryotic protein with this

motif, you would like to study a novel one that has never been characterized.

A general strategy to solve any of these problems is presented in Fig. 5.22. I have

called this the “find-a-gene” project and have used it as a teaching exercise since the

year 2000. All 500 students who attempted it completed it successfully. Each student

summarizes the results in a word document. The steps are as follows.

(1) Choose a protein you are interested in. Include the species and the accession

number. As an example, we will select human beta globin (NP_000509).

(2) Perform a tblastn search against a DNA database consisting of genomic DNA or

ESTs. The BLAST server can be at NCBI or elsewhere. Include the output of that

BLAST search in your document.

You can access sim4 through a

server at Q http://pbil.univ-lyon1.

fr/sim4.php. Alternatively, you

can download the program from a

website of the sim4 authors

(including Webb Miller at

Pennsylvania State University) at

Q http://globin.cse.psu.edu/.

The “find-a-gene project” is

summarized at web document

5.15. The beta globin “find-a-

gene project” described here is

available as web document 5.16

(Q http://www.bioinfbook.org/
chapter5).
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On the BLAST results, clearly indicate a match that represents a protein

sequence, encoded from some DNA sequence, that is homologous to your query

protein. It is important to be able to inspect the pairwise alignment you have selected,

including the E value and score. In general, this step is the most difficult for students

because it requires you to have a “feel” for how to interpret BLAST results. You need

to distinguish between a perfect match to your query (i.e., a sequence that is not

“novel”), a near match (something that might be “novel,” depending on the results

of step [4] below), and a nonhomologous result.

Perform a tblastn search of expressed sequence tags (ESTs) restricted to plants

(“Viridiplantae (taxid:33090)”). We introduce ESTs in Chapter 8; they are short

fragments of DNA (typically up to 800 base pairs) corresponding to genes that

have been expressed in a particular organism in some region and at some time of

development. For example, libraries of ESTs are available from human fetal liver

or adult mouse brain. By restricting the output to plant ESTs, we find many matches

with significant E values. One, shown in Fig. 5.23, is EST DT731130, an 878 base

pair clone from Aquilegia formosa � Aquilegia pubescens (a hybrid eudicot from the

genus known as columbine). This plant EST encodes a protein that shares 22%

amino acid identity with human beta globin, with an E value of 0.20. We will next

pursue the possibility that this plant protein is “novel” in the sense that it has

never been annotated as a globin.

(3) Gather information about this “novel” protein. At a minimum, identify the

protein sequence of the “novel” protein as displayed in the BLAST results from

step (2). In some cases, you will be able to do further BLAST searches to obtain

even more sequence of your novel gene.

Here, propose a name of the novel protein (e.g., “columbine globin”), and the

species from which it derives. It is very unlikely (but still definitely possible) that

Start with the sequence
of a known protein

tblastn Search a DNA database (e.g. HTGS, 
dbEST, or genomic sequence 
from a specific organism)

Inspect the output

Find matches...
[1] to DNA encoding known 
     proteins (not novel)
[2] to DNA encoding related 
     proteins (novel!)
[3] to false positives

blastx or
blastp nr

Search your DNA or protein
against a protein database (nr)
to confirm you have
identified a novel gene

FIGURE 5.22. How to discover a novel gene by BLAST searching. Begin with the sequence of a
known protein such as human beta globin. Perform a tblastn search of a DNA database. It is
unlikely that there are many “novel” genes in the well-characterized genomes of organisms
such as human, yeast, or E. coli. Thus, it may be helpful to search databases of organisms that
are poorly characterized or not fully annotated. The tblastn search may result in two types of
significant matches: (1) matches of your query to known proteins that are already annotated
and (2) homologous proteins that have not yet been annotated (“novel” genes and corresponding
novel proteins). (3) The DNA sequence corresponding to the putative novel gene may be searched
using the blastx algorithm against the nonredundant (nr) database. This may confirm that the
DNA does indeed encode a protein that has no perfect match to any described protein.

If appropriate, change the font to

Courier size 10 so that the results

are displayed neatly. You can also

screen capture a BLASToutput. It

is not necessary to print out all of

the blast results if there are many

pages.
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you will find a novel gene from an organism such as S. cerevisiae, human or mouse,

because those genomes have already been thoroughly annotated. It is more likely

that you will discover a new gene in a genome that is currently being sequenced,

such as bacteria or primates or protozoa.

(4) Demonstrate that this gene, and its corresponding protein, are novel. For the pur-

poses of this project, “novel” is defined as follows. Use the DNA sequence of the EST

and perform a blastx query against the nonredundant (nr) database. The best match

is not to an Aquilegia protein, and thus this DNA sequence does indeed encode a

novel globin. As an alternative strategy, take the encoded Aquilegia protein sequence

(step [3]), and use it as a query in a blastp search of the nonredundant (nr) database

at NCBI.

† If there is a match with 100% amino acid identity to a protein in the database,

from the same species, then your protein is NOT novel (even if the match is to

a protein with a name such as “unknown”). Someone has already found and

annotated this sequence, and assigned it an accession number.

† If the best match is to a protein with less than 100% identity to your query,

then it is likely that your protein is novel, and you have succeeded.

† If there is a match with 100% identity, but to a different species than the one

you started with, then you have succeeded in finding a novel gene.

† If there are no database matches to the original query from step (1), this

indicates that you have found a DNA/protein that is not homologous to the

original query. You should start over.

FIGURE 5.23. The find-a-gene pro-
ject was performed using human
beta globin (NP_000509) as a
query and searching a database of
expressed sequence tags (ESTs)
restricted to plants. (a) The matches
included one to an EST from
Aquilegia formosa � Aquilegia pub-
escens (a hybrid eudicot) (Gen-
Bank accession DT731130). (b)
Using this accession as a query, a
blastx nr search revealed matches to
known beta globins. The best
match, shown here, was to nonsym-
biotic hemoglobin 2 from the thale
cress Arabidopsis thaliana.
However, since there was not a
match to an Aquilegia globin, this
suggests that the find-a-gene project
resulted in the identification of a
DNA sequence that encodes a pre-
viously undescribed plant globin.
One can then proceed to characterize
this novel globin in terms of its full-
length sequence, homologs, evolution,
structure, and function.
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There are several further steps for this project, involving themes we will cover in

later chapters. (5) Generate a multiple sequence alignment with your novel protein,

your original query protein, and a group of other members of this family. A typical

number of proteins to use in a multiple sequence alignment is a minimum of 5 or

10 and a reasonable maximum is 30. We will describe multiple sequence alignment

in Chapter 6. (6) Create a phylogenetic tree, using a method such as neighbor-join-

ing, maximum parsimony, maximum likelihood, or Bayesian inference (see Chapter

7). Bootstrapping and tree rooting are optional. Use any program such as MEGA,

PAUP, Phylip, or MrBayes. (7) Predict the secondary and tertiary structure of your

novel protein (see Chapter 11), and compare it to that of a known structure.

(8) Determine whether this gene is under positive or negative evolutionary selection

(see Chapter 7). (9) Discuss the significance of your novel gene. What have you

learned about this gene/protein family?

The main benefits of the find-a-gene project as a teaching tool are that (1) it

requires you to know when and how to use the main family of BLAST programs

(e.g., tblastn, blastx); (2) it allows you to become familiar with a variety of searchable

databases (e.g., EST, genomic DNA, and nonredundant); and (3) it requires you to

interpret different kinds of BLAST output. For many initial tblastn searches with a

FIGURE 5.24. The find-a-gene project was performed beginning with human myoglobin
(NP_005359) as a query, performing a tblastn search against the database of whole genome
shotgun sequences (WGS) and restricting the search to plants. (a) One of the pairwise align-
ments is to a rice clone (accession AAAA02036297) of about 20,000 base pairs. It encodes a
protein that matches human myoglobin. Although the E value (0.58) is unconvincing, this
still could represent a rice myoglobin. (b) Performing a blastp search against the nonredundant
database using the putative rice myoglobin as query, matches to many known myoglobins are
evident, including the two best matches shown here to proteins from Didelphis virginiana
(North American opossum) and Zalophus californianus (California sealion). However, rice
myoglobin is not present in the nr database, suggesting that we have identified a novel myoglobin
in rice. Indeed, a blastp search using human myoglobin as a query results in no significant
matches in plants, although there is a match to a rice protein (NP_001056053) having a hemo-
globin domain. That rice protein has no significant similarity to the protein predicted to be
encoded by the 20,000 base pair WGS clone.
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protein query of interest, it is easy to find “novel” genes; for some cases it is not easy to

find new genes, perhaps because relevant homologs do not exist, or because the appro-

priate database is not searched. One can begin again with a different protein query.

In the example above we used human beta globin as a query of an EST database

restricted to plants. As a related example, search human myoglobin against whole

genome shotgun (WGS) reads of genomic DNA. Restrict the output to the

Viridiplantae (plants). One of the output results is to a rice (Oryza sativa) clone of

over 20,000 base pairs (Fig. 5.24a). This clone encodes a protein fragment of 56 resi-

dues that shares 35% identity with human myoglobin. In our earlier example in step

(4) we used blastx of the nonredundant database to determine whether this match

corresponds to a novel globin. In the case of this rice WGS clone, a blastx search

would yield hundreds of irrelevant matches to proteins encoded by various parts of

the 20,000 base pairs of DNA. A better strategy is to select the predicted protein

sequence and perform a blastp search against the nr database. The best matches

are to myoglobins from the opossum (Didelphis virginiana) and California sea lion

(Zalophus californianus), but not to a previously reported rice globin (Fig. 5.24b).

Thus, we have indeed identified a novel myoglobin from rice. This example typifies

how the find-a-gene project may depend on choosing blastp, blastx, or other pro-

grams to evaluate potential homologs.

PERSPECTIVE

While BLAST searching has emerged as a fundamental tool for studying proteins and

genes (Chapter 4), many specialized BLASTapplications have also been developed.

These applications include variant algorithms (such as the PSSM of PSI-BLASTand

the hidden Markov models of HMMER and SAM) and specialized databases (such

as a variety of organism-specific databases). PSI-BLAST has been used extensively to

characterize proteins encoded by complete genomes (Chapters 14 to 19). PSI-

BLAST can only be successfully applied to cases in which a blastp search results in

at least some statistically significant result.

The exponential rise in DNA sequence data (Fig. 2.1) presents us with massive

amounts of information about genes and proteins. BLAST searching is a fun-

damental tool for searching these databases. A BLAST search is often more definitive

than a literature search for answering questions about protein or gene families across

the tree of life. In this chapter, we described several ways to use alternative BLAST

databases and alternative BLAST algorithms to perform database searches. These

tools will continue to be fundamentally important to biology for many years to

come, especially as the pace of genomic sequencing continues to accelerate.

Currently, a blastp search using human beta globin as a query fails to identify

human myoglobin as a significant match. In contrast, using PSI-BLAST or

HMMer myoglobin is easily detected. This highlights the need for position-specific

scoring matrices as well as databases built upon HMMs. We will highlight one such

database, Pfam, in Chapters 6 and 10.

PITFALLS

As with any bioinformatics problem, it is essential to define the purpose of a database

search. What are you trying to accomplish? Once you have decided this, you can select

the appropriate database and search algorithm.

We will discuss WGS in Chapter

13. To restrict a BLAST search to

plants, enter “Viridiplantae

(taxid:33090)” in the organism

box; by entering the first two

letters (“vi”) in the box, a pull-

down menu allows you to select

this taxonomy identifier.
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For PSI-BLAST, the biggest problem is obtaining false positives. Once a spur-

ious sequence has been detected that is better than some expect value cutoff, it

will be included in the PSSM for the next iteration. This iteration will almost cer-

tainly find the spurious sequence again and will probably expand the number of data-

base matches. To avoid this problem:

† Inspect the results for apparently spurious database matches. If you see them,

remove such spurious matches by deselecting them.

† Adjust the expect value as appropriate.

† Perform “reverse” searches in which you evaluate a potentially spurious PSI-

BLAST result by using that sequence as a query in a BLAST search.

† Further evaluate a marginal database match by performing pairwise sequence

alignment as described in Chapter 3.

HMMer is likely to be more sensitive than PSI-BLAST. However, it is slower,

it is not web-based (although queries can be sent to the Pfam web server and

other servers that employ databases of HMMs), and it requires that the user perform

iterations to calibrate an HMM. As with PSI-BLAST, corruption is a potential

problem.

For PHI-BLAST, the most common problem encountered is that new users do

not have a feel for the rules involved in creating a PHI-BLAST pattern. The best

approach is to practice using a variety of signatures.

WEB RESOURCES

DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

We have described different kinds of BLAST and related search

tools, including organism-specific databases for BLAST search-

ing, BLAST sites that focus on specialized molecules, and

alternative algorithms for database searching, including PSI-

BLAST, HMMER, MEGABLAST, BLAT. Links to these

resources are provided at Q http://www.bioinfbook.org/chapter5.

[5-1] BLAT is an extremely fast, accurate program. Why will it not

replace BLAST or at least become as commonly used as

BLAST? Is it applicable to protein searches?

[5-2] In the original implementation of PSI-BLAST, the algor-

ithm performed a multiple sequence alignment and deleted

all but one copy of aligned sequence segments having �98%

identity (Altschul et al., 1997). In a recent modification, the

program now purges segments having �94% identity. What

do you think would happen if this percentage were adjusted

to �75%? How could you test this idea in practice?

[5-1] Create an artificial protein sequence consisting of human RBP4

followed by the C2 domain of human protein kinase Ca. Enter

this combined sequence into a PSI-BLAST search. The result

is shown in Fig. 5.21. In general, are multiple domains always

detected by the PSI-BLAST program? Do any naturally occur-

ring proteins have both lipocalin and C2 domains?

[5-2] The malarium parasite Plasmodium vivax has a multigene family

called vir that is specific to that organism (del Portillo et al.,

2001). There are 600 to 1000 copies of these genes, and they

may have a role in causing chronic infection through antigenic

variation. Select vir1 and perform a blastp search of the nonre-

dundant database. Then perform a PSI-BLAST search with

the same entry.

(a) In an initial search, approximately how many proteins have an

E value less than 0.002, and how many have a score greater

than 0.002?

(b) What is the score of the best new sequence that is added

between the first iteration and the second iteration of PSI-

BLAST?
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SELF-TEST QUIZ

[5-1] A PSI-BLAST search is most useful when you want to do the

following:

(a) Find the rat ortholog of a human protein

(b) Extend a database search to find additional proteins

(c) Extend a database search to find additional DNA sequences

(d) Use a pattern or signature to extend a protein search

[5-2] Which of the following BLAST programs uses a signature of

amino acids to find proteins within a family?

(a) PSI-BLAST

(b) PHI-BLAST

(c) MS BLAST

(d) WormBLAST

[5-3] In a position-specific scoring matrix, the column headings can

have the 20 amino acids, and the rows can represent the residues

of a query sequence. Within the matrix, the score for any given

amino acid residue is assigned based on:

(a) A PAM or BLOSUM matrix

(b) Its frequency of occurrence in a multiple sequence

alignment

(c) Its background frequency of occurrence

(d) The score of its neighboring amino acids

[5-4] As part of a PSI-BLAST search, a score is assigned to an align-

ment between a query sequence and a database match over some

length (such as 50 amino acid residues). It is possible for this

pairwise alignment to receive a higher or lower score over succes-

sive PSI-BLAST iterations, even though there is no change in

which amino acid residues are aligned.

(a) True

(b) False

[5-5] A position-specific scoring matrix is said to be “corrupted” when

it incorporates a spurious sequence (i.e., a false positive result).

Which of the following choices is the best way to reduce

corruption?

(a) Lower the E value

(b) Remove filtering

(c) Use a shorter query

(d) Run fewer iterations

[5-6] What is the main advantage of employing reverse position-

specific BLAST?

(a) Reversing a query and/or a set of database sequences

provides a set of null alignments from which the statistical

significance of a PSI-BLAST search can be estimated.

(b) This method precomputes a large collection of position-

specific scoring matrices, allowing a query to be rapidly

assigned to a protein family.

(c) This method allows critical conserved residues in the query

sequence to be identified.

(d) This method facilitates the comparison of multiple position-

specific scoring matrices.

[5-7] What capability does a profile hidden Markov model (HMM)

offer that PSI-BLAST does not offer for protein queries?

(a) A profile HMM can model the likelihood of insertions and

deletions in aligned residues.

(b) A profile HMM can identify distantly related homologs that

are not identified by standard blast searching.

(c) A profile HMM can estimate the probability of achieving

particular scores for aligned residues across the length of a

multiple sequence alignment.

(d) A profile HMM can model both protein relationships that

are either conserved or distant.

[5-8] Why do algorithms used to align genomic DNA (such as

PatternHunter, BLASTZ, and Megablast) use nonconsecutive

letters as seeds, rather than the conventional word size (such

[5-3] Are there globins in fungi? Perform a PSI-BLAST search using

human beta globin (NP_000509) as a query, restricting the

output to sequences from fungi (taxid:4751) in the nr database.

What is the approximate range of lengths of fungal proteins

having globin domains? What non-globin domains are often pre-

sent in fungal globins? Does the presence of these unrelated

domains lead to corruption? Why or why not? In the first iter-

ation there are several hits (with the E values below the 0.005

threshold). After several more iterations there are many dozens

of hits, including flavohemoproteins, that include a globin

domain. These fungal proteins have globin domains that are

more related to bacterial than vertebrate orthologs. Most of the

fungal flavohemoproteins are quite long (over 400 amino acids

and sometimes about 1000 amino acids long), having multiple

domains. However, only the globin domain is used for the con-

tinued PSI-BLAST iterations.

[5-4] We previously performed a series of BLAST searches using HIV-1

pol as a query (NP_057849). Perform a blastp search using this

query. Look at the taxonomy report to see which viruses match

this query. Next, repeat the search using several iterations of

PSI-BLAST. Compare this taxonomy report to that of the

blastp search. What do you observe? Are there any nonviral

sequences detected in the PSI-BLAST search? Did you

expect to find any?

[5-5] Explore PHI-BLAST using human RBP4 (NP_006735) as a

query, restricting the output to bacteria and the RefSeq data-

base. Use the PHI pattern GXW[YF]X[VILMAFY]A[RKH].

Perform this search, and save the results. Then repeat the

search using the PHI pattern GXW[YF][EA][IVLM]. How do

the results differ? Select one protein that appears as a bacterial

protein in a pairwise alignment with the human RBP4 query;

what are the E values, and why do they differ?
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as a word size of 11 exactly matching nucleotides) employed by

blastn?

(a) This novel strategy improves specificity because longer seed

lengths (such as those typically found in genomic DNA) are

matched more efficiently.

(b) This novel strategy improves sensitivity by not tolerating any

mismatches within the seed region.

(c) This novel strategy relies on a longer word size to match

query sequences far more rapidly than is possible for shorter

seeds.

(d) This novel strategy improves both speed and sensitivity by

tolerating mismatches within a seed region.

[5-9] How does BLAT differ from BLAST?

(a) BLAT includes both global and local alignment.

(b) BLATemploys a database that is parsed into a set of words

that are matched to the DNA query.

(c) BLAT only identifies genomic regions that exactly match a

query sequence.

(d) BLAT cannot accept a protein sequence as a query.
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(a)

(b)

As the linear amino acid sequences of proteins were determined in the 1950s and 1960s, it became of obvious interest to try to align

them. (a) Hans Tuppy (1958, p. 71) described the alignment of cytochromes c from Rind (beef), Pferd (horse), Schwein (pig),

Lachs (salmon), Huhn (chicken), Seiden-spinner (silkworm), and Hefe (yeast). This alignment showed that even though gaps

had to be introduced, protein sequences from organisms as distantly related as mammals and yeast could still be aligned. (b) Tuppy

(1958, p. 73) also described an alignment of insulin amino acid sequences from beef, pig, Schaf (sheep), horse, and Wal (whale).

In this case, he noted the lack of conservation of several amino acid residues in a region between two cysteine residues. For more

details on the alignment of insulins, see Fig. 7.1. Used with permission.



6

Multiple Sequence Alignment

INTRODUCTION

When we consider a protein (or gene), one of the most fundamental questions is what

other proteins are related. Biological sequences often occur in families. These

families may consist of related genes within an organism (paralogs), sequences

within a population (e.g., polymorphic variants), or genes in other species (ortho-

logs). Sequences diverge from each other for reasons such as duplication within a

genome or speciation leading to the existence of orthologs. We have studied pairwise

comparisons of two protein (or DNA) sequences (Chapter 3), and we have also seen

multiple related sequences in the form of profiles or as the output of a BLAST or

other database search (Chapters 4 and 5). We will also explore multiple sequence

alignments in the context of molecular phylogeny (Chapter 7), protein domains

(Chapter 10), and protein structure (Chapter 11).

In this chapter, we consider the general problem of multiple sequence alignment

from three perspectives. First, we describe five approaches to making multiple

sequence alignments from a group of homologous sequences of interest. Second,

we discuss multiple alignment of genomic DNA. This is typically a comparative

genomics problem of aligning large chromosomal regions from different species.

Third, we explore databases of multiply aligned sequences, such as Pfam, the protein

family database. While multiple sequence alignment is commonly performed for

both protein and DNA sequences, most databases consist of protein families only.

Nucleotides corresponding to coding regions are typically less well conserved than
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proteins because of the degeneracy of the genetic code. Thus they can be harder to

align with with high confidence.

Multiple sequence alignments are of great interest because homologous

sequences often retain similar structures and functions. Pairwise alignments may suf-

fice to create links between structure and function. Multiple sequence alignments are

very powerful because two sequences that may not align well to each other can be

aligned via their relationship to a third sequence, thereby integrating information

in a way not possible using only pairwise alignments. We can thus define members

of a gene or protein family, and identify conserved regions. If we know a feature of

one of the proteins (e.g., RBP4 transports a hydrophobic ligand), then when we

identify homologous proteins, we can predict that they may have similar function.

The overwhelming majority of proteins have been identified through the sequencing

of genomic DNA or complementary DNA (cDNA; Chapter 8). Thus, the function

of most proteins is assigned on the basis of homology to other known proteins rather

than on the basis of results from biochemical or cell biological (functional) assays.

Definition of Multiple Sequence Alignment
Domains or motifs that characterize a protein family are defined by the existence of a

multiple sequence alignment of a group of homologous sequences. A multiple

sequence alignment is a collection of three or more protein (or nucleic acid)

sequences that are partially or completely aligned. Homologous residues are aligned

in columns across the length of the sequences. These aligned residues are homologous

in an evolutionary sense: they are presumably derived from a common ancestor. The

residues in each column are also presumed to be homologous in a structural sense:

aligned residues tend to occupy corresponding positions in the three-dimensional

structure of each aligned protein.

Multiple sequence alignments are easy to generate, even by eye, for a group of

very closely related protein (or DNA) sequences. We have seen an alignment of clo-

sely related sequences (Fig. 3.7, GAPDH). As soon as the sequences exhibit some

divergence, the problem of multiple alignment becomes extraordinarily difficult to

solve. In particular, the number and location of gaps is difficult to assess. We saw

an example of this with kappa caseins (Fig. 3.8), and in this chapter we will examine

a challenging region of five distantly related globins. Practically, you must (1) choose

homologous sequences to align, (2) choose software that implements an appropriate

objective scoring function (i.e., a metric such as maximizing the total score of a series

of pairwise alignments), and (3) choose appropriate parameters such as gap opening

and gap extension penalties.

There is not necessarily one “correct” alignment of a protein family. This is

because while protein structures tend to evolve over time, protein sequences generally

evolve even more rapidly than structures. Looking at the sequences of human beta

globin and myoglobin, we saw that they share only 25% amino acid identity (Fig.

3.5), but the three-dimensional structures are nearly identical (Fig. 3.1). In creating

a multiple sequence alignment, it may be impossible to identify the amino acid resi-

dues that should be aligned with each other as defined by the three-dimensional

structures of the proteins in the family. We often do not have high-resolution struc-

tural data available, and we rely on sequence data to generate the alignment.

Similarly, we often do not have functional data to identify domains (such as the

specific amino acids that form the catalytic site of an enzyme), so again we rely on

sequence data. It is possible to compare the results of multiple sequence alignments
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that are generated solely from sequence data and to then examine known structures

for those proteins. For a given pair of divergent but significantly related protein

sequences (e.g., for two proteins sharing 30% amino acid identity), Chothia and

Lesk (1986) found that about 50% of the individual amino acid residues are super-

posable in the two structures.

Aligned columns of amino acid residues characterize a multiple sequence align-

ment. This alignment may be determined because of features of the amino acids such

as the following:

† There are highly conserved residues such as cysteines that are involved in

forming disulfide bridges.

† There are conserved motifs such as a transmembrane domain or an immuno-

globulin domain. We will encounter examples of protein domains and motifs

(such as the PROSITE dictionary) in Chapter 10.

† There are conserved features of the secondary structure of the proteins, such

as residues that contribute to a helices, b sheets, or transitional domains.

† There are regions that show consistent patterns of insertions or deletions.

Typical Uses and Practical Strategies of Multiple
Sequence Alignment
When and why are multiple sequence alignments used?

† If a protein (or gene) you are studying is related to a larger group of proteins,

this group membership can often provide insight into the likely function,

structure, and evolution of that protein.

† Most protein families have distantly related members. Multiple sequence

alignment is a far more sensitive method than pairwise alignment to detect

homologs (Park et al., 1998). Profiles (such as those described for PSI-

BLAST and hidden Markov models in Chapter 5) depend on accurate mul-

tiple sequence alignments.

† When one examines the output of any database search (such as a BLAST

search), a multiple sequence alignment format can be extremely useful to

reveal conserved residues or motifs in the output.

† If one is studying cDNA clones, it is common practice to sequence them.

Multiple sequence alignment can show whether there are any variants or dis-

crepancies in the sequences. Alignments of genomic DNA containing single

nucleotide polymorphisms (SNPs; Chapter 16) are of interest, for example,

in the identification of nonsynonymous SNPs.

† Analysis of population data can provide insight into many biological questions

involving evolution, structure, and function. The PopSet portion of Entrez

(described below) contains nucleotide (and protein) population data sets

that are viewed as multiple alignments.

† When the complete genome of any organism is sequenced, a major portion of

the analysis consists of defining the protein families to which all the gene

products belong. Database searches effectively perform multiple sequence

alignments, comparing each novel protein (or gene) to the families of all

other known genes.
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† We will see in Chapter 7 how phylogeny algorithms begin with multiple

sequence alignments as the raw data with which to generate trees. The most

critical part of making a tree is to produce an optimal multiple sequence

alignment.

† The regulatory regions of many genes contain consensus sequences for

transcription factor-binding sites and other conserved elements. Many such

regions are identified based on conserved noncoding sequences that are

detected using multiple sequence alignment.

Benchmarking: Assessment of Multiple Sequence
Alignment Algorithms
We will describe five different approaches to creating multiple sequence alignments.

How can we assess the accuracy and performance properties of the various algor-

ithms? The performance depends on factors including the number of sequences

being aligned, their similarity, and the number and position of insertions or deletions

(McClure et al., 1994).

A convincing way to assess whether a multiple sequence alignment program

produces a “correct” alignment is to compare the result with the alignment of

known three-dimensional structures as established by x-ray crystallography

(Chapter 11). Several databases have been constructed to serve as benchmark data

sets. These are reference sets in which alignments are created from proteins having

known structures. Thus, one can study proteins that are by definition structurally

homologous. This allows an assessment of how successfully assorted multiple

sequence alignment algorithms are able to detect distant relationships among pro-

teins. For proteins sharing about 40% amino acid identity or more, most multiple

sequence alignment programs produce closely similar results. For more distantly

related proteins, the programs can produce markedly different alignments, and

benchmarks are useful to compare accuracy.

The performance of a multiple sequence alignment algorithm relative to a

benchmark data set is measured by some objective scoring function. One commonly

used metric is the sum-of-pairs score (Box 6.1). This involves counting the number of

Box 6.1
Evaluating Multiple Sequence Alignments

Thompson et al. (1999) described two main ways to assess multiple sequence

alignments. The first is the sum-of-pairs scores (SPS). This score increases as a

program succeeds in aligning sequences relative to the BAliBASE or other

reference alignment. The SPS assumes statistical independence of the columns.

For an alignment of N sequences in M columns, the ith column is designated Ai1,

Ai2, . . . , AiN. For each pair of residues Aij and Aik, a score of 1 is assigned ( pijk ¼ 1)

if they are also aligned in the reference, and a score of 0 is assigned if they are not

aligned ( pijk ¼ 0). Then for the entire ith column, the score Si is given by:

Si ¼
XN

j¼1, j#k

XN
k¼1

pijk

182 MULTIPLE SEQUENCE ALIGNMENT



pairs of aligned residues that occur in the target and reference alignment, divided by

the total number of pairs of residues in the reference.

Benchmark data sets may contain separate categories of multiple sequence align-

ments, such as those having proteins of varying length, varying divergence, insertions

or deletions (indels) of various lengths, and varying motifs (such as internal repeats).

Investigators routinely employ benchmark data sets to assess the performance

of alignment algorithms (e.g., Morgenstern et al., 1996; McClure et al., 1994;

Thompson et al., 1999; Gotoh, 1996; Briffeuil et al., 1998). Blackshields et al.

(2006) compared the properties of six benchmark datasets (Table 6.1).

Another approach to benchmarking is to use a program such as ROSE (Stoye

et al., 1998) that simulates the evolution of sequences. We introduced ROSE in

TABLE 6-1 Benchmark Data Sets to Assess Multiple Sequence Alignment Accuracy
Database Reference URL

BAliBASE Thompson et al. (2005) http://www-bio3d-igbmc.u-strasbg.fr/
balibase/

HOMSTRAD Mizuguchi et al. (1998) http://www-cryst.bioc.cam.ac.
uk/�homstrad/

IRMBASE Subramanian et al. (2005) http://dialign-t.gobics.de/main

OxBench Raghava et al. (2003) http://www.compbio.dundee.ac.uk/
Software/Oxbench/oxbench.htm

Prefab Edgar (2004b) http://www.drive5.com/muscle/prefab.htm

SABmark Van Walle et al. (2005) http://bioinformatics.vub.ac.be/databases/
content.html

For the entire multiple sequence alignment, the SPS is given by:

SPS ¼

PM
i¼1

Si

PMr

i¼1

Sri

Here Sri is the score Si for the ith column in the reference alignment, and Mr

corresponds to the number of columns in the reference alignment.

A second approach is to create a column score (CS). For the ith column,

Ci ¼ 1 if all the residues in the column are aligned in the reference, and Ci ¼ 0 if

not.

CS ¼
XM
i¼1

Ci

M

Sum-of-pairs scores and column scores have been used to assess the

performance of multiple sequence alignment algorithms. Gotoh (1995) and

others further described weighted sum-of-pairs scores that correct for biased

contributions of sequences caused by divergent members of a group being

aligned. Lassmann and Sonnhammer (2005) note that a column score becomes

zero if even a single sequence is misaligned; thus it may be too stringent.

You can examine typical bench-

mark entries for the globins and

the lipocalins from the

HOMSTRAD database

(Mizuguchi et al., 1998) in Web

documents 6.1 and 6.2 at

Q http://www.bioinfobook.org/
chapter6. HOMSTRAD (the

homologous structure alignment

database) contains aligned three-

dimensional structures of homo-

logous proteins from over 1000

families. Later in this chapter,

studying the T-Coffee suite of

programs, we will introduce a new

approach to benchmarking that is

based on structural data but does

not employ a benchmark

database.
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Chapter 5 as a benchmark for analyzing genomic alignment software. It has also been

used to assess multiple sequence alignment software such as Kalign (Lassmann and

Sonnhammer, 2005) and MUSCLE (Edgar, 2004a).

FIVE MAIN APPROACHES TO MULTIPLE

SEQUENCE ALIGNMENT

There are many approaches to multiple sequence alignment; in the past decade many

dozens of programs have been introduced. We may consider five algorithmic

approaches: (1) exact methods, (2) progressive alignment (e.g., ClustalW), (3) itera-

tive approaches (e.g., PRALINE, IterAlign, MUSCLE), (4) consistency-based

methods (e.g., MAFFT, ProbCons), and (5) structure-based methods that include

information about one or more known three-dimensional protein structures to facili-

tate creation of a multiple sequence alignment (e.g., Expresso). The programs we will

describe in categories (3) to (5) are often overlapping; for example, all rely on pro-

gressive alignment and some combine iterative and structure-based approaches. All

the programs offer trade-offs in speed and accuracy. MUSCLE and MAFFTare fast-

est, and are thus most useful for aligning large numbers of sequences. ProbCons and

T-Coffee, although slower, are more accurate in many applications.

We will explore how one set of globin sequences can be aligned differently

using various programs, and we will try to assess which alignments are most accurate.

A related question is the consequence of a misalignment. Potentially, the con-

servation of critical residues (such as active site amino acids of an enzyme, the

heme-binding residues of a globin, or conserved residues that cause disease when

mutated) may be missed. Phylogenetic inference (Chapter 7) may be compromised

because all molecular phylogeny algorithms depend on a multiple sequence align-

ment as input. Protein structure prediction (Chapter 11) is severely compromised

by faulty multiple sequence alignment, which is often a first step in homology-

based modeling.

The programs we will explore can be used by web interfaces, although

local installation of the programs typically allows you access to a more complete

package of options. All the web interfaces allow you to paste in a set of DNA,

RNA, or protein sequences in the FASTA format, or to upload a text file containing

these sequences.

Exact Approaches to Multiple Sequence Alignment
Dynamic programming as described by Needleman and Wunsch (1970) for pairwise

alignment is guaranteed to identify the optimal global alignment(s). Exact methods

for multiple sequence alignment employ dynamic programming, although the

matrix is multidimensional rather than two-dimensional. The goal is to maximize

the summed alignment score of each pair of sequences. Exact methods generate

optimal alignments but are not feasible in time or space for more than a few

sequences. For N sequences, the computational time that is required is O(2NLN)

where N is the number of sequences and L is the average sequence length. An

exact multiple sequence alignment of more than four or five average sized proteins

would consume prohibitively too much time. Nonexact methods, which we will dis-

cuss next, are computationally feasible. For example, ClustalW has time complexity

O(N4 þ L2) and MUSCLE has time complexity O(N4 þ NL2). Although they are

faster, these heuristic approaches are not guaranteed to produce optimal alignments.

ROSE software is available at

Q http://bibiserv.techfak.uni-

bielefeld.de/rose/.

We will explore sets of distantly

and closely related globin

sequences in the FASTA format.

These are available as web docu-

ments 6.3 and 6.4 at Q http://
www.bioinfbook.org/chapter6.

There are many ways that you can

easily obtain a group of sequences

in the FASTA format. Examples

include HomoloGene at NCBI

(for eukaryotic proteins), or you

can select any subset of the results

of a BLAST search and view the

sequences in Entrez Protein (or

Entrez Nucleotide) in the FASTA

format.
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Progressive Sequence Alignment
The most commonly used algorithms that produce multiple alignments are derived

from the progressive alignment method. This was proposed by Fitch and

Yasunobu (1975) and described by Hogeweg and Hesper (1984) who applied it to

the alignment of 5S ribosomal RNA sequences. The method was popularized by

Feng and Doolittle (1987, 1990). It is called “progressive” because the strategy entails

calculating pairwise sequence alignment scores between all the proteins (or nucleic acid

sequences) being aligned, then beginning the alignment with the two closest sequences

and progressively adding more sequences to the alignment. A benefit of this approach

is that it permits the rapid alignment of even hundreds of sequences. A major limitation

is that the final alignment depends on the order in which sequences are joined. Thus, it

is not guaranteed to provide the most accurate alignments.

Perhaps the most popular web-based program for performing progressive mul-

tiple sequence alignment is ClustalW (Thompson et al., 1994). There are many

ways to access the program (Box 6.2). The ClustalW algorithm proceeds in three

stages. We can illustrate the procedure by aligning five distantly related globins,

selected from Entrez and pasted into a text document in the FASTA format

(Fig. 6.1). The results are shown in Figs. 6.2 and 6.3. Later we will also align five clo-

sely related globins (Figs. 6.4 and 6.5). In this particular example we select proteins

for which the corresponding three-dimensional structure has been solved by x-ray

crystallography. This will help us to interpret the accuracy of the alignment from a

structural perspective as well as an evolutionary perspective.

1. In stage 1, the global alignment approach of Needleman and Wunsch (1970;

Chapter 3) is used to create pairwise alignments of every protein that is to be included

in a multiple sequence alignment (Fig. 6.2, stage 1). As shown in the figure, for an

alignment of five sequences, 10 pairwise alignment scores are generated.

Algorithms that perform pairwise alignments generate raw similarity scores.

Note that for the default setting of ClustalW the scores are simply the percent

identities. Many progressive sequence alignment algorithms including ClustalW

use a distance matrix rather than a similarity matrix to describe the relatedness of

the proteins. The conversion of similarity scores for each pair of sequences to distance

scores is outlined in Box 6.3. The purpose of generating distance measures is to

generate a guide tree (stage 2, below) to construct the alignment.

Box 6.2
Using ClustalW

ClustalW is accessed online at many servers, including Q http://www.ebi.ac.uk/
clustalw/, where it is hosted by the European Bioinformatics Institute.

Another way to access ClustalW is through the EMBOSS program emma. A

variety of EMBOSS servers hosting emma are available, including Q http://
phytophthora.vbi.vt.edu/EMBOSS/, Q http://bioportal.cgb.indiana.edu/cgi-

bin/emboss/emma and Q http://embossgui.sourceforge.net/demo/emma.html.

ClustalX is a downloadable stand-alone program related to ClustalW

(Thompson et al., 1997). ClustalX offers a graphical user interface for editing

multiple sequence alignments. You can obtain ClustalX at Q http://bips.u-

strasbg.fr/fr/Documentation/ClustalX/. An introductory tutorial for using

ClustalX in conjunction with phylogeny software has been written by Hall (2001).

Note that while most database

searches such as BLAST rely on

local alignment strategies, many

multiple sequence alignments

focus on global alignments, or a

combination of global and local

strategies.

For N sequences that are multiply

aligned, the number of pairwise

alignments that must be calculated

for the initial matrix equals
1
2
(N � 1)(N ). For five proteins, 10

pairwise alignments are made. For

a multiple sequence alignment of

500 proteins, (499)(500)/2 ¼

12,250 pairwise alignments are

made; this is why the speed of an

algorithm can be a concern.

ClustalW is slow relative to other

approaches such as MUSCLE,

described below, but for most

typical applications its speed is

quite reasonable.

To confirm that the ClustalW

scores are percent identities, per-

form pairwise alignments between

any two of the sequences in Fig.

6.2 or 6.4 using BLASTat NCBI

(Chapter 3).
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FIGURE 6.1. Multiple sequence
alignment of five distantly related
globins using the ClustalW server
at EBI (Q http://www.ebi.ac.uk/
clustalw/). Five distantly related
globin proteins were pasted in
using the FASTA format from
Entrez (NCBI).

FIGURE 6.2. Progressive align-
ment method of Feng and
Doolittle (1987) used by many
multiple alignment programs such
as ClustalW. In stage 1, a series of
pairwise alignments is generated
for five distantly related globins
(see Fig. 6.1). Note that the best
score is for an alignment of two
plant globins (score ¼ 43; arrow
1). In stage 2, a guide tree is calcu-
lated describing the relationships of
the five sequences based on their
pairwise alignment scores. A
graphical representation of the
guide tree is shown using the
JalView tool at the ClustalW web
server. Branch lengths (rounded
off) reflect distances between
sequences and are indicated on
the tree; compare to Fig. 6.4.

186 MULTIPLE SEQUENCE ALIGNMENT



In our example, note that the best pairwise global alignment score is for rice

versus soybean hemoglobin (Fig. 6.2, arrow 1). For a group of closely related beta

globins, all have high scores (Fig. 6.4), even for sequences from avian and mamma-

lian species that diverged over 300 million years ago.

2. In the second stage, a guide tree is calculated from the distance (or similarity)

matrix. There are two principal ways to construct a guide tree: the unweighted pair

group method of arithmetic averages (UPGMA) and the neighbor-joining method.

We will define these algorithms in Chapter 7. The two main features of a tree are

its topology (branching order) and branch lengths (which can be drawn so that

they are proportional to evolutionary distance). Thus, the tree reflects the relatedness

of all the proteins to be multiply aligned.

In ClustalW, the tree is described with a written syntax called the Newick format,

as well as with a graphical output (Figs. 6.2 and 6.4, stage 2). The chicken sequence

has the lowest score relative to the human, chimpanzee, dog, and mouse beta globins,

and this is reflected in its position in the guide tree (Fig. 6.4, stages 1 and 2). A tree

can also be displayed graphically at the ClustalW site by using the JalView option.

CLUSTAL W (1.83) multiple sequence alignment

beta globin  ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFESFG- 47
myoglobin    -----------MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFK- 48
neuroglobin  -------------MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR 47
soybean      ----------MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLA- 49
rice         MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSFLR- 59
                          :   :   :   :  .. .    .      ::   *     *.    

beta globin  DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLS-----ELHCDKLHVDPE 102
myoglobin    HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLA-----QSHATKHKIPVK 103
neuroglobin  QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLAS---LGRKHRAVGVKLS 104
soybean      --NGVDPT--NPKLTGHAEKLFALVRDSAGQLKASGTVVADAA----LGSVHAQKAVTDP 101
rice         --NSDVPLEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATHLKYGVGDA 117
               .       . ..  *  .::        :           :             :   

beta globin  NFRLLGNVLVCVLAHHF-GKEFTPPVQAAYQKVVAGVANALAHKYH------ 147
myoglobin    YLEFISECIIQVLQSKH-PGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
neuroglobin  SFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAMSRGWDGE---- 151
soybean      QFVVVKEALLKTIKAAV-GDKWSDELSRAWEVAYDELAAAIKKA-------- 144
rice         HFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE--- 166
              :  :   ::  :        :      * .     .   :           

FIGURE 6.3. Multiple sequence alignment of five distantly related globins. The output is from
ClustalW using the progressive alignment algorithm of Feng and Doolittle (1987). In stage 3, a
multiple sequence alignment is created by performing progressive sequence alignments. First, the
two closest sequences are aligned (soybean and rice globins). Next, further sequences are added
in an order based on their position in the guide tree. An asterisk indicates positions in which the
amino acid residue is 100% conserved in a column; a colon indicates conservative substitutions; a
dot indicates less conservative substitutions. The proteins are human beta globin (accession
NP_000509; Protein Data Bank identifier 2hhb), human myoglobin (NP_005359; 2MM1),
human neuroglobin (NP_067080; 1OJ6A), leghemoglobin (from the soybean Glycine max;
1FSL), and nonsymbiotic plant hemoglobin (from rice; 1D8U). Regions of alpha helices (defined
in Chapter 11) based on x-ray crystallography are indicated in red letters. Three highly conserved
residues are indicated by arrowheads: phe44 of myoglobin (red arrowhead), his65 (open arrow-
head); and his93 (black arrowhead). These two histidines are important in coordinating protein
binding to the heme group. A box surrounds the second histidine including five amino acids down-
stream (to the carboxy-terminal) and 17 amino acids upstream (to the end of an alpha helical
region). We will discuss the alignment within this box for ClustalW in comparison to other align-
ment programs (Fig. 6.6).
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Guide trees are usually not considered true phylogenetic trees, but instead are

templates used in the third stage of ClustalW to define the order in which sequences

are added to a multiple alignment. A guide tree is estimated from a distance matrix

based on the percent identities between sequences you are aligning. In constrast,

a phylogenetic tree almost always includes a model to account for multiple substi-

tutions that commonly occur at the position of aligned amino acids (or nucleotides),

as discussed in Chapter 7.

3. In stage 3, the multiple sequence alignment is created in a series of steps based

on the order presented in the guide tree. The algorithm first selects the two most

closely related sequences from the guide tree and creates a pairwise alignment.

These two sequences appear at the terminal nodes of the tree, that is, the locations

of extant sequences. For example, rice globin and soybean globin are aligned. The

next sequence is either added to the pairwise alignment (to generate an aligned

group of three sequences, sometimes called a profile) or used in another pairwise

alignment. At some point, profiles are aligned with profiles. The alignment continues

progressively until the root of the tree is reached, and all sequences have been aligned.

At this point a full multiple sequence alignment is obtained (Figs. 6.3 and 6.5, stage 3).

In the alignment of five distantly related globins, we can note that a highly con-

served phenylalanine is aligned (Fig. 6.3, red arrowhead) as is a histidine that coor-

dinates heme binding in most globins (open arrowhead). However, an even more

highly conserved histidine (black arrowhead) is aligned in beta globin and myoglobin,

but is placed in a separate column for neuroglobin and two plant globins. This rep-

resents a misalignment, and we will explore how other programs treat this region. For

a group of closely related globins, the level of conservation is so high that there are no

gaps and thus no ambiguities about how to perform the alignment (Fig. 6.5).

FIGURE 6.4. Example of a mul-
tiple sequence alignment of closely
related globin proteins using the
progressive sequence aligment
method of Feng and Doolittle
(1987) as implemented by
ClustalW. Compare these scores to
those for distantly related proteins
(Fig. 6.2), and note that the pair-
wise alignment scores are consist-
ently higher and the distances
(reflected in branch lengths on the
guide tree) are much shorter.
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The Feng–Doolittle approach includes the rule “once a gap, always a gap.” The

most closely related pair of sequences is aligned first. As further sequences are added

to the alignment, there are many ways that gaps could be included. The rationale for

the “once a gap, always a gap” rule is that the two most closely related sequences that

are initially aligned should be weighted most heavily in assigning gaps. ClustalW

FIGURE 6.5. Multiple sequence of
five closely related beta globin
orthologs (see Fig. 6.4). The
output is a screen capture from
ClustalW using the progressive
alignment algorithm of Feng and
Doolittle. The arrowheads (red,
open, and black) correspond to
the human beta globin phe44,
his72, and his104 residues, respect-
ively. These are highly conserved
among the globin superfamily.

Box 6.3
Similarity versus Distance Measures

Trees that represent protein or nucleic acid sequences usually display the

differences between various sequences. One way to measure distances is to count

the number of mismatches in a pairwise alignment. Another method, employed

by the Feng and Doolittle progressive alignment algorithm, is to convert similarity

scores to distance scores. Similarity scores are calculated from a series of pairwise

alignments among all the proteins being multiply aligned. The similarity scores S

between two sequences (i, j) are converted to distance scores D using the equation

D ¼ � ln Seff

where

Seff ¼
Sreal(ij) � Srand(ij)

Siden(ij) � Srand(ij)

� 100

Here, Sreal(ij) describes the observed similarity score for two aligned sequences i

and j, Siden(ij) is the average of the two scores for the two sequences compared to

themselves (if score i compared to i receives a score of 20 and score j compared to j

receives a score of 10, then Siden(ij) ¼ 15); Srand(ij) is the mean alignment score

derived from many (e.g., 1000) random shufflings of the sequences; and Seff is a

normalized score. If sequences i, j have no similarity, then Seff ¼ 0 and the distance

is infinite. If sequences i, j are identical, then Seff ¼ 1 and the distance is 0.
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dynamically assigns position-specific gap penalties that increase the likelihood of

having a new gap occur in the same position as a preexisting gap. That serves to

give the overall alignment a block-like structure that often appears efficient in

terms of minimizing the number of gap positions.

Should an insertion be penalized the same amount as a deletion? No, according

to Loytynoja and Goldman (2005): a single deletion event is typically penalized once

where it occurs, but a single insertion event that occurs once inappropriately results

in multiple penalties to all the other sequences. The result of these high penalties is

that many multiple sequence alignments are unrealistically aligned with too few gaps.

Loytynoja and Goldman (2005) introduced a pair hidden Markov model approach

that distinguishes insertions from deletions. They showed that their method creates

gaps that are consistent with phylogeny, even though the alignments appear less

compact than with ClustalW. Their approach applies to the alignment of protein,

RNA, or DNA sequences, but it may be especially useful for the alignment of

genomic DNA. There, overfitting may occur with traditional progressive alignment,

for example when one sequence has long insertions. The approach of Loytynoja and

Goldman (2005), reviewed in Higgins et al. (2005), provides multiple sequence

alignments that have more gaps but are likely to be more accurate, based on criteria

such as correct alignment of exons.

ClustalW implements a series of additional features to optimize the alignment

(Thompson et al., 1994). The distance of each protein (or DNA) sequence from

the root of the guide tree is calculated, and those sequences that are most closely

related are downweighted by a multiplicative factor. This adjustment assures that if

an alignment includes a group of very closely related sequences as well as another

group of divergent sequences, the closely related ones will not overly dominate the

final multiple sequence alignment. Other adjustments include the use of a series of

scoring matrices that are applied to pairwise alignments of proteins depending on

their similarity, and compensation for differences in sequence length.

Many other algorithms use variants of progressive alignment. For example,

Kalign employs a string-matching algorithm to achieve speeds ten times faster than

ClustalW (Lassmann and Sonnhammer, 2005). Kalign aligns 100 protein sequences

of length 500 residues in less than a second.

Iterative Approaches
Iterative methods compute a suboptimal solution using a progressive alignment strat-

egy, and then modify the alignment using dynamic programming or other methods

until a solution converges. Thus, they create an initial alignment and then modify

it to try to improve it. Progressive alignment methods have the inherent limitation

that once an error occurs in the alignment process it cannot be corrected, and iterative

approaches can overcome this limitation. In standard dynamic programming the

branching order of the guide tree may be suboptimal, or the scoring parameters

may cause gaps to be misplaced. Iterative refinement can search for more optimal sol-

utions stochastically (seeking higher maximal scores according to some metric such

as the sum-of-pairs scores; Box 6.1) or by systematically extracting and realigning

sequences from an initial profile that is generated. Examples of programs employing

iterative approaches are MAFFT (Multiple Alignment using Fast Fourier Transform)

(Katoh et al., 2005), Iteralign (Karlin and Brocchieri, 1998), Praline (Profile

ALIgNmEnt) (Heringa, 1999; Simossis and Heringa, 2005), and MUSCLE

(MUltiple Sequence Comparison by Log-Expectation) (Edgar, 2004a, 2004b).

The website Q http://msa.cgb.ki.

se includes Kalign for alignment,

Kalignvu as a viewer, and Mumsa

to assess the quality of a multiple

sequence alignment (Lassmann

and Sonnhammer, 2006). Kalign

is also offered through the

European Bioinformatics Institute

(Q http://www.ebi.ac.uk/kalign/).
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MAFFToffers a suite of tools with choices of more speed or accuracy. The fastest

version involves progressive alignment using matching 6-tuples (strings of six

residues) to calculate pairwise distances. This approach is called k-mer counting.

A k-mer (also called a k-tuple or word) is a contiguous subsequence of length k.

k-mer counting is extremely fast because it requires no alignment. The initial distance

matrix can optionally be recalculated once all pairwise alignments are calculated,

yielding a more reliable progressive alignment. In the iterative refinement step, a

weighted sum-of-pairs score is calculated and optimized. MAFFT allows options

including global or local pairwise alignment.

MAFFT and PRALINE can both incorporate information from homologous

sequences that are analyzed in addition to those you submit for multiple sequence

alignment. These sequences are used to improve the multiple sequence alignment;

in the case of MAFFT, the extra sequences are then removed. PRALINE performs

a PSI-BLAST search (Chapter 5) on the query protein sequences and then performs

progressive alignment using the PSI-BLAST profiles. PRALINE also permits the

incorporation of predicted secondary structure information.

Since its introduction in 2004, the MUSCLE program of Robert Edgar (2004a,

2004b) has become popular because of its accuracy and its exceptional speed,

especially for multiple sequence alignments involving large numbers of sequences.

For example, 1000 protein sequences of average length 282 residues were aligned

in 21 seconds on a desktop computer (Edgar, 2004a). MUSCLE operates in a

series of three stages. First, a draft progressive alignment is generated. To achieve

this, the algorithm calculates the similarity between each pair of sequences using

either the fractional identity (calculated from a global alignment of each pair of

sequences), or k-mer counting. Based on the similarities, MUSCLE calculates a

triangular distance matrix, then constructs a rooted tree using UPGMA or

neighbor-joining (see Chapter 7). Sequences are added progressively to the multiple

sequence alignment following the branching order of the tree. In the second stage,

MUSCLE improves the tree and builds a new progressive alignment (or a new set

of alignments). The similarity of each pair of sequences is assessed using the

fractional identity, and a tree is constructed using a Kimura distance matrix (dis-

cussed in Chapter 7). In a comparison of two sequences there is some likelihood

that multiple amino acid (or nucleotide) substiutions occurred at any given position,

and the Kimura distance matrix provides a model for such changes. As each tree is con-

structed it is compared to the tree from stage 1, and the process results in an improved

progressive alignment. In stage 3 the guide tree is iteratively refined by systematically

partitioning the tree to obtain subsets; an edge (branch) of the tree is deleted to

create a bipartition. Next, MUSCLE extracts a pair of profiles (multiple sequence

alignments), and realigns them (performing profile-profile alignment; see Box 6.4).

The algorithm accepts or rejects the newly generated alignment based on whether

the sum-of-pairs score increases. All edges of the tree are systematically visited

and deleted to create bipartitions. This iterative refinement step is rapid and had

been shown earlier to increase the accuracy of the multiple sequence alignment

(Hirosawa et al., 1995).

The alignments of five distantly related globins using PRALINE (Fig. 6.6a) and

MUSCLE (Fig. 6.6b) show a somewhat different result than we saw with ClustalW

(Fig. 6.3). In the boxed region there are only 10 total gaps with PRALINE and 4

with MUSCLE, compared with 17 using ClustalW. This reflects a more compact

overall alignment. Both these programs still fail to align the highly conserved histidine

(Fig. 6.6a and b, black arrowhead).

MAFFT is available at the EBI

website, Q http://www.ebi.ac.uk/
mafft/, or with more options from

its project home page, Q http://
align.bmr.kyushu-u.ac.jp/mafft/
software/. PRALINE can be

accessed from Q http://zeus.cs.

vu.nl/programs/pralinewww/.

The idea of a triangular distance

matrix in stage 1 is that the dis-

tance measure between sequences

(A,B) equals the distance of (A,C)

plus (B,C). This is a good

approximation for closely related

sequences, but the accuracy is

further increased using the

Kimura distance correction in

stage 2.

MUSCLE can be downloaded or

accessed via web servers at

Q http://www.drive5.com/
muscle/ or at the European

Bioinformatics website, Q http://
www.ebi.ac.uk/muscle/.
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Consistency-Based Approaches
In progressive alignments using the Feng–Doolittle approach, pairwise alignment scores

are generated and used to build a tree. Consistency-based methods adopt a different

approach by using information about the multiple sequence alignment as it is being gen-

erated to guide the pairwise alignments. We will discuss two consistency-based multiple

sequence alignment programs: ProbCons (Do et al., 2005) and T-Coffee (Notredame

et al., 2000). The MAFFT program also includes an iterative refinement approach

with consistency-based scores (Katoh et al., 2005).

The idea of consistency is that for sequences x, y, and z, if residue xi aligns with zk

and zk aligns with yj, then xi should align with yj. Consistency-based techniques score

pairwise alignments in the context of information about multiple sequences, for

example, adjusting the score of xi to yi based on the knowledge that zk aligns to

both xi and to yi. This approach is distinctive because it incorporates evidence

Box 6.4
Profile-Profile Alignment with the MUSCLE Algorithm

The name MUSCLE (multiple sequence comparison by log expectation)

includes the phrase “log expectation.” Like ClustalW, MUSCLE measures the

distance between sequences (Edgar, 2004a, 2004b). In its third stage,

MUSCLE iteratively refines a multiple sequence alignment by deleting the

edge of the guide tree to form a bipartition, then extracting a pair of profiles

and realigning them. It does this using several scoring functions to optimally

align pairs of columns. For amino acid types i and j, pi is the background

probability of i, pij is the joint probability of i and j being aligned, Sij is the

score from a substitution matrix, f x
i is the observed frequency of i in column x

of the first profile, f x
G is the observed frequency of gaps in column x, and ax

i is

the estimated probability of observing residue i in position x in the family

based on the observed frequencies f. (Note that Sij ¼ log( pij/pipj) as discussed

in Chapter 3.) MUSCLE, ClustalW, and MAFFT use a profile sum-of-pairs

(PSP) scoring function:

PSPxy ¼
X

i

X
j

f x
i f

y
j Sij

PSP is a sequence-weighted sum of substitution matrix scores for each pair of

letters (one from each column that is being aligned in a pairwise fashion). The

PSP function maximizes the sum-of-pairs objective score. MUSCLE applies

two PAM matrices for its PSP function. MUSCLE also employs a novel

log-expectation (LE) score that is defined as follows:

LExy ¼ (1� f x
G)(1� f

y
G) log

X
i

X
j

f x
i f

y
j

pij

pipj

The factor (1 2 fG) is the occupancy of a column. This promotes the alignment of

columns that are highly occupied (i.e., that have fewer gaps) while downweighting

column pairs with many gaps. Edgar (2004a) reported that this significantly

improved the accuracy of the alignment.
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from multiple sequences to guide the creation of a pairwise alignment (Do et al.,

2005). Using the notation given in a review by Wallace and colleagues (2005), the

likelihood that residue i from sequence x and residue j from sequence y are aligned,

given the sequences of x and y, is given by:

P(xi � y j j x, y) (6:1)

This is the posterior probability, and it is calculated for each pair of amino acids. The

consistency transformation further incorporates data from additional residues to

improve the estimate of two residues aligning (that is, given information about how

x and y each align with z):

P(xi � yj j x, y, z) �
X

k

P(xi � zk j x, z)P( yi � zk j y, z) (6:2)

The consistency-based approach often generates final multiple sequence alignments

that are more accurate than those achieved by progressive alignments, based on

benchmarking studies.

The ProbCons algorithm has five steps. First, the algorithm calculates the

posterior probability matrices for each pair of sequences. This involves a pair

hidden Markov model as described in Fig. 5.12. This HMM has three states: M

(corresponding to two aligned positions of sequences x and y), Ix (a residue in

sequence x that is aligned to a gap), and Iy (a residue in y that is aligned to a gap).

There is an initial probability of starting in a particular state, a transition probability

from the initial state to the next residue, and an emission probability for the next

residue to be aligned. Second, the expected accuracy of each pairwise alignment is

computed. The expected accuracy is the number of correctly aligned pairs of residues

divided by the length of the shorter sequence. The alignment is performed according

to the Needleman–Wunsch dynamic programming method, but instead of using a

PAM or BLOSUM scoring matrix, scores are assigned based on the posterior

probability terms for the corresponding residues and gap penalties are set to zero.

Third, the quality scores for each pairwise alignment are reestimated by applying a

“probabilistic consistency transformation.” This step applies information about con-

served residues that were identified through all the pairwise alignments, resulting in

the use of more accurate substitution scores. Fourth, an expected accuracy guide tree

is constructed using hierarchical clustering (similar to the approach adopted by

ClustalW). The guide tree is based on similarities (rather than distances). Fifth,

the sequences are progressively aligned (as in ClustalW) by following the order speci-

fied by the guide tree. Further iterative refinements may be applied. Do et al. (2005)

reported that ProbCons outperformed six other multiple sequence alignment

programs, including ClustalW, DIALIGN, T-Coffee, MAFFT, MUSCLE, and

Align-m, based on testing on the BAliBASE, PREFAB, and SABmark benchmark

databases.

T-Coffee is an acronym for tree based consistency objective function for align-

ment evaluation. T-Coffee first computes a library consisting of pairwise alignments.

By default these include all possible pairwise global alignments of the input

sequences (using the Needleman–Wunsch algorithm), and the ten highest-scoring

local alignments. Every pair of aligned residues is assigned a weight. These weights

are recalculated to generate an “extended library” that serves as a position-specific

substitution matrix. The program then computes a multiple sequence alignment

by progressive alignment, creating a distance matrix, calculating a neighbor-joining

ProbCons is available at Q http://
probcons.stanford.edu/.

T-Coffee was developed by Cédric

Notredame, Desmond Higgins,

Jaap Heringa, and colleagues. It is

available at Q http://www.tcoffee.

org. It is also mirrored at the

European Bioinformatics Institute

(Q http://www.ebi.ac.uk/
t-coffee/), the Swiss Institute of

Bioinformatics, and the Centre

National de la Recherche

Scientifique (Paris).
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guide tree, and using dynamic programming and the substitution matrix derived

from the extended library.

T-Coffee includes a suite of related alignment and evaluation tools. M-Coffee

(Meta-Coffee) combines the output of as many as 15 different multiple sequence

alignment methods (Wallace et al., 2006; Moretti et al., 2007). These include

T-Coffee, ClustalW, MAFFT, MUSCLE, and ProbCons. M-Coffee employs a

consistency-based approach to estimate a consensus alignment that is more accurate

than any of the individual methods. By adding structural information (discussed

next), even further accuracy is achieved.

Structure-Based Methods
Tertiary structures evolve more slowly than primary sequences. Thus, for example,

human beta globin and myoglobin share limited sequence identity (in the “twilight

zone”) yet share structures that are clearly related. It is possible to improve the

accuracy of multiple sequence alignments by including information about the

three-dimensional structure of one or more members of the group of proteins being

FIGURE 6.6. Multiple sequence
alignment of five distantly related
globins using four different pro-
grams. The alignments were per-
formed with (a) PRALINE, (b)
MUSCLE, (c) ProbCons, and (d)
T-Coffee. The proteins used to
make the alignments and the sym-
bols used to illustrate the figure
are the same as those described in
Fig. 6.3. Note that the programs
differ in their abilities to align cor-
responding regions of alpha helical
secondary structure (red lettering);
in their alignment of a highly con-
served histidine residue (black
arrowhead); and in the number
and placement of gaps (see boxed
regions).

MUSCLE (3.6) multiple sequence alignment

beta globin  ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFES-FG
myoglobin    -----------MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK-FK
neuroglobin  -------------MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean      ----------MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSF-LA
rice         MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSF-LR
                          :   :   :   :  .. .    .      ::   *     *.    

beta globin  DLSTPDAVMGNPKVKAHGKKVLGAF---SDGLAHLDNLKGTFATLSELHCDKLH--VDPE
myoglobin    HLKSEDEMKASEDLKKHGATVLTAL---GGILKKKGHHEAEIKPLAQSHATKHK--IPVK
neuroglobin  QFSSPEDCLSSPEFLDHIRKVMLVI---DAAVTNVEDLSSLEEYLASLGRKHRAVGVKLS
soybean      NGVDP----TNPKLTGHAEKLFALVRDSAGQLKASGTVVAD----AALGSVHAQKAVTDP
rice         NSDVP--LEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATHLKYGVGDA
                          . ..  *  .::         :                   :    :   

beta globin  NFRLLGNVLVCVLAHHFGKE-FTPPVQAAYQKVVAGVANALAHKYH------
myoglobin    YLEFISECIIQVLQSKHPGD-FGADAQGAMNKALELFRKDMASNYKELGFQG
neuroglobin  SFSTVGESLLYMLEKCLGPA-FTPATRAAWSQLYGAVVQAMSRGWDGE----
soybean      QFVVVKEALLKTIKAAVGDK-WSDELSRAWEVAYDELAAAIKKA--------
rice         HFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE---
              :  :   ::  :        :      * .     .   :           

Praline multiple sequence alignment

beta globin      ..........MVHLTPEEKSAVTALWGKV..NVDEVGGEALGRLLVVYPWTQRFFES.FG
myoglobin        ...........MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK.FK
neuroglobin      .............MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean          ..........MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFS..FL
rice             MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFS..FL
Consistency      000000000014265438257934573463364343624453686433*35344*50063

beta globin      DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSEL..HCDKLH....VDP
myoglobin        HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQS..HATKHK....IPV
neuroglobin      QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEYLASLGRKHRAVG....VKL
soybean          A.NGVDP..TNPKLTGHAEKLFALVRDSAGQL.KASGTVVADAA....LGSVHAQKAVTD
rice             R.NSDVPLEKNPKLKTHAMSVFVMTCEAAAQL.RKAGKVTVRDTTLKRLGATHLKYGVGD
Consistency      3166354224776653*4368635424454451335634333542003335440000922

beta globin      ENFRLLGNVLVCVLAHHF.GKEFTPPVQAAYQKVVAGVANALAHKYH......
myoglobin        KYLEFISECIIQVLQSKH.PGDFGADAQGAMNKALELFRKDMASNYKELGFQG
neuroglobin      SSFSTVGESLLYMLEKCL.GPAFTPATRAAWSQLYGAVVQAMSRGWD..GE..
soybean          PQFVVVKEALLKTIKAAV.GDKWSDELSRAWEVAYDELAAAIKKA........
rice             AHFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE...
Consistency      43744844498258542305336554454*55465426446754322001000     

(a)

(b)

You can see an output of the five

distantly related globins using M-

Coffee in web document 6.5.

PipeAlign is available at Q http://
bips.u-strasbg.fr/PipeAlign/.
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aligned. Programs that enable you to incorporate structural information include

PRALINE (Simossis and Heringa, 2005), the T-Coffee module Expresso

(Armougom et al., 2006b), and PipeAlign (Plewniak et al., 2003).

When you use the Expresso program at the T-Coffee website, you submit a series

of sequences (typically in the fasta format). Each sequence is automatically searched

by BLAST against the Protein Data Bank (PDB) database, and matches (sharing

.60% amino acid identity) are used to provide a template to guide the creation of

the multiple sequence alignment.

Structural information can also be used to assess the accuracy of a multiple

sequence alignment after it has been made. This is done in benchmarking studies

(described above) for protein families having known structures. In another approach

you can incorporate structural information and assess the quality of a protein mul-

tiple sequence alignment that you make at the iRMSD-APDB (“Analyze alignments

with Protein Data Bank”) server of the T-Coffee package (O’sullivan et al., 2003;

PROBCONS

beta globin  M----------VHLTPEEKSAVTALW GKVNVD --EVGGEALGRLLVVY PWTQRFFES-FG
myoglobin    M-----------GLSDGEWQLVLNVW GKVEADIPGHGQEVLIRLFKGH PETLEKFDK-FK
neuroglobin  M-------------ERPEPELIRQSW RAVSRSPLEHGTVLFARLFAL EPDLLPLFQYNCR
soybean      M----------VAFTEKQDALVSSSFEAFKA NIPQYSVVFYTSILEK APAAKDL FSF -L A
rice         MALVEDNNAVAVSFSEEQEALVLKSWAILK KDSANIALRFFLKIFEV APSASQMFSF-LR
             *          * :   :   :   :  .. .    .      ::   *     *.    

beta globin  DLSTPDAVMGNPKVK A HGKKVLGAFSDG LAHLD---NLK---GTFATLSEL H CD KLHVDP
myoglobin    HLKSEDEMKASEDLKKHGATVLTALGGI---L KKKGHHE---AEIKPLAQS H AT KHKIPV
neuroglobin  QFSSPEDCLSSPEFLD H IRKVMLVIDAAVTN VEDLSSLE---EYLASLGRK H RAV -GVKL
soybean      NGVDP----TNPKLTGHAEKLFALVRDSAGQLKAS GTVV----ADAALGSVH AQK-AVTD 
rice         NSDVP--LEKNPKLKT H AMSVFVMTCEAAAQLRK AGKVTVRDTTLKRLGAT H LKY -GVGD 
             .    :    . ..  *  .::        ::   .           *.  *     :  

beta globin  ENFRLLGNVLVCVLAHHF -GKEFTPPVQAAYQKVVAGVANALA HK------YH
myoglobin    KYLEFISECIIQVLQSKH -PGDFGADAQGAMNKALELFRKDMASNYKEL GFQG
neuroglobin  SSFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAM SRG---W-DGE
soybean      PQFVVVKEALLKTIKAAV -G DK WSDELSRAWEVAYDELAAAIK --------K A
rice         AHFEVVKFALLDTIKEE VPADMWSPAMKSAWSEAYDHLVAAIK QE---MKPAE
               :  :   ::  :        :      * .     .   :

CLUSTAL FORMAT for T-COFFEE Version_5.13

beta globin  ----------MVHLTPEEKSAVTALW GKVNVD--EVGGEALGRLLVVY PWTQRFFE-SFG
myoglobin    -----------MGLSDGEWQLVLNVW GKVEADIPGHGQEVLIRLFKGH PETLEKFD-KFK
neuroglobin  -------------MERPEPELIRQSW RAVSRSPLEHGTVLFARLFAL EPDLLPLFQYNCR
soybean      ----------MVAFTEKQDALVSSSFEAFKA NIPQYSVVFYTSILEK APAAKDL FS-FL A
rice         MALVEDNNAVAVSFSEEQEALVLKSWAILK KDSANIALRFFLKIFEV APSASQMFS-FLR
                          :   :   :   :  .. .    .      ::   *     *.    

beta globin  DLSTPDAVMGNPKVKAHGKKVLGAFSDG LAHLDNL---KGTF---ATLSELHCDKLHVDP
myoglobin    HLKSEDEMKASEDLKKHGATVLTAL---GGIL KKKGHHEAE---IKPLAQSHATKHKIPV
neuroglobin  QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTN VEDL---SSLEEYLASLGRKH-RAVGVKL
soybean      NGVDP----TNPKLTGHAEKLFALVRDSAGQLKAS GTVVAD----AALGSVHAQKAVTDP 
rice         NSDVP--LEKNPKLKTHAMSVFVMTCEAAAQLRK AGKVTVRDTTLKRLGATHLKYGVGDA 
             .         . ..  *  .::         :               *.  *        

beta globin  ENFRLLGNVLVCVLAHHF -GKEFTPPVQAAYQKVVAGVANALA HKYH------
myoglobin    KYLEFISECIIQVLQSKH -PGDFGADAQGAMNKALELFRKDMASNYKEL GFQG
neuroglobin  SSFSTVGESLLYMLEKCL-GPAFTPATRAAWSQLYGAVVQAM SRGWDG----E
soybean      Q-FVVVKEALLKTIKAAV-GDK WSDELSRAWEVAYDELAAAIKK A--------
rice         H-FEVVKFALLDTIKEE VPADMWSPAMKSAWSEAYDHLVAAIK QE---MKPAE
               :  :   ::  :        :      * .     .   :           

(c)

(d)

FIGURE 6.6. (Continued)

We described BLAST in

Chapter 4, and we will describe

PDB in Chapter 11.
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Armougom et al., 2006c). It is necessary to obtain the accession numbers corre-

sponding to the Protein Data Bank (PDB) file having the known structures of at

least two of the proteins you are aligning. As an example, we can obtain the PDB

accession numbers for each of the five distantly related globins described above by

performing a blastp search at NCBI, restricting the output to PDB. Next, perform

a multiple sequence alignment using T-Coffee or any other program. Finally, input

this alignment (using the PDB accession number in place of the name) to the

APDB server at the T-Coffee website. The output provides an analysis of the quality

of the alignment on the basis of all pairwise comparisons of those sequences having

structures as well as an average quality assessment for each protein. The main approach

to assessing how well two structures align is to measure the root mean square deviation

(RMSD) (see Chapter 11). The RMSD isa measure of how closely the alphacarbons of

two aligned amino residues are positioned. Notredame and colleagues introduced

iRMSD as an intra molecular RMSD measure (Armougom et al., 2006a).

For the case of five divergent globins analyzed with the iRMSD-APDB server, 79%

of the pairwise columns could be evaluated, 51% of the columns were aligned correctly

(according to APDB), and the average iRMSD over all the evaluated columns was 1.07

Ångstroms. This analysis did not depend on a reference alignment, but instead involved

a calculation of the superposition of the structures in the alignment.

Conclusions from Benchmarking Studies
We have discussed some of the programs for making multiple sequence alignments, and

we have seen that they can produce differing results for a set of distantly related globins.

Nonetheless most programs produce reasonably consistent alignments, especially for

relatively closely related protein or DNA sequences. Comparative studies of multiple

sequence alignment algorithms have been performed based on tests against benchmark

databases. Some of the general conclusions include the following.

† Adding more homologs to a multiple sequence alignment improves its

accuracy (Katoh et al., 2005).

† As the group of sequences being multiply aligned begins to share less amino

acid identity, the accuracy of the alignments decreases (Briffeuil et al.,

1998; Blackshields et al., 2006). For groups of sequences that share less

than 25% identity, the problem becomes especially severe. Thompson et al.

(1999) found that the best programs available at the time (PRRP, ClustalX,

and SAGA) aligned about 60% to 70% of the amino acid residues for

groups of proteins with ,25% identity. For multiple sequence alignments

of proteins sharing more identity (20% up to 40%), they found that on average

80% of the residues were aligned properly (Thompson et al., 1999).

† For highly divergent DNA sequences, programs that use local alignment (such

as DiAlign and LAGAN) perform better than those using global alignment

(such as ClustalW) (Kumar and Filipski, 2007).

† Orphan sequences are proteins that are highly divergent members of a family.

If we examined a multiple sequence alignment of retinol-binding protein

(RBP) from 10 species, then added the distantly related odorant-binding

protein (OBP) to that multiple sequence alignment, OBP would be con-

sidered an orphan. Orphans might be expected to disrupt the organization

of a multiple sequence alignment, and yet they do not. Global alignment

The iRMSD-APDB server is part

of the T-Coffee suite of tools

(Q http://www.tcoffee.org).

Examples of five divergent and five

closely related globin sequences,

formatted for input to the APDB

server, as well as the detailed

output, are available in web docu-

ments 6.6 and 6.7 at Q http://
www.bioinfbook.org/chapter6.
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algorithms outperform local alignment methods for the introduction of

orphans to an alignment (Thompson et al., 1999).

† Separate multiple sequence alignments can be combined, such as a group of

closely related myoglobins and a group of closely related neuroglobins.

Iterative algorithms performed this task better than progressive alignment

methods (Thompson et al., 1999). However, many programs have difficulty

in accurately producing a single alignment from a subset of alignments.

† Often, some proteins in a family contain large extensions at the amino- and/

orcarboxy-terminals. Overall, local alignment programs dramaticallyoutperfor-

med global alignment programs at this task. For most multiple sequence

alignment applications, global alignments are superior.

DATABASES OF MULTIPLE SEQUENCE ALIGNMENTS

We have discussed different methods for creating multiple sequence alignments. Wewill

next examine databases of precomputed multiple sequence alignments, many of which

are available. These may be searched using text (i.e., a keyword search) or using any

query sequence. The query may be an already known sequence (such as myoglobin

or RBP) or any novel protein (such as the raw sequence of a new lipocalin or globin

you have identified). In some databases, the query sequenceyou provide is incorporated

into the multiple sequence alignment of a particular precomputed protein family.

Pfam: Protein Family Database of Profile HMMs
Pfam is one of the most comprehensive databases of protein families (Bateman et al.,

2004; Finn et al., 2006). It is a compilation of both multiple sequence alignments and

profile HMMs of protein families. The database can be searched using text (key-

words or protein names) or by entering sequence data. Its combination of HMM-

based approach and expert curation makes Pfam one of the most trusted and

widely used resources for protein families.

Pfam consists of two databases. Pfam-A is a manually curated collection of protein

families in the form of multiple sequence alignments and profile HMMs. HMMER

software (Chapter 5) is used to perform searches. For each family, Pfam provides

four features: annotation, a seed alignment, a profile HMM, and a full alignment.

The full alignment can be quite large; currently the top 20 Pfam families each contain

over 20,000 sequences in their full alignment. The seed alignments contain a smaller

number of representative family members. Sequences in Pfam-A are grouped in

families, assigned stable accession numbers (such as PF00042 for globins) and expertly

curated. Additional protein sequences are automatically aligned and deposited in

Pfam-B where they are not annotated or assigned permanent accession numbers.

Pfam-B serves as a useful supplement that makes the database more comprehensive.

For all Pfam families, the underlying HMM is accessible from the main output page.

We can see the main features of Pfam in a search for globins using the Wellcome

Trust Sanger Institute site. There are three main ways to access the database: by

browsing for families, by entering a protein sequence search (with a protein accession

number or sequence), and by entering a text search. From the front page, select a

text-based search and enter “globin.” The results summary includes links to the

Pfam entry and to related databases (InterPro, described below; the Protein Data

Pfam is maintained by a consor-

tium of researchers, including

Alex Bateman, Ewan Birney,

Lorenzo Cerrutti, Richard

Durbin, Sean Eddy, and Erik

Sonnhammer, and others. Five

sites host Pfam: Q http://www.

sanger.ac.uk/Software/Pfam/
(U.K.), Q http://pfam.janelia.

org/ (U.S.), Q http://pfam.cgb.

ki.se/ (Sweden), Q http://pfam.

jouy.inra.fr/ (France), and Q

http://pfam.ccbb.re.kr/index.

shtml (South Korea). Version 23.0

(July 2008) has 10,340 protein

families. Pfam is based on

sequences in Swiss-Prot and SP-

TrEMBL (Chapter 2). Currently

(May 2007), 74% of the proteins

in those databases have at least one

domain that matches to a Pfam

family.
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Bank, introduced in Chapter 11; and clans). Each protein in Pfam can have member-

ship in exactly one family. Some proteins, such as sperm whale myoglobin and a

globin from the leprosy-causing bacterium Mycobacterium leprae, belong to distinct

families (globins and bacterial-like globins, respectively). Those two families are dis-

tantly related and are defined as members of a larger clan.

The output includes an overview of the globin family, including description of

the structure of a typical member, a Pfam accession number, clan membership,

and a description of the globin family from the InterPro database (discussed

below) (Fig. 6.7a). The Pfam entry further includes access to the alignment,

domain organization, species distribution, and a phylogenetic tree (Fig. 6.7b). The

alignment can be viewed for the seed set, consisting of a core group of representative

members of the family, or the full set, consisting of all known family members. The

alignment can be retrieved in a variety of formats, including gapped alignments

(useful for viewing aligned regions of the family) or ungapped alignments (useful

as input into other multiple sequence alignment programs such as those discussed

FIGURE 6.7. The Pfam database is
a comprehensive resource for study-
ing protein families. (a) A typical
entry is shown for globins, including
a representative three-dimensional
structure, a list of related Pfam
families (e.g., the bacteria-like
globins), and a description of the
protein (from InterPro). (b) The
output options include viewing the
seed alignment (with a core of 76
representative globin sequences) or
the full alignment (with 2,039
globins in this particular case).
Various format options are provided
(see Figs. 6.8 and 6.9). Other output
options include the domain architec-
ture, species distribution, and a phy-
logenetic tree. HMMER-derived
hidden Markov models correspond-
ing to the globin family can also
be viewed.

(a)

(b)

Mycobacterium leprae is a

bacterium that causes leprosy.

Its globin has accession number

NP_301903.

You can also search Pfam with a

DNA query. Go to Q http://www.

sanger.ac.uk/Software/Pfam/
dnasearch.shtml.
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earlier in this chapter). One of the versatile output formats is JalView. After selecting

this option, press the JalView button. A Java applet allows the multiple sequence

alignment to be viewed, analyzed, and saved in a variety of ways (Fig. 6.8). The

applet will display a principal components analysis (PCA) on the aligned family

(Fig. 6.9a). We describe PCA, a technique to reduce highly dimensional data into

two- (or three-) dimensional space, in Chapter 9 (Fig. 9.16). Here, each protein in

a multiple sequence alignment is represented as a point in space based on a distance

metric, and outliers are easily identified. Similar information can be represented with

a phylogenetic tree (Fig. 6.9b; see Chapter 7) using the Java applet.

Smart
The Simple Modular Architecture Research Tool (SMART) is a database of protein

families implicated in cellular signaling, extracellular domains, and chromatin func-

tion (Schultz et al., 1998; Ponting et al., 1999; Letunic et al., 2006). Like Pfam,

SMARTemploys profile HMMs using HMMER software. SMART can be used in

normal mode (providing searches against Swiss-Prot, SP-TrEMBL, and stable

Ensembl proteomes) or in genomic mode (providing searches against proteomes

of completely sequenced metazoan organisms from Ensembl or other organisms

from Swiss-Prot, including eukaryotes, bacteria, and archaea).

Also like Pfam, the SMART database is searchable by sequence or by keyword, or

by browsing the available domains. Domains identified in a SMART search are exten-

sively annotated with information on functional class, tertiary structure, and taxonomy.

Conserved Domain Database
The Conserved Domain Database (CDD) is an NCBI tool that allows sequence-based

or text-basedqueriesofPfamand SMART.CDDuses reverseposition-specificBLAST

FIGURE 6.8. A Pfam alignment
can be retrieved in the JalView
Java viewer format. The Pfam
JalView applet displays a multiple
sequence alignment of any Pfam
protein family. The aligned resi-
dues can be viewed with a variety
of color schemes. The relationships
of the proteins within the family
can be explored using a variety of
algorithms, including principal
components analysis and phylo-
genetic trees (Fig. 6.9).

SMART (Q http://smart.embl-

heidelberg.de/) currently (May

2007) has 726 profile HMMs

(domains). It was developed by

Peer Bork and colleagues.

CDD is available atQhttp://www.

ncbi.nlm.nih.gov/Structure/cdd/
cdd.shtml or through the main

BLAST page (Qhttp://www.ncbi.

nlm.nih.gov/BLAST/). CDD can

also be searched by entering a

protein query sequence into the

Domain Architecture Retrieval

Tool (DART) at NCBI. DART is

available at Q http://www.ncbi.

nlm.nih.gov/Structure/
lexington/html/overview.html.
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(RPS-BLAST) by comparing a query sequence to a set of many position-specific

scoring matrices (PSSMs). RPS-BLAST is related to PSI-BLAST (Chapter 5)

but is distinct because it searches against profiles generated from preselected align-

ments. The mainpurposeof CDD (and RPS-BLAST) is to identify conserveddomains

in the query sequence. We provided an example in Chapter 5 (Fig. 5.8).

FIGURE 6.9. Visualization of
protein families in Pfam. (a) A
Pfam family analyzed with
JalView can be visualized using
principal components analysis, a
technique that represents each
protein in the family as a point in
space. The axes reflect distance
between proteins and are units of
percent variance. The axes may
be rotated by mouse control.
Several globins are outliers
(bottom of plot). By selecting any
protein, it is highlighted on the
JalView multiple sequence align-
ment and can thus be identified
and further studied. (b) JalView
outputs from Pfam families include
trees, such as this neighbor joining
tree of 76 globins. (Phylogenetic
trees are described in Chapter 7.)
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Prints
The PRINTS database consists of protein “fingerprints” that define families in the

SwissProt/TrEMBL databases (Attwood et al., 2003). A hyperlink to PRINTS out-

puts is the Colour Interactive Editor for Multiple Alignments (CINEMA) editor

(Parry-Smith et al., 1998). This is a Java applet application that is integrated with

software for analysis of the alignments.

Integrated Multiple Sequence Alignment Resources:
InterPro and iProClass
A main theme of multiple sequence alignment databases is that while each employs a

unique algorithm and search format, they are well integrated with each other.

Another important idea is that individual databases such as Pfam and PROSITE

have evolved specific approaches to the problem of protein classification and analysis.

Some databases employ HMMs; some focus on protein domains, while others assess

smaller motifs. Integrated resources allow you to explore the features of a protein

using several related algorithms in parallel.

At least two comprehensive resources have been developed to integrate most of

the major alignment databases. The InterPro database provides an integration of

PROSITE, PRINTS, ProDom, Pfam, and TIGRFAMs with cross-references to

BLOCKS (Table 6.2) (Mulder et al., 2007). The project is coordinated by eight cen-

ters, including EBI and the Wellcome Trust Sanger Institute (Apweiler et al., 2001).

The iProClass organizes 200,000 nonredundant Protein Information Resource

(PIR) and SwissProt proteins in 28,000 superfamilies, 2600 domains, 1300

motifs, and 280 posttranslational modification sites (Wu et al., 2004). iProClass

has links to 30 other databases. Resources such as iProClass and InterPro can be

useful to identify conflicts between a variety of databases and to define the size of

protein families.

TABLE 6-2 Databases on Which InterPro (Release 15.0) Is Based
Database Contents (Entries)

PANTHER 6.1 30,128

Pfam 21.0 8,957

PIRSF 2.68 1,748

PRINTS 38.0 1,900

ProDom 2005.1 1,522

PROSITE 20.0 2,006

SMART 5.0 706

TIGRFAMs 6.0 2,946

GENE3D 3.0.0 2,147

SUPERFAMILY 1.69 1,538

UniProtKB/Swiss-Prot 52.0 261,513

UniProtKB/TrEMBL 35.0 3,987,044

InterPro 15.0 14,764

GO Classification 23,937

Source: From Q http://www.ebi.ac.uk/interpro/release_notes.html, May 2007.

Release 36.0 of PRINTS (2007)

has 1800 database entries covering

a total of 10,931 individual motifs.

It is available at Q http://www.

bioinf.manchester.ac.uk/
dbbrowser/PRINTS/.

InterPro is available at Q http://
www.ebi.ac.uk/interpro/. Release

18.0 (September 2008) contains

over 16,500 entries representing

about 11,000 families and 5,000

domains.

You can access iProClass at

Q http://pir.georgetown.edu/
iproclass/.
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PopSet
We turn now to a specialized resource for multiple sequence alignments. PopSet

(Population Data Study Sets) is a collection of aligned protein or DNA sequences

within the NCBI Entrez site. These sequences are derived from studies of closely

related sequences from population, phylogenetic, or mutation studies. From the

home page of NCBI, enter the search “globin” and follow the link to the PopSet

results. One of them is entitled “The molecular basis of high-altitude adaptation in

deer mice.” This entry includes a multiple sequence alignment of DNA encoding

alpha globins in deer mice (Peromyscus maniculatus). In a subset of those mice that

have adapted to a high-altitude environment, the alpha globin genes have undergone

mutations that confer a mixture of oxygen-binding affinities (Storz et al., 2007). This

may provide a selective advantage, as globins with such properties have previously been

found only in other high-dwelling animals such as yaks and birds. PopSet provides a

convenient repository for experimentally derived multiple sequence alignments.

Multiple Sequence Alignment Database Curation:
Manual versus Automated
Some databases are curated manually. This requires expert annotation; Sean

Eddy and colleagues have curated Pfam, while Amos Bairoch and colleagues have

TABLE 6-3 Multiple Sequence Alignment Programs Available on the World Wide Web
Program Description URL

AMAS (Analyse
Multiply Aligned
Sequences)

At the European Bioinformatics
Institute; used to analyze
premade MSAs

Q http://barton.ebi.ac.uk/
servers/amas_server.html

CINEMA Colour INteractive Editor for
Multiple Alignments

Q http://utopia.cs.manchester.
ac.uk/

ClustalW At the European Bioinformatics
Institute and other sites

Q http://www.ebi.ac.uk/
clustalw/

ClustalX Download by FTP Q http://bips.u-strasbg.fr/fr/
Documentation/ClustalX/

DIALIGN Especially useful for local MSA;
from the University of
Bielefeld, Germany

Q http://bibiserv.techfak.uni-
bielefeld.de/dialign/

Match-Box Web
Server 1.3

From the University of Namur,
Belgium

Q http://www.fundp.ac.be/
sciences/biologie/bms/
matchbox_submit.shtml

MultAlin From INRA (Q http://www.inra.
fr/), Toulouse

Q http://bioinfo.genopole-
toulouse.prd.fr/multalin/
multalin.html

Multiple Sequence
Alignment
version 2.0

At the GeneStream server of the
Institut de Génétique Humaine

Q http://xylian.igh.cnrs.fr/
msa/msa.html

Musca From the IBM Bioinformatics
Group

Q http://cbcsrv.watson.ibm.
com/Tmsa.html

PileUp Commercial package available
through the SeqWeb or UNIX
versions of the Genetics
Computer Group (GCG)

Q http://www.accelrys.com/
products/gcg/

Note: Additional algorithms are listed at ExPASy (Q http://www.expasy.org/tools/#align).
Abbreviation: MSA, multiple sequence alignment.

You can access PopSet via

Q http://www.ncbi.nlm.nih.gov/
Entrez/.
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curated PROSITE. BLOCKS and PRINTS are also manually annotated. Expert

annotation is obviously difficult but has the great advantage of allowing judgments

to be made on the protein family members. Programs such as DOMO and

ProDom use automated annotation. Errors in the alignment or the addition of unre-

lated sequences can be problematic, as discussed for PSI-BLAST (Chapter 5).

However, automated annotation is valuable for exhaustive analyses of large data

sets such as the thousands of predicted protein sequences derived from genome-

sequencing projects.

Many dozens of multiple sequence alignment programs are available on the

internet, including several that are listed in Table 6.3.

MULTIPLE SEQUENCE ALIGNMENTS

OF GENOMIC REGIONS

Complete genomes are being sequenced at a rapid pace, with thousands of projects

now completed or in progress. These are described in Part III of this book (Chapters

13 to 20). A basic problem is the alignment of entire genomes, or parts of genomes. In

some cases closely related species are compared, such as humans and the chimpanzee

Pan troglodytes (these diverged 5 to 7 million years ago), or different strains of the yeast

Saccharomyces cerevisiae. In other cases highly divergent genomes are compared, such

as Homo sapiens and the monotremes (e.g., the platypus Ornithorhynchus anatinus)

which diverged about 210 million years ago. We examine the alignment of prokaryo-

tic genomes in Chapter 15 (on bacteria and archaea).

One basic motivation for performing multiple sequence alignments of genomic

regions is to identify DNA sequences that are under the influence of positive selection

(and thus are changing rapidly in a given lineage) or negative selection (and thus are

highly conserved and accumulate mutations slower than the neutral rate). We will

introduce the concepts of positive and negative selection in Chapter 7, and we will

see in the last third of this book that comparative genome analyses are used to identify

highly conserved regions between genomes that are presumed to be functionally

important. Practically, multiple sequence alignment of genomic regions typically

uses modifications of the progressive alignment strategy we have discussed. The pro-

blem differs from that of conventional multiple sequence alignment in several ways.

† We have been considering programs that typically are used for a set of many

protein or nucleic acid sequences, ranging up to hundreds or even thousands

of sequences that typically have a length of no more than 1000 or 2000 resi-

dues. For genomic alignments, we typically have only a few sequences (in unu-

sual cases as many as several dozen) that may have lengths of millions or tens of

millions of base pairs. The addition of sequences from multiple species

improves the accuracy of multiple sequence alignments of orthologous

regions, relative to pairwise alignments or to the use of a limited number of

species (Margulies et al., 2006).

† Aligning the genomic DNA of closely related organisms (e.g., those that

diverged less than 10 million years ago) is often straightforward, but for

more divergent organisms (e.g., human to mouse or human to fish) there

are often islands of appreciable conservation (typically consisting of exons

and conserved noncoding elements) separated by regions of extremely low
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conservation. This led to the idea of “anchors” for multiple sequence align-

ment of genomic regions, discussed below.

† Eukaryotic genomes are riddled with repetitive DNA elements such as DNA

transposons and long and short interspersed nuclear elements (LINEs,

SINEs) (Chapter 16). Such repeats occur in a lineage-specific fashion and

can occupy a substantial portion of a genome. They must be accounted for

in multiple sequence alignment.

† Chromosomal loci are subject to dynamic rearrangements such as dupli-

cations, deletions, inversions, and translocations. These often involve millions

of base pairs. Such genomic changes occur frequently in individuals (serving

as a major source of human disease) and as features of a species that become

fixed (e.g., human chromosome 2 corresponds to two separate acrocentric

chromosomes of the chimpanzee, following a chromosomal fusion event

early in the hominoid lineage perhaps 5 to 7 million years ago). In the multiple

sequence alignment of genomic regions it is common to find large stretches of

apparent deletions or inversions, presenting a challenge for alignment

algorithms.

† There are no benchmark data sets for genomic alignments comparable to

those described above based on protein structures. However, for each algor-

ithm it is essential to define both the sensitivity (the fraction of all truly ortho-

logous relationships that are detected) and specificity (the fraction of

predictions of an orthologous relationship that are correct) (Margulies et al.,

2007). Two approaches have been adopted (Blanchette et al., 2004). First,

biological sequences with known features such as exons are studied, although

this approach does not provide information on how to correctly align poorly

conserved regions. Second, simulations have been used, although a challenge

is to faithfully model varying evolutionary rates and assorted genomic features

such as repetitive elements.

Consider the human beta globin locus on chromosome 11 as an illustration of the

usefulness of creating and exploring multiple sequence alignments of genomic DNA.

We visited this region in Chapter 5 when we introduced the BLASTZ algorithm for

pairwise alignments of genomic DNA. We used the UCSC Genome Browser to visu-

alize the extent of conservation in a region of 50,000 base pairs across multiple

species relative to human (Fig. 5.18). This browser allows the user to select a

region of interest across many scales (from single nucleotides to whole chromosomes)

and across many eukaryotic organisms while displaying a user-selected set of annota-

tion tracks. We can now revisit this region, focusing on a span of 1800 base pairs that

includes the beta globin gene (Fig. 6.10a). The peak heights for a conservation track

indicate that the coding exons are highly conserved among a group of vertebrates

(including mouse, rat, rabbit, dog, frog, and chicken), while much of the intergenic

regions tend to be poorly conserved. Some conserved noncoding regions are appar-

ent (e.g., Fig. 6.10a, arrow 2) which could represent conserved regulatory domains.

By further zooming in to view just several dozen base pairs, a multiple sequence align-

ment appears (Fig. 6.10b), in this case including the ATG codon that encodes the

start methionine (indicated by asterisks).

The multiple sequence alignments in the UCSC Genome Browser were gener-

ated in several steps. First, optimal pairwise alignments were created using blastz

(Chapter 5). A species tree was generated for a group of species containing

Human chromosome 2, the

second largest chromosome, is

243 million base pairs (Mbp) in

size. It corresponds to chromo-

somes 2a and 2b of the

chimpanzee Pan troglodytes.

To find this genomic region, go to

Q http://genome.ucsc.edu and

select ENCODE (discussed

further in Chapter 16). Click on

the region for the beta globin gene

(on chromosome 11), and select

coordinates chr11:5,200,001-

5,250,000. Upon further reducing

the displayed region to 30,000

base pairs or less, you can then

view the nucleotide multiple

sequence alignment of over a

dozen species. Click on the con-

servation track (Fig. 6.10a, arrow

2) to download the multiple

sequence alignment.
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orthologous regions; this is analogous to a guide tree from progressive alignment. The

program MULTIZ, a component of the Threaded Blockset Aligner (TBA) program

(Blanchette et al., 2004), was used to generate the multiple sequence alignment.

MULTIZ implements dynamic programming to align blocks of sequences.

Two other programs useful for the alignment of genomic DNA are MAVID (Bray

and Pachter, 2004) and Multi-LAGAN (MLAGAN; Brudno et al., 2003). We dis-

cussed the LAGAN program in Chapter 5 (Fig. 5.19). MLAGAN uses progressive

alignment (analogous to ClustalW), and makes the reasonable assumption that the

phylogenetic tree is known (so that a guide tree does not need to be estimated).

The multiple sequence alignment by MLAGAN (1) generates rough global maps

(as described for LAGAN), (2) performs progressive multiple sequence alignment

using anchors, and (3) performs iterative refinement with the anchors.

The UCSC Genome Browser provides multiple sequence alignments of genomic

DNA from dozens of species. It is possible to directly compare the results of the TBA,

MLAGAN, and MAVID programs (Fig. 6.11).

(a)

(b)

FIGURE 6.10. Multiple sequence
alignment of the human beta
globin locus compared to other ver-
tebrate genomic sequences. (a) A
view in the UCSC Genome
Browser of the beta globin gene is
indicated. Exons are represented
by blocks (arrow 1) and tend to
be highly conserved among a
group of vertebrate genomes.
Additionally, several regions of
high conservation occur in noncod-
ing areas (e.g., arrow 2). (b) A
view of 55 base pairs at the beta
globin locus. At this magnification
(fewer than 30,000 base pairs),
the UCSC genome browser displays
the nucleotides of genomic DNA in
the multiple sequence alignment of
a group of vertebrates. The ATG
codon (oriented from right to left)
is indicated (three asterisks), and
the human protein product is
shown (amino acids from right to
left matching the start of protein
NP_000509, MVHLTPEEKS).
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PERSPECTIVE

Multiple sequence alignment is the operation by which all the members of a protein

family (or nucleic acid family) may be grouped together. Rows correspond to

sequences, and columns correspond to residues, with aligned residues in a column

implying shared evolutionary ancestry and/or shared positions in three-dimensional

structures. Multiple sequence alignment serves many purposes, including the identi-

fication of conserved residues that are functionally important. There is tremendous

enthusiasm in the bioinformatics community for the variety of novel approaches to

generating accurate multiple sequence alignments, including progressive alignment,

and approaches based on iterative refinement, consistency, and/or the use of struc-

tural information. A general conclusion is that most programs perform very well

with sequences that are closely related (e.g., sharing approximately 40% amino

acid identity or more). For more distantly related sequences, the available programs

may differ considerably, particularly in where gaps are placed. For the typical user,

two suggestions are to try performing multiple sequence alignments using several

programs, and also using a variety of alternative parameters such as gap penalties.

Thus, the subdiscipline of multiple sequence alignment algorithms is rapidly

changing. New challenges include the analysis of genomic DNA sequences. There,

benchmark data sets are not always available for the purpose of assessing the accuracy

of a newly developed algorithm.

FIGURE 6.11. Comparison of
three programs for multiple align-
ment of genomic sequences. The
UCSC Genome Browser includes
dozens of annotation tracks that
contain genomic data. Tracks for
the TBA, MLAGAN, and MAVID
were displayed for the beta globin
locus, allowing direct comparisons
of results generated with these
different methods. By clicking on
the graphic output, the underlying
multiple sequence alignments can
be displayed and downloaded.

206 MULTIPLE SEQUENCE ALIGNMENT



Databases of multiply aligned protein families such as Pfam and InterPro are

rapidly expanding in size and are increasingly important tools. These databases are

often accompanied by careful expert annotation. A general trend is that databases

offer the integration of many alignment resources.

PITFALLS

A very basic pitfall to avoid is the use of a group of sequences for multiple sequence

alignment in which one or more sequences are not homologous to the rest. For mul-

tiple sequence alignments with relatively divergent members, it is common for differ-

ent programs to give dramatically different results. A challenge is that you may not be

able to assess which is most accurate based on criteria such as structure or shared

evolutionary history. Gaps are particularly hard to place, and the most compact align-

ment (with the fewest gaps) is not necessarily the one most faithful to the evolution-

ary history of the sequences you are aligning. As an example of a challenge, ClustalW,

MAFFT, and MUSCLE all adopt different approaches to the problem of what gap

penalties to assign to terminal gaps (deletions) relative to internal gaps. There may

not be a single correct approach, but this is an example of why different programs

will produce different alignments.

It is especially important to perform a proper multiple sequence alignment for

molecular phylogeny studies. The alignment constitutes the raw data that go into

making a tree (see Chapter 7). Kumar and Filipski (2007) have reviewed many of

the issues of multiple sequence alignment of DNA. They describe the accuracy of

different multiple sequence alignment software in relation to the effects on sub-

sequent phylogenetic analyses, and also as a function of evolutionary distance, gua-

nine plus cytosine content, gap parameters affecting insertions/deletions, and choice

of species.

WEB RESOURCES

DISCUSSION QUESTIONS

In this chapter, we described programs for multiple sequence

alignments. Links to these and additional programs are

summarized in web document 6.8 (Q http://www.bioinfbook.

org/chapter6).

[6-1] Feng and Doolittle introduced the “once a gap, always a

gap” rule, saying that the two most closely related sequences

that are initially aligned should be weighted most heavily in

assigning gaps. Why was it necessary to introduce this rule?

[6-2] What are some of the issues associated with adapting mul-

tiple sequence alignment programs to large genomic DNA

sequences?
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PROBLEMS/COMPUTER LAB

SELF-TEST QUIZ

[6-1] Benchmarking refers to

(a) Making a set of multiple sequence alignments (MSAs)

from closely related proteins that form a trusted alignment

(b) Making a set of MSAs from proteins that have had their ter-

tiary structure determined, thus allowing the MSA to be

validated based on structural criteria

(c) Making a set of MSAs with an algorithm that are sub-

sequently employed to refine tertiary structure predictions

(d) Making a set of MSAs from proteins that are known, based

on structural criteria, to be members of distinct protein

families

[6-2] Why doesn’t ClustalW (a program that employs the Feng and

Doolittle progressive sequence alignment algorithm) report

expect values?

(a) ClustalW does report expect values.

(b) ClustalW uses global alignments for which E value statistics

are not available.

[6-1] Practice using three NCBI resources to obtain groups of

sequences in the fasta format that you can use for multiple

sequence alignment. Select a keyword such as cytochrome

(other suggestions are ferritin, S100, or trypsin). In a first

approach, enter this search from the home page of NCBI, and

follow the link to HomoloGene. By default, the entries are dis-

played in the summary format. Using the pull-down menu

change the display to Multiple Alignment. This allows you to

scroll through a series of multiple sequence alignments. Select

one for further study. It is helpful to choose one in which there

are some gaps, so that you can evaluate the performance of var-

ious software programs (in problem [10-2]). Once you identify a

group of proteins of interest, click to view that HomoloGene

group, and change the display to FASTA. Copy these sequences

and/or save them to a text document. In a second approach,

repeat this exercise beginning at the home page of NCBI, but

select the link to CDD (the Conserved Domain Database).

Here, there are pfam, cdd, smart, and/or COG identifiers.

Select an entry with a CDD identifier (such as cd00904 for fer-

ritin). Here, a multiple sequence alignment is shown. Change

the format to obtain the desired number of proteins in this

family (e.g., up to 5, 10, or 20) in the FASTA format; you may

select the most diverse members of this group. In a third

approach, perform a blastp search using a query such as ferritin

light chain (NP_000137) and inspect the pairwise alignments to

the query. Select a group of ten proteins by clicking on the box

next to each, and click “Get selected sequences.” These ten pro-

teins appear on an Entrez Protein page; change the display

option to FASTA and use the pull-down menu option “send to

text.” The sequences are now available in the FASTA format

for further study.

[6-2] Using the FASTA-formatted sequences from problem [6-1],

perform multiple sequence alignments using programs

available at the European Bioinformatics Institute: ClustalW,

MAFFT, Muscle, and T-Coffee. Save and compare each

result. How do they differ? How can you assess which is likely

to be the most accurate? When applicable, try adjusting the par-

ameters such as the scoring matrices, gap opening and extension

penalties, or number of iterations to see the effects on the

alignments.

[6-3] We described how ClustalWapplies a correction factor to down-

weight the influence of closely related proteins. Test the perform-

ance of ClustalW: take the globins in web documents 6.3 and/or

6.4 and align. Then repeat the alignment with the additional

input one divergent sequence repeated varying number of

times. For example, in the closely related group of beta globins,

add five copies of the chicken sequence to see its influence on the

alignment.

[6-4] Use the T-Coffee programs to evaluate the effect of structural

information on your alignments. Follow these steps.

† Obtain a group of five distantly related lipocalins from web

document 6.9 (Q http://www.bioinfbook.org/chapter6).

These include rat odorant-binding protein and human

retinol-binding protein.

† Align the sequences using T-Coffee (Q http://www.tcoffee.

org/), or use another program.

† Evaluate the alignment with the iRMSD program (Q http://

www.tcoffee.org/). Include the information on two known

lipocalin structures. Note the score.

† Align the same sequences again using Expresso (Q http://

www.tcoffee.org/) to incorporate structural information.

Note the score. Did it improve? Do the alignments differ?

[6-5] X-linked adrenoleukodystrophy (X-ALD) is the most common

inherited disease affecting peroxisomes (a subcellular organelle

involved in lipid metabolism and other metabolic functions).

The disease is caused by mutations in the ABCD1 gene on

chromosome Xq28 encoding ALD protein (ALDP). In

humans, there are thought to be four ALDP-related proteins

on peroxisomes: ALDP (NP_000024; 745 amino acid residues),

ALDR (NP_005155, 740 residues), PMP70 (NP_002849, 659

residues), and PMP70R (NP_005041, 606 residues). Two yeast

ALDP-like proteins have also been identified, Pxa1p

(NP_015178) and Pxa2p (NP_012733). These proteins are all

part of a much larger family of ATP-binding cassette (ABC)

transporters, including the cystic fibrosis transmembrane regula-

tor (CFTR) and multidrug-resistant proteins (MDR).

Create a multiple sequence alignment of the human, mouse,

and yeast ALDP family of proteins. Identify the presumed nucleo-

tide binding site, GPNGCGKS. Is this motif perfectly conserved?
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(c) ClustalW uses local alignments for which E value statistics

are not available.

(d) E value statistics are not relevant to multiple sequence

alignments.

[6-3] The “once a gap, always a gap” rule for the Feng–Doolittle

method:

(a) Assures that gaps will not be filled in inappropriately with

inserted sequences

(b) Assures that sequences that diverged early in evolution will

be given priority in establishing the order in which a multiple

sequence alignment is constructed

(c) Assures that gaps occurring between sequences that are most

closely related in a multiple sequence alignment will be

preserved

(d) Assures that gaps occurring between sequences that are dis-

tantly related will be maintained in the multiple sequence

alignment

[6-4] How can multiple sequence alignment programs improve

performance?

(a) By performing PSI-BLAST

(b) By incorporating data on secondary structure

(c) By incorporating data on three-dimensional structures

(d) all of the above

[6-5] What is a main strength of consistency-based approaches (such

as ProbCons)?

(a) They include information based on position-specific scoring

matrices.

(b) They include information based on three-dimensional

protein structures, typically obtained from x-ray crystallo-

graphy studies.

(c) They perform profile-profile alignments and are extremely

fast algorithms.

(d) They include information based on multiple sequence align-

ments to guide the determination of pairwise alignments.

[6-6] If you perform a multiple sequence alignment of a group of pro-

teins and include a distantly related protein (a divergent member

called an “orphan”):

(a) The orphan is typically aligned with the group of proteins.

(b) The orphan is typically not aligned with the group of

proteins.

[6-7] The main difference between Pfam-A and Pfam-B is that:

(a) Pfam-A is manually curated while Pfam-B is automatically

curated.

(b) Pfam-A uses hidden Markov models while Pfam-B does not.

(c) Pfam-A provides full-length protein alignments while Pfam-

B aligns protein fragments.

(d) Pfam-A incorporates data from SMART and PORSITE

while Pfam-B does not.

[6-8] If you perform a multiple sequence alignment of a group of pro-

teins and include a distantly related protein (a divergent member

called an “orphan”):

(a) The orphan is typically aligned with the group of proteins.

(b) The orphan is typically not aligned with the group of

proteins.

[6-9] What is a feature of algorithms that align large tracts of genomic

DNA, in contrast to programs such as ClustalW that align smal-

ler blocks of DNA or protein?

(a) They are generally unable to align DNA from organisms that

are highly divergent, such as those that speciated several

hundred million years ago.

(b) They generally use progressive alignment and so are funda-

mentally similar.

(c) They often employ anchors that help to align regions of con-

servation that are interspersed with less conserved regions

(such as those arising in noncoding regions, deleted regions,

or inverted regions).

(d) They are specialized to accept very long inputs.

SUGGESTED READING

Da-Fei Feng and Russell F. Doolittle’s (1987) progressive align-

ment approach to multiple sequence alignment is an important

paper. This work stresses the relationship between multiple

sequence alignment and the evolutionary relationships of proteins.

It is thus relevant to our treatment of phylogeny in Chapter 7.

Doolittle (2000) also wrote a personal account of his interest in

sequence analysis, phylogeny, and bioinformatics, including men-

tion of the historical context in which he developed his alignment

algorithm.

A few research groups have systematically compared mul-

tiple sequence alignment algorithms, and reading any of these

papers provides a deeper insight into the strengths and weak-

nesses of the algorithms (Blackshields et al., 2006; Briffeuil

et al., 1998; Park et al., 1998). A study by Julie Thompson

and colleagues (1999) is particularly informative.

For alignment of genomic DNA, excellent sources are

Margulies et al. (2006, 2007) and Kumar and Filipski (2007).
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(a)

(b)

(c)

For the first half of the twentieth century, the main phylogenetic analyses based on molecular data were the remarkable precipitin tests
pioneered by George Nuttall and colleagues. Antisera were incubated with serum samples from a variety of species, and the time
required for a precipitation reaction was recorded, as well as the strength of the reaction. (a) Sample test tubes in which the reactions
were conducted (Nuttall, (1904), plate I) ( b) Excerpt from Nuttall ((1904), p. 160) describing the 16,000 tests he performed.
(c) Portion of the 92-page data summary of Nuttall ((1904), pp. 222–223). The 900 rows (of which 11 are shown here) represent
blood samples that were tested, and the columns correspond to antisera obtained from 30 organisms (of which 18 are shown
here). The values represent the time (in minutes) required for a reaction. The symbols indicate the degree of reaction (þ being greatest,
and 2indicating no reaction). The letter D indicates the presence of deposits in the test tube. Nuttall used these data to infer the
phylogenetic relationships of assorted mammals, birds, reptiles, amphibians, and crustaceans. In the 1950s and 1960s, amino acid
sequence comparisons largely replaced immunological tests for phylogenetic analysis.



7

Molecular Phylogeny and Evolution

INTRODUCTION TO MOLECULAR EVOLUTION

Evolution is the theory that groups of organisms change over time so that descendants

differ structurally and functionally from their ancestors. Evolution may also be

defined as the biological process by which organisms inherit morphological and

physiological features that define a species. In 1859 Charles Darwin published his

landmark book, On the Origin of Species by Means of Natural Selection, or the

Preservation of Favoured Races in the Struggle for Life. “As many more individuals of

each species are born than can possibly survive; and as, consequently, there is a fre-

quently recurring struggle for existence, it follows that any being, if it vary however

slightly in any manner profitable to itself, under the complex and sometimes varying

conditions of life, will have a better chance of surviving, and thus be naturally

selected. From the strong principle of inheritance, any selected variety will tend to

propagate its new and modified form.”

Evolution is a process of change. Heredity is generally conservative—offspring

resemble their parents—and yet the structure and function of bodies change over

the course of generations. There are three main mechanisms by which changes

may occur (Simpson, 1952):

† Conditions of growth affect development. Environmental factors such as

accidents and disease-causing infections are not hereditary in nature

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

We will explore the tree of life

in Chapter 13. You can read

The Origin of Species by Charles

Darwin on-line at Q http://www.

literature.org/authors/darwin-

charles/the-origin-of-species/.
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(although an individual’s response to disease or environmental stimuli is

genetically controlled to some extent, as discussed in Chapter 20).

† The mechanism of sexual reproduction assures change from one generation

to the next. DNA sequences including genes are “shuffled” in a unique

combination when an offspring inherits chromosomes from two parents.

† Mutation with selection as well as genetic drift can produce changes in genes

and more generally in chromosomes.

At the molecular level, evolution is a process of mutation with selection.

Molecular evolution is the study of changes in genes and proteins throughout differ-

ent branches of the tree of life. This discipline also uses data from present-day organ-

isms to reconstruct the evolutionary history of species.

Phylogeny is the inference of evolutionary relationships. Traditionally, phylogeny

was assessed by comparing morphological features between organisms from a variety

of species (Mayr, 1982). However, molecular sequence data can also be used for phy-

logenetic analysis. The evolutionary relationships that are inferred, which are usually

depicted in the form of a tree, can provide hypotheses of past biological events.

Goals of Molecular Phylogeny
All life forms share a common origin and are part of the tree of life. More than 99%

of all species that ever lived are extinct (Wilson, 1992). Of the extant species,

closely related organisms are descended from more recent common ancestors than

distantly related organisms. In principle, there may be one single tree of life that

accurately describes the evolution of species. One object of phylogeny is to deduce

the correct trees for all species of life. Historically, phylogenetic analyses were

based on easily observable features, such as the presence or absence of wings or a

spinal cord. More recently, phylogenetic analyses also rely on molecular sequence

data that define families of genes and proteins. Another object of phylogeny is to

infer or estimate the time of divergence between organisms since the time they last

shared a common ancestor.

While the tree of life provides an appealing metaphor, evolution is not predicated

on there necessarily being a single tree. Instead, evolution is based on a process of

mutation and selection. We will see in Chapter 15 that genes can be laterally trans-

ferred between species, complicating the ways organisms can acquire genes and

traits. In many situations the tree of life has been described as a densely intercon-

nected bush (or reticulated tree) rather than a simple tree with well-defined branches

(e.g., Doolittle, 1999).

A true tree depicts the actual, historical events that occurred in evolution. It is

essentially impossible to generate a true tree. Instead, we generate inferred trees,

which depict a hypothesized version of the historical events. Such trees describe a

series of evolutionary events that are inferred from the available data, based on

some model.

The tree of life has three major branches: bacteria, archaea, and eukaryotes. We

explore the global tree in Chapter 13. In this chapter we address the topic of

phylogenetic trees that are used to assess the relationships of homologous proteins

(or homologous nucleic acid sequences) in a family. Any group of homologous

proteins (or nucleic acid sequences) can be depicted in a phylogenetic tree.

In Chapter 3, we defined two proteins as homologous if they share a common

ancestor. You may perform a BLAST search and observe several proteins with

The word phylogeny is derived

from the Greek phylon (“race,

class”) and geneia (“origin”).

Ernst Haeckel, whose tree of life is

shown on the frontis to Chapter

13, coined the terms phylogeny,

phylum, and ecology. He also wrote

that “ontogenesis is a brief and

rapid recapitulation of phylogen-

esis, determined by the physio-

logical functions of heredity

(generation) and adaptation

(maintenance)” (Haeckel, 1990,

p. 81). See also Q http://www.

ucmp.berkeley.edu/history/
haeckel.html.

Viruses are generally not con-

sidered to be part of the tree of life

(see Chapter 14), although phy-

logenetic trees have been studied

for all subgroups of viruses.
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high scores (low expect values) and simply view these database matches as related

proteins that possibly have related function. However, it is also useful to view ortho-

logs and paralogs in an evolutionary context. We have applied a variety of approaches

to study the relations of proteins: pairwise alignment using Dayhoff ’s scoring

matrices (Chapter 3), BLAST searching (Chapters 4 and 5), and multiple sequence

alignment (Chapter 6), and we will address the identification of related protein folds

(Chapters 10 and 11). All these approaches rely on evolutionary models to account

for the observed similarities and differences between molecular sequences:

† Dayhoff et al. (1978, p. 345) introduce scoring matrices in explicit evolution-

ary terms: “An accepted point mutation in a protein is a replacement of one

amino acid by another, accepted by natural selection. It is the result of two

distinct processes: the first is the occurrence of a mutation in the portion of

the gene template producing one amino acid of a protein; the second is the

acceptance of the mutation by the species as the new predominant form.

To be accepted, the new amino acid usually must function in a way similar

to the old one: chemical and physical similarities are found between

the amino acids that are observed to interchange frequently.” Dayhoff et al.

compare observed amino acid sequences from two proteins not with each

other but with their inferred ancestor obtained from phylogenetic trees.

† Feng and Doolittle (1987, p. 351) used the Needleman and Wunsch pairwise

alignment progressively “to achieve the multiple alignment of a set of protein

sequences and to construct an evolutionary tree depicting their relationship.

The sequences are assumed a priori to share a common ancestor, and the

trees are constructed from different matrices derived directly from the

multiple alignment. The thrust of the method involves putting more trust in

the comparison of recently diverged sequences than in those evolved in the

distant past.”

† In our description of protein families, we provided the example of the Pfam

JalView tool that allows distance information from the multiple sequence

alignment of any Pfam family to be depicted as a tree (Fig. 6.9).

In this chapter, we use multiple sequence alignments of protein (or DNA or

RNA) to generate phylogenetic trees. These trees provide a visualization of the evol-

utionary history of molecular sequences.

Historical Background
Historically, the globins have been among the protein families most important to our

understanding of biochemistry and molecular evolution, from the identification of

hemoglobin in the 1830s and myoglobin in the 1860s to their crystallization in the

nineteenth century for the purpose of comparative studies across species

(Box 7.1). Globins were among the first proteins to be sequenced and to be analyzed

using x-ray crystallography (Chapter 11). Following earlier work by Ingram (1961)

and others to determine globin protein sequences, Eck and Dayhoff (1966) used par-

simony analysis (defined below) to generate trees of the globin family. We provided

phylogenetic trees to introduce the concepts of paralogs (various human globins in

Fig. 3.2) and orthologs (myoglobins in various species; Fig. 3.3). Figure 7.1 shows

a phylogenetic analysis of 13 globin proteins from various species, redrawn from

Dayhoff (1972). We will return to these 13 sequences for phylogenetic analyses in

In 1973 Theodosius Dobzhansky

wrote an article entitled “Nothing

in biology makes sense except in

the light of evolution.”

Thirteen protein sequences cor-

responding to the proteins in

Fig. 7.1 are provided in web

document 7.1 at Q http://www.

bioinfbook.org/chapter7. We will

use these sequences as examples

throughout this chapter. A similar

phylogenetic tree was reported by

Zuckerkandl and Pauling (1965).
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this chapter. Figure 7.2 (also from Dayhoff, 1972) further provides a timeline of the

events in which globin genes duplicated (e.g., an ancestral globin gene duplicated to

form the lineages leading to modern alpha globin and beta globin), and also a time-

line for speciation events (e.g., the modern fish and humans shared a common ver-

tebrate ancestor �400 million years ago). These studies focused on two aspects of

phylogenetic trees. First, trees can depict the relatedness of particular protein subfa-

milies, such as the alpha globins, beta globins, and myoglobins. Second, trees can

depict the relatedness of species, providing inferences about the evolutionary history

of life forms as well as the history of genes and gene products. We expand on the

relation of gene trees and species trees below.

Box 7.1
A Brief History of the Globins

The globins have a leading position in the history of protein biochemistry. There

was early interest in identifying the coloring matter of blood, with studies by

Antoine-Laurent de Lavoisier (in 1777) and with the discovery of iron in blood by

Antoine François Fourcroy (1759–1809). Hemoglobin was among the earliest

proteins to be identified: it was named haematosine by Louis-René Lecanu

(1800–1871) in 1838, and renamed “globulin” by Jöns Jacob Berzelius (1779–

1848), who also coined the term protein. By 1864, when Hoppe-Seyler again

renamed it haemoglobin, detailed spectroscopic properties of the hemoglobins

were published, and soon after, Charles MacMunn (1884) discovered myoglobin.

Crystals of purified hemoglobin were first prepared in the 1840s, and by 1909

Reichert and Brown produced an extensive catalog of hemoglobin crystals and

used them as a basis for phylogeny. Once globin proteins were sequenced, they

were used as a basis for molecular phylogeny, for example by Ingram (1961) and

Dayhoff and colleagues (1966, 1972).

FIGURE 7.1. In the 1960s, several
groups performed pioneering
studies of globin phylogeny. This
tree is modified from Dayhoff
et al. (1972), who used maximum
parsimony analysis to infer the
relationships and history of 13 glo-
bins. The observed percent differ-
ence between sequences was
corrected using the data on PAM
matrices in Table 3.3. Arrow 1
indicates a node corresponding to
the last common ancestor of the
group of vertebrate globins, while
arrow 2 indicates the ancestor of
the insect and vertebrate globins
(see text for details). Used with
permission.
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Tremendous progress was also made in our understanding of molecular

evolution through the study of insulin beginning in the 1950s. Insulin is a small

protein secreted by pancreatic islet cells that stimulates glucose uptake on binding

to an insulin receptor on muscle and liver cells. In 1953 Frederick Sanger and

colleagues determined the primary amino acid sequence of insulin, the first time

this feat had been accomplished for any protein. The mature, biologically active

protein consists of two subunits, the A chain and B chain, that are covalently attached

through intermolecular disulfide bridges. More recently, the structure of the human

preproinsulin molecule was shown to consist of a signal peptide, the B chain, an

intervening sequence called the C peptide, and the A chain (Fig. 7.3a). The C

peptide is flanked by dibasic residues (arg-arg or lys-arg; see Fig. 7.3a and b) at

which proteolytic cleavage occurs.

Sanger and others sequenced insulin proteins from five species (cow, sheep, pig,

horse, and whale). It became clear immediately that the A chain and B chain residues

are highly conserved. Furthermore, amino acid differences were restricted to three

residues within a disulfide “loop” region of the A chain (Fig. 7.3b, shaded red).

This suggested that amino acid substitutions occur nonrandomly, some changes

affecting biological activity dramatically and other changes having negligible effects

(Anfinsen, 1959). The differences within the disulfide loop are termed “neutral”

changes (Jukes and Cantor, 1969, p. 86; Kimura, 1968). Later, when the biologically

active A and B chain sequences were compared to the functionally less important C

peptide, even more dramatic differences were seen. Kimura (1983) reported that the

C peptide evolves at a rate of 2.4 � 1029 per amino acid site per year, sixfold faster

than the rate for the A and B chains (0.4 � 1029 per amino acid site per year). At

the nucleotide level, the rate of evolution is similarly about sixfold faster for the

DNA region encoding the C peptide (Li, 1997).

As insulin was sequenced from additional species, a surprising finding emerged.

Insulin from guinea pig and a closely related species of the family Caviidae (the

coypu) appeared to evolve seven times faster than insulin from other species. As

shown in the alignment of Fig. 7.3c, the guinea pig insulin sequence differs from

Plants

Insects

Bony fish

Monkeys
Mammals

MyoglobinHemoglobins
AlphaNon-alpha

β γ Gγ Aγ 1α 2α

100 million years ago

500 million years ago

~1 billion years ago

present time

FIGURE 7.2. Dayhoff et al.
(1972) summarized the relation-
ship of the globin subfamilies in
the context of evolutionary time.
The dates of speciation events
were inferred from fossil-based
studies. Used with permission.

Frederick Sanger won the Nobel

Prize in Chemistry (1958) “for his

work on the structure of proteins,

especially that of insulin”

(Q http://nobelprize.org/nobel_

prizes/chemistry/laureates/
1958/). In 1980, he shared the

Nobel Prize in Chemistry (with

Paul Berg and Walter Gilbert) for

his “contributions concerning the

determination of base sequences

in nucleic acids.”
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signal peptide A chainC peptideB chain

1-24 25-54 55-89 90-110

signal peptide

C peptide A chain

B chain

human  MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKT 
mouse  MALLVHFLPLLALLALWEPKPTQAFVKQHLCGPHLVEALYLVCGERGFFYTPKS 
guinea pig MALWMHLLTVLALLALWGPNTGQAFVSRHLCGSNLVETLYSVCQDDGFFYIPKD 

human  RREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN 
mouse  RREVEDPQVEQLELGGSP--GDLQTLALEVARQKRGIVDQCCTSICSLYQLENYCN 
guinea pig RRELEDPQVEQTELGMGLGAGGLQPLALEMALQKRGIVDQCCTGTCTRHQLQSYCN 

RR KR

(a)

(b)

(c)

cow   MALWTRLRPLLALLALWPPPPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
sheep   MALWTRLVPLLALLALWAPAPAHAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
pig   MALWTRLLPLLALLALWAPAPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
human   MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKT
chimpanzee  MALWMRLLPLLVLLALWGPDPASAFVNQHLCGSHLVEALYLVCGERGFFYTPKT
dog   MALWMRLLPLLALLALWAPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
rat   MALWMRFLPLLALLVLWEPKPAQAFVKQHLCGPHLVEALYLVCGERGFFYTPKS
mouse    MALLVHFLPLLALLALWEPKPTQAFVKQHLCGPHLVEALYLVCGERGFFYTPKS
rabbit    MASLAALLPLLALLVLCRLDPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKS
sperm whale   ------------------------FVNQHLCGSHLVEALYLVCGERGFFYTPKA
elephant  ------------------------FVNQHLCGSHLVEALYLVCGERGFFYTPKT
chicken  MALWIRSLPLLALLVFSGPGTSYAAANQHLCGSHLVEALYLVCGERGFFYSPKA

cow   RREVEGPQVGALELAGGPG-----AGGLEGPPQKRGIVEQCCASVCSLYQLENYCN
sheep   RREVEGPQVGALELAGGPG-----AGGLEGPPQKRGIVEQCCAGVCSLYQLENYCN
pig   RREAENPQAGAVELGGGLGG--LQALALEGPPQKRGIVEQCCTSICSLYQLENYCN
human   RREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN 
chimpanzee  RREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
dog   RREVEDLQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTSICSLYQLENYCN
rat   RREVEDPQVPQLELGGGPEAGDLQTLALEVARQKRGIVDQCCTSICSLYQLENYCN
mouse    RREVEDPQVEQLELGGSP--GDLQTLALEVARQKRGIVDQCCTSICSLYQLENYCN
rabbit    RREVEELQVGQAELGGGPGAGGLQPSALELALQKRGIVEQCCTSICSLYQLENYCN
sperm whale  -----------------------------------GIVEQCCTSICSLYQLENYCN
elephant  -----------------------------------GIVEQCCTGVCSLYQLENYCN
chicken  RRDVEQPLVSS-PLRGEAG--VLPFQQEEYEKVKRGIVEQCCHNTCSLYQLENYCN

FIGURE 7.3. Since the 1950s, studies of insulin have facilitated our understanding of molecular
evolution. (a) The human insulin molecule consists of a signal peptide (required for intracellular
transport; amino acid residues 1–24), the B chain, the C peptide, and the A chain. Dibasic resi-
dues (RR, KR) flank the C peptide and are the sites at which proteases cleave the protein. The A
chain and B chain are then covalently linked through disulfide bridges, forming mature insulin.
(b) Multiple sequence alignment of insulin from 12 species. Amino acid substitutions occur in
nonrandom patterns. Note that within the A chain of insulin the amino acid residues are
almost perfectly conserved between different species, except for three divergent columns of
amino acids (A chain, colored region in a “disulfide loop”). However, the rate of nucleotide sub-
stitution is about sixfold higher in the region encoding the intervening C peptide than in the
region encoding the B and A chains (Kimura, 1983), and gaps in the multiple sequence align-
ment are evident here. Disulfide bridges between cysteine residues are indicated by dashed lines.
The accession numbers are NP_000198 (human), P30410 (chimpanzee), NP_062002 (rat),
P01321 (dog), NP_032412 (mouse), P01311 (rabbit), P01315 (pig), P01332 (chicken),
NP_776351 (cow), P01318 (sheep), INEL (elephant), and INWHP (sperm whale). (c)
Guinea pig insulin (Cavia porcellus, accession P01329) evolves about sevenfold faster than insu-
lin from other species. Human, mouse, and guinea pig insulins are aligned. Arrows indicate 16
amino acid positions at which the guinea pig sequence varies from that of human and/or mouse.
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human and mouse insulin at 16 different amino acid positions within the A and B

chains. The explanation for this phenomenon (Jukes, 1979) is that guinea pig and

coypu insulin do not bind two zinc ions, whereas insulin from all the other species

does. There is presumably a strong functional constraint on most insulin molecules

to maintain amino acid residues that are able to complex zinc. Guinea pig and

coypu insulin have less selective constraint.

In the early 1950s, other laboratories sequenced vasopressin and oxytocin and

found that peptides differing by only two amino acid residues have vastly different

biological function (Fig. 7.4). And in 1960 Max Perutz and John Kendrew solved

the structures of hemoglobin and myoglobin. These proteins, both of which serve

as oxygen carriers, are homologous and share related structures (see Fig. 3.1).

Thus, it became clear by the 1960s that there are significant structural and functional

consequences to variation in primary amino acid sequence.

Molecular Clock Hypothesis
In the 1960s, primary amino acid sequence data were accumulated for abundant,

soluble proteins such as hemoglobins, cytochrome c, and fibrinopeptides in a variety

of species. Some proteins, such as cytochrome c from many organisms, were found to

evolve very slowly, while other protein families accumulated many substitutions.

Emil Zuckerkandl and Linus Pauling (1962) as well as Emanuel Margoliash

(1963) proposed the concept of a molecular clock. This hypothesis states that for

every given gene (or protein), the rate of molecular evolution is approximately con-

stant. In a pioneering study, Zuckerkandl and Pauling observed the number of

amino acid differences between human globins, including beta and delta (about 6

differences), beta and gamma (�36 differences), beta and alpha (�78 differences),

and alpha and gamma (�83 differences). They could also compare human to gorilla

(both alpha and beta globins), observing either 2 or 1 differences respectively, and they

knew from fossil evidence that humans and gorillas diverged from a common ancestor

about 11 million years ago. Using this divergence time as a calibration point, they esti-

mated that gene duplications of the common ancestor to beta and delta occurred

44 million years ago (MYA); beta and gamma derived from a common ancestor

260 MYA; alpha and beta 565 MYA; and alpha and gamma 600 MYA.

A related study demonstrating the existence of a molecular clock was performed

by Richard Dickerson in 1971 (Fig. 7.5). He analyzed three proteins for which a

large amount of sequence data were available: cytochrome c, hemoglobins, and

fibrinopeptides. For each, he plotted the relationship between the number of

amino acid differences for a protein in two organisms versus the divergence time

(in millions of years, MY) for the organisms. These divergence times were estimated

from paleontology.

When estimating the number of amino acid (or nucleic acid) differences between

a group of sequences, one needs a model to explain the process by which

Arginine vasporessin
Oxytocin

CYFQNCPRG
CYIQNCPLG

FIGURE 7.4. Human oxytocin (NP_000906, residues 20–28) and arginine vasopressin
(NP_000481, residues 20–28) differ at only two amino acid positions, yet they have vastly differ-
ent biological functions. The comparison of these peptide sequences in the 1960s led to the
appreciation of the importance of primary amino acid sequences in determining protein
function.

Perutz and Kendrew won the 1962

Nobel Prize in Chemistry “for

their studies of the structures of

globular proteins.” You can read

about their accomplishments at

Q http://www.nobel.se/
chemistry/laureates/1962/.

For alignments of these globin

proteins and a summary (includ-

ing the correct number of differ-

ences) of the Zuckerkandl and

Pauling (1962) data, see web

document 7.2 at Q http://www.

bioinfbook.org/chapter7.
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substitutions occur; we will address this subject later in this chapter. We have already

encountered the idea that more mutational events occur than can be observed

directly when we examined PAM matrices (Chapter 3). There, we saw that two

proteins of length 100 that share 50% amino acid identity have sustained an average

of 80 changes (Fig. 3.19). Notably Zuckerkandl and Pauling (1962) had assumed

for the purpose of their analyses that the number of observed differences reflects

the number of substitutions that have actually occurred. However, they acknowl-

edged that the situation is more complicated because multiple substitutions may

occur at any given site: “Thus the number of effective mutational events that have

actually occurred since the a- and b-chains have evolved from their common ancestor

may be significantly greater than is presently apparent” (Zuckerkandl and Pauling,

1962, p. 204). Margoliash and Smith (1965, p. 233) as well as Zuckerkandl and

Pauling (1965, p. 150) proposed a correction for the relationship between observed

changes and actual changes. This correction was employed by Dickerson (1971)

(Fig. 7.5). The y axis of this plot consists of the corrected number of amino acid

changes per 100 residues, m. The value of m is calculated

m

100
¼ �ln 1� n

100

� �
(7:1)

This equation can be restated as

n

100
¼ 1� e� m=100ð Þ (7:2)

FIGURE 7.5. A comparison of the
number of amino acid changes
that occur between proteins
(y axis) versus the time since the
species diverged (x axis) reveals
that individual proteins evolve at
distinct rates. Some proteins, such
as cytochrome c from a variety of
organisms, evolve very slowly;
others such as hemoglobin evolve
at an intermediate rate; and pro-
teins such as fibrinopeptides
undergo substitutions rapidly.
This behavior is described by the
molecular clock hypothesis, pro-
posed by Pauling, Margoliash,
and others in the 1960s. The time
of divergence of various organisms
(arrows) is estimated primarily
from fossil evidence. Abbreviation:
MY, millions of years in the past.
Adapted from Dickerson (1971);
some data points and the standard
deviation measurements are
omitted. Used with permission.
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The correction formula of

Equation 7.1 was written incor-

rectly in the original Margoliash

and Smith (1965) article, but was

used correctly by Dickerson

(1971) and is further discussed by

Fitch and Ayala (1994).
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where m is the total number of amino acid changes that have occurred in a 100 amino

acid segment of a protein and n is the observed number of amino acid changes per

100 residues. This correction adjusts for amino acid changes that occur but are not

directly observed, such as two or more amino acid changes occurring in the same

position (see Fig. 7.16 and the discussion below).

The results of this plot (Fig. 7.5) allow several conclusions (Dickerson, 1971):

† For each protein, the data lie on a straight line. This suggests that the rate of

change of amino acid sequence has remained constant for each protein.

† The average rates of change are distinctly different for each protein family. For

example, fibrinopeptides evolve with a much higher rate of substitution. The

time (in millions of years) for a 1% change in amino acid sequence to occur

between two divergent lines of evolution is 20.0 MY for cytochrome c, 5.8

MY for hemoglobin, and 1.1 MY for fibrinopeptides.

† The observed variations in rate of change between protein families reflect

functional constraints imposed by natural selection.

TABLE 7-1 Ratesof AminoAcid SubstitutionsperAminoAcid Siteper109 Years (l � 109) in
Various Proteins
Protein Rate Protein Rate

Fibrinopeptides 9.0 Thyrotropin beta chain 0.74

Growth hormone 3.7 Parathyrin 0.73

Immunoglobulin (Ig) kappa chain
C region

3.7 Parvalbumin 0.70

Kappa casein 3.3 Trypsin 0.59

Ig gamma chain C region 3.1 Melanotropin beta 0.56

Lutropin beta chain 3.0 Alpha crystallin A chain 0.50

Ig lambda chain C region 2.7 Endorphin 0.48

Lactalbumin 2.7 Cytochrome b5 0.45

Epidermal growth factor 2.6 Insulin (except guinea pig and coypu) 0.44

Somatotropin 2.5 Calcitonin 0.43

Pancreatic ribonuclease 2.1 Neurophysin 2 0.36

Serum albumin 1.9 Plastocyanin 0.35

Phospholipase A2 1.9 Lactate dehydrogenase 0.34

Prolactin 1.7 Adenylate kinase 0.32

Carbonic anhydrase C 1.6 Cytochrome c 0.22

Hemoglobin alpha chain 1.2 Troponin C, skeletal muscle 0.15

Hemoglobin beta chain 1.2 Alpha crystallin B chain 0.15

Gastrin 0.98 Glucagon 0.12

Lysozyme 0.98 Glutamate dehydrogenase 0.09

Myoglobin 0.89 Histone H2B 0.09

Amyloid AA 0.87 Histone H2A 0.05

Nerve growth factor 0.85 Histone H3 0.014

Acid proteases 0.84 Ubiquitin 0.010

Myelin basic protein 0.74 Histone H4 0.010

Dayhoff (1978) expressed these rates as accepted point mutations (PAMs) per 100 amino acid residues that
are estimated to have occurred in 100 million years of evolution (compare Box 3.3). Thus, the rate of
mutation acceptance for serum albumin is 19 PAMs per 100 million years.
Source: Dayhoff (1978, p. 3) as adapted by Nei (1987, p. 50). Used with permission.
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The rate of amino acid substitution is measured by the number of substitutions

per amino acid site per year, l. Some values for l are given in Table 7.1. Note that

some proteins such as histones and ubiquitin undergo substitutions extraordinarily

slowly. For reference, Table 7.2 lists the 20 most conserved proteins present in the

Homo sapiens, Caenorhabditis elegans (nematode), and Saccharomyces cerevisiae

(yeast) proteomes as determined by reciprocal BLAST searches.

Note that we say that histones undergo substitution very slowly, but we do not say

that they mutate very slowly. Mutation is the biochemical process that results in a

change in sequence. For example, a polymerase copies DNA (or RNA) with a par-

ticular mutation rate. Substitution is the observed change in nucleic acid or protein

sequences (e.g., between various histones). The observed substitutions that are fixed

in a population occur at a rate that reflects both mutation and selection, the process

by which characters are selected for (or against) in evolution. If the rate of mutation of

the DNA or RNA polymerases among an organism’s genes is relatively constant, then

variation in substitution rates among those genes may be due primarily to positive or

negative selection. In the language of Susumu Ohno (1970), some substitutions

are forbidden because they are deleterious to the organism and are selected against.

For example, substitutions in histones are almost always not tolerated, that is, they

are lethal.

TABLE 7-2 TwentyMost Conserved Proteins Present in C. Elegans (worm), H. Sapiens, and
S. Cerevisiae (Yeast)

Protein

Pairwise Percent Identity

Worm/
Human

Worm/
Yeast

Yeast/
Human

1. H4 histone 99 91 92

2. H3.3 histone 99 89 90

3. Actin B 98 88 89

4. Ubiquitin 98 95 96

5. Calmodulin 96 59 58

6. Tubulin 2 94 75 76

7. Ubiquitin-conjugating enzyme UBC4 93 80 80

8. Clathrin coat associated protein 93 48 48

9. Tubulin 93 73 74

10. ADP ribosylation factor 1 93 77 77

11. Dynein light chain 1 92 51 50

12. GTP-binding nuclear protein RAN 89 82 81

13. Ser/Thr protein phosphatase PP1g 89 84 85

14. Ser/Thr protein phosphatase PP2b 89 74 76

15. Ubiquitin-conjugating enzyme
UBE2 N

88 67 70

16. Histone H2A.Z 88 69 69

17. Histone H2A.2 87 79 76

18. DIM1P homolog 86 61 65

19. G25K GTP-binding protein 86 76 80

20. 40S ribosomal protein S15A 86 76 77

Note: The data are adapted from Peer Bork and colleagues (Copley et al., 1999), who performed reciprocal
BLAST searches against the completed proteomes of these three organisms, as available at the time. As we
will see in Chapter 16, genome and proteome annotation change substantiallyover time. Used with permission.
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A significant implication of the molecular clock hypothesis is that if protein

sequences evolve at constant rates, then they can be used to estimate the time that

the sequences diverged. In this way phylogenetic relationships can be established

between organisms. This is analogous to the dating of geological specimens using

radioactive decay. An example of how the molecular clock may be used is given in

Box 7.2.

The molecular clock hypothesis does not apply to all proteins, and a variety of

exceptions and caveats have been noted:

† The rate of molecular evolution varies among different organisms. For

example, some viral sequences tend to change extremely rapidly compared

to other life forms.

† The clock varies among different genes (see Table 7.1) and across different

parts of an individual gene (see, e.g., Fig. 7.3 and see the discussion on the

gamma parameter below). The main force guiding the molecular clock

is selection. Rodents tend to have a faster molecular clock than primates;

this may be because their generation times are shorter and they have high

metabolic rates.

Box 7.2
Rate of Nucleotide Substitution r and Time of Divergence T

The rate of nucleotide substitution r is the number of nucleotide substitutions

that occur per site per year. Similar calculations can be made for the rate of amino

acid substitutions. These rates vary considerably and it is of interest to

characterize whether a region evolves slowly or rapidly. The rate is given by

r ¼ K

2T
(1)

Here T is the time of divergence of two extant sequences from a common

ancestor. 2T is given in the equation to reflect the time of divergence from a

common ancestor on two separate lineages, as depicted in Fig. 7.16a. T can

sometimes be established based on fossil (paleontological) data. As an example,

the lineages leading to modern humans and rodents diverged about 80 million

years ago. K is the number of substitutions per site. The alpha globins from rat

and human differ by 0.093 nonsynonymous substitutions per site (Graur and Li,

2000); as discussed below, nonsynonymous changes are DNA substitutions in

coding regions that result in a change in the amino acid that is specified. Given

values for K and T we can estimate r:

r ¼ 0:093 substitutions=site

2 8� 107 yearsð Þ (2)

Thus we calculate that the alpha chain of hemoglobin undergoes 0.58 � 1029

nonsynonymous nucleotide substitutions per site per year. We can also use

Equation (1) to estimate the time of divergence of two sequences, given values for

r and K; T is given by K/2r.

Source: Graur and Li (2000).

We will discuss the duplication of

an entire genome, followed by

subsequent, rapid mutation and

gene loss, in Chapters 16 (the

eukaryotic chromosome), 17 (on

the yeast S. cerevisiae) and 18

(eukaryotic chromosomes).
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† The clock is only applicable when a gene in question retains its function over

evolutionary time. Genes may become nonfunctional (e.g., pseudogenes)

leading to rapid changes in nucleotide (and amino acid) sequence. The rate

of evolution sometimes accelerates after gene duplication occurs. For

example, after gene duplication generated alpha and beta globins, high rates

of amino acid substitution occurred that presumably altered the function of

the gene, allowing some globin proteins to be expressed at highly specific

developmental stages.

Despite these issues, the molecular clock hypothesis has proven useful and valid

in many cases to which it is applied. Fitch and Ayala (1994) described a reasonably

accurate molecular clock for Cu,Zn superoxide dismutase from a group of 67 protein

sequences. However, obtaining correct inferences from the clock required tuning a

variety of parameters.

As one practical approach to testing whether a molecular sequence has

clocklike behavior, we can use the relative rate test of Tajima (1993) (Box 7.3).

For sequences A, B, and C of the same protein or DNA/RNA from three species,

let A and B be from two species from which we wish to compare the relative rates of

evolution. Let C be a sequence from an outgroup, and let O be the common ancestor

of A and B (Fig. 7.6a). Tajima’s test determines whether there is accelerated evolution

in lineage A or B, in which case we reject the null hypothesis that A and B exhibit equal

evolutionary rates. Given the observed number of substitutions in sequence pairs AB,

AC, and BC we can infer distances OA, OB, and OC and thus test the null hypothesis

that the relative rates OA and OB are the same (Fig. 7.6b, c, and d).

Box 7.3
Tajima’s Relative Rate Test

Tajima (1993) introduced a test for whether DNA or protein sequences in two

lineages (such as human and chimpanzee) are undergoing evolution at equal

rates. This is a test of the molecular clock: the null hypothesis is that there is an

equal rate, and if we reject the null hypothesis at the 0.05 level then one of the

lineages is evolving significantly faster or slower. For three protein or DNA

sequences A, B, C, let A and B be from two species we wish to compare and C is

from an outgroup. For example, we can compare human and chimpanzee

mitochondrial DNA using orangutan mitochondrial DNA as an outgroup.

The relationships of A, B, and the outgroup C are shown in the form of a tree in

Fig. 7.6a. The observed number of sites nijk have the nucleotides i, j, k,

respectively. The expectation of nijk must equal that of njik; that is,

E(nijk) ¼ E(n jik)

If this equality occurs, the rate is constant per year; if it does not hold, the rate

is not constant. We can measure the number of sites m1 in which residues in

sequence A differ from those in B and C; similarly m2 corresponds to sites in B

that are different than A and C. Given that C is an outgroup, the expectation of m1

must equal the expectation of m2, that is,

E(m1) ¼ E(m2)
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Tajima’s relative rate test is implemented in MEGA software program (Tamura

et al., 2007; Kumar et al., 2008). We will use MEGA for phylogenetic analyses

later in this chapter. We provide a specific, detailed example of using the test in

Problems/Computer Lab 7-1, including an explanation of how to enter the

sequences into MEGA, align them, and perform Tajima’s test.

Positive and Negative Selection
Darwin’s theory of evolution suggests that, at the phenotypic level, traits in a popu-

lation that enhance survival are selected for (positive selection), while traits that

reduce fitness are selected against (negative selection). For example, among a

group of giraffes millions of years in the past, those giraffes that had longer necks

were able to reach higher foliage and were more reproductively successful than

their shorter-necked group members, that is, there was positive selection for height.

At the molecular level, a conventional evolutionary point of view is that positive

and negative selection also operate on DNA sequences. A gene encoding an enzyme

may duplicate (see Chapters 16 and 17), and then subsequent nucleotide changes

may allow one of the duplicated genes to encode an enzyme with a novel function

that is advantageous and hence selected for. This process of positive selection is

thought to have occurred on two occasions in the evolution of lysozyme, an

enzyme that breaks down bacterial peptidoglycan linkages and thus serves as an anti-

microbial protein in sources such as milk, saliva, and tears. About 25 million years

ago the lysozyme gene duplicated and assumed a novel digestive function in stomach

in the ancestor of goats, cows, and deer. The emergence of this novel function

This equality is tested with a chi-square analysis:

x2 ¼ m1 �m2ð Þ
m1 þm2

2

This test results in a p value. If p , 0.05, the molecular evolutionary clock

hypothesis is rejected at the 5% level, regardless of the substitution model.

Tajima’s relative rate test is implemented in Molecular Evolutionary Genetics

Analysis (MEGA) software (Tamura et al., 2007). For the mitochondrial

sequences analyzed in Fig. 7.6 there were 31 unique sequence differences in A

(human) and 49 unique differences in B (chimpanzee) so the x2 test statistic was

4.05. This was obtained from:

x2 ¼ 31� 49ð Þ2

31þ 49

This corresponds to a P ¼ 0.04 with one degree of freedom, suggesting that we

may reject the null hypothesis of equal rates between lineages. In using Tajima’s

test it is important to select an outgroup that is an appropriate evolutionary

distance from the two organisms you are comparing. For example the bonobo or

pygmy chimpanzee (Pan paniscus) may be too closely related to human and

chimpanzee, as all three species diverged about 5 to 7 million years ago; it is a

problem for an intended outgroup to have the properties of an ingroup. At the

other extreme, rat or mouse are too divergent as they diverged from the primate

lineage about 80 million years ago. Suitable choices may include primates such as

orangutan or gorilla; one wants to select the closest true outgroup that is available.

MEGA is available from Q http://
www.megasoftware.net/.
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FIGURE 7.6. A relative rate test to
determine if two sequences follow
the molecular clock hypothesis of
approximately constant rates of
amino acid or nucleotide substi-
tution over evolutionary time. (a)
Tajima (1993) proposed a relative
rate test to determine whether
protein or nucleic acid sequences
from two organisms (A and B)
have evolved at a similar relative
rate. A and B share a common
ancestor (O), and the sequence of
an outgroup (C) is known. By
measuring the substitution rates
AB, AC, and BC it is possible to
infer the rates OA and OB and to
perform a chi square (x2) test to
determine whether these rates are
comparable (the null hypothesis)
or whether one lineage has evolved
at a relative accelerated or deceler-
ated rate, thus violating the beha-
vior of a molecular clock. Details
of this test are presented in
Tajima (1993) and Nei and
Kumar (2000, pp. 193–195). (b)
Tajima’s test is implemented in
MEGA software. The pull-down
menu for phylogenetic analysis is
shown. (c) The test in MEGA
allows the user to specify groups
A, B, and C (outgroup). In this
example mitochondrial DNA
sequences from human and chim-
panzee are compared using oran-
gutan DNA as an outgroup. (d)
The output consists of a table listing
the number of substitutions and an
associated p value from a x2 test. In
this example the p value is ,0.05
suggesting that the null hypothesis
can be rejected and the human
and chimpanzee sequences do not
exhibit molecular clock-like beha-
vior. This specific example is pre-
sented in detail in problem 7-1 at
the end of this chapter.

A B C

O

(a)

(b)

(c)

(d)
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occurred independently in leaf-eating monkeys such as the langur some 15 million

years ago (Jollès et al., 1990). In each of these instances the rate of amino acid repla-

cement increased due to positive selection as the lysozyme assumed a novel function.

Other examples of positive selection include the primate ribonuclease genes (Zhang

and Gu, 1998) and the MEDEA genes in plants (Spillane et al., 2007).

There are several ways to assess whether selection has occurred in sequence data.

One approach relies on the fact that the portion of DNA that codes for a protein can

have both synonymous and nonsynonymous substitutions. For a nucleotide change

in a given codon, a synonymous substitution does not result in a change in the

amino acid that is specified. For example, consider an alignment of human, chimpan-

zee, mouse, and dog beta globin at their 50 ends (amino-terminals of the proteins)

(Fig. 7.7). In the third codon the nucleotides CAT in the human and dog sequences

encode a histidine. Changing the third position to yield CAC in the chimpanzee and

mouse sequences does not alter the amino acid that is encoded. Other synonymous

changes are evident (Fig. 7.7, red-colored nucleotides). A nonsynonymous substi-

tution does change the amino acid that is specified. For example, human and chim-

panzee beta globin have a CCT codon that specifies a proline, but the corresponding

canine sequence has a single substitution resulting in a codon (GCT) that specifies an

alanine (Fig. 7.11, codon 6).

Comparison of the rates of nonsynonymous substitution per nonsynonymous

site (d̂ N) versus synonymous substitution per synonymous site (d̂ S) may reveal evi-

dence of positive or negative selection. If d̂ S is greater than d̂ N, this suggests that

human                     M   V   H   L   T   P   E   E   K   S   A   V

chimpanzee                M   V   H   L   T   P   E   E   K   S   A   V

mouse                     M   V   H   L   T   D   A   E   K   S   A   V

dog                       M   V   H   L   T   A   E   E   K   S   L   V

human      5’ AACAGACACC ATG GTG CAT CTG ACT CCT GAG GAG AAG TCT GCC GTT 3’

chimpanzee 5’ AACAGACACC ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT 3’

mouse      5’ AACAGACATC ATG GTG CAC CTG ACT GAT GCT GAG AAG TCT GCT GTC 3’

dog        5’ AACAGACACC ATG GTG CAT CTG ACT GCT GAA GAG AAG AGT CTT GTC 3’

codon                     1   2   3   4   5   6   7   8   9  10  11  12

FIGURE 7.7. Phylogenetic trees can be constructed using DNA, RNA, or protein sequence data.
Often, the DNA sequence is more informative than protein in phylogenetic analysis. As an
example, the sequences of beta globin from three species are aligned at the 50 end of the DNA
(with the corresponding amino-terminals of the proteins). In the 50- and 30-untranslated regions,
where no protein is encoded, there is typically less selective pressure to maintain particular
nucleotide residues. (Some regulatory elements may be highly conserved.) Here, just one nucleo-
tide position varies (arrow). Within the protein-coding region, there are variant amino acid resi-
dues at amino acid positions 6, 7, and 11 (see black arrowheads). These variants may be
informative in performing phylogeny. However, there is an even greater number of informative
nucleotide changes, restricting our attention to the coding region. There are seven synonymous
nucleotide changes (nucleotides labeled red; see codons 3, 7, 10–12) that do not cause a different
amino acid to be specified. There are also seven nonsynonymous changes that do cause an amino
acid change (red arrowheads). For one of these (codon 6 of the dog sequence), a single nucleotide
change of C!G, relative to the primate sequences, accounts for the amino acid change. For three
other nonsynonymous codons, two nucleotides are changed relative to the primate sequences. The
beta globin sequences are from human (GenBank accession NM_000518), chimpanzee (Pan
troglodytes; XM_508242), mouse (Mus musculus; NM_016956), and dog (Canis lupus famil-
iaris; XM_537902).

Refer to the genetic code in

Box 3.6.
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the DNA sequence is under negative or purifying selection. Negative selection is

selection that limits change in a corresponding amino acid sequence; this occurs

when some aspect of the structure and/or function of a protein is critical and

cannot tolerate substitutions. When d̂ N is greater than d̂ S, this suggests that positive

selection occurs. An example of positive selection is with a duplicated gene that is

under pressure to evolve new functions.

A variety of computer programs assess the ratio of synonymous to nonsynon-

ymous substitutions. One is Synonymous Non-synonymous Analysis Program

(SNAP), which requires as its input codon-aligned nucleotide sequences (Korber,

2000). Datamonkey is a suite of tools including robust maximum likelihood

approaches to determining positive or negative selection (Pond and Frost, 2005).

Another program is MEGA (Tamura et al., 2007). Upon entering a group of

nucleotide coding sequences, MEGA employs the Nei and Gojobori (1986)

method to test the null hypothesis that the sequences are under either positive,

negative, or neutral selection.

There is considerable interest in measuring positive or negative selection on a

genome-wide basis. Many approaches have been adopted (Sabeti et al., 2006;

Nielsen, 2005). For example, Bustamante et al. (2005) studied the DNA sequence

of 11,000 genes in 39 individuals and reported rapid amino acid evolution at 9%

of the informative loci. For many of the genomes that have recently been sequenced

(e.g., human, chimpanzee, dog, chicken, rat), a description of those genes that are

under positive selection is a basic part of the genome analysis (see Chapter 18).

Positive and negative can also be studied on a highly compressed time scale in

viruses. In 1978, 500 women were inadvertently infected with hepatitis C virus

(HCV). Stuart Ray and colleagues (2005) sequenced a 5.2 kilobase portion of the

HCV genome from the original inoculum and from 22 women about 20 years after

the infection. They showed loci with both positive and negative selection reflecting

the evolution of the virus to optimize its fitness in each host. For example, amino

acid substitutions in known epitopes diverged from the consensus sequence in individ-

uals having the human leukocyte antigen (HLA) allele for that epitope, indicating a

mechanism of immune selection. In another study Cox et al. (2005) studied sequence

variation of HCV both before, during, and after HCV infection. They showed that

amino acid substitutions reflect escape from T cell recognition; in those individuals

with persistent infection, there were selection pressures on epitopes that resulted in

nonsynonymous changes. The Ray et al. (2005) and Cox et al. (2005) results provide

examples of the usefulness of longitudinal studies in phylogeny, and they reveal mech-

anisms through which positive and natural selection shape the fitness of viruses.

Neutral Theory of Molecular Evolution
There is a tremendous amount of DNA polymorphism in all species that is difficult to

account for by conventional natural selection. We will examine this throughout the

tree of life in the last third of this book. In Chapter 16, we examine single nucleotide

polymorphisms (SNPs), an extremely common form of polymorphism that does not

appear to be under selection in most instances. Similarly, many chromosomal copy

number variants occur in apparently normal individuals (Chapter 16). These involve

multiple regions of up to millions of base pairs of DNA that are deleted or duplicated,

and the majority of copy number variants appear to be sporadic, benign, and not

under positive or negative selective pressure.

SNAP is available at the HIV

database website (Q http://www.

hiv.lanl.gov) in the tools menu.

Web document 7.3 introduces 12

globin DNA coding sequences

(11 myoglobin orthologs plus one

cytoglobin sequence as an out-

group); see Q http://www.

bioinfbook.org/chapter7. That

file includes multiple sequence

alignments of those sequences. We

will use these sequences as

examples later in this chapter. Web

document 7.4 provides an

example of how to use four of

those globin coding sequences to

test for selection using SNAP

software, while web document 7.5

shows an example of tests for

selection in MEGA software.

Datamonkey is available at

Q http://www.datamonkey.org/.
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In the decades up to the 1960s the prevailing model of molecular evolution was

that most changes in genes are selected for or against in a Darwinian sense. Motoo

Kimura (1968, 1983) proposed a different model to explain evolution at the DNA

level. Kimura (1968) noted that the rate of amino acid substitution averages approxi-

mately one change per 28 � 106 years for proteins of 100 residues. He further esti-

mated that the corresponding rate of nucleotide substitution must be extremely

high (one base pair of DNA replaced in the genome of a population every 2 years

on average).

Kimura’s conclusion was that most observed DNA substitutions must be neutral

or nearly neutral, and that the main cause of evolutionary change (or variability) at

the molecular level is random drift of mutant alleles. Most nonsynonymous

mutations are deleterious, and thus are not observed as substitutions in the

population. Under this model, called the neutral theory of evolution, positive

Darwinian selection plays an extremely limited role. Indeed, the existence of a

molecular clock makes sense in the context of the neutral hypothesis because most

amino acid substitutions are neutral. (Thus, substitutions are tolerated by natural

selection to change in a manner that has clock-like properties. If substitutions

occurred primarily in the context of positive or negative selection, it is unlikely that

they could account for clock-like evolution.) In the decades since his 1983

publication, the neutral theory continues to be tested in a variety of organisms. We

will explore some of these studies when we consider the eukaryotic chromosome in

Chapter 16.

MOLECULAR PHYLOGENY: PROPERTIES OF TREES

Molecular phylogeny is the study of the evolutionary relationships among organisms

or among molecules using the techniques of molecular biology. Many other tech-

niques are used to study evolution, including morphology, anatomy, paleontology,

and physiology. We will focus on phylogenetic trees using molecular sequence

data. We begin with an explanation of the nomenclature used to describe trees.

There are two main kinds of information inherent in any phylogenetic tree: the top-

ology and the branch lengths. It is necessary to introduce a variety of terms that are

used to characterize trees.

Let us first define the main parts of a tree and the main types of trees. A phylo-

genetic tree is a graph composed of branches and nodes (Fig. 7.8a). Only one branch

(also called an edge) connects any two nodes. The nodes represent the taxonomic

units (taxa or taxons); the node (from the Latin for “knot”) is the intersection or ter-

minating point of two or more branches. For us, taxa will typically be protein

sequences. An operational taxonomic unit (OTU) is an extant taxon present at an

external node, or leaf; the OTUs are the available nucleic acid or protein sequences

that we are analyzing in a tree.

Consider the two trees in Figs. 7.8b and c. Each tree consists of five OTUs

(labeled A, B, C, D, and E). These five OTUs define five external nodes. In addition,

there are internal nodes at positions F, G, H, and I. Each internal node represents an

inferred ancestor of the OTUs. Imagine that the tree is of five globins, and A and B

correspond to human and rat beta globin. The internal node that connects to A and B

represents an ancestral sequence that existed in an organism that predated the diver-

gence of primates and rodents some 80 MYA.

Kimura (1968) based his calcu-

lations on substitution rates

measured within the families of

alpha and beta globin, cytochrome

c, and triosephosphate dehydro-

genase proteins.

The topology of a tree defines the

relationships of the proteins (or

other objects) that are represented

in the tree. For example, the top-

ology shows the common ancestor

of two homologous protein

sequences. The branch lengths

sometimes (but not always) reflect

the degree of relatedness of the

objects in the tree.

In our discussion of trees, it is

assumed that the raw data may

consist of DNA, RNA, or protein

sequence data. These data are

presented as a multiple sequence

alignment.
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Branches define the topology of the tree, that is, the relationships among the taxa

in terms of ancestry. In some trees, the branch length represents the number of amino

acid changes that have occurred in that branch. Branches of a tree are also called

edges. In the trees of Fig. 7.8, the branches leading to each of the OTUs are called

external branches (or peripheral branches). The branches leading to F, G, H, and

I are called internal branches.

In the example of Fig. 7.8b, the branches are unscaled. This implies that they

are not proportional to the number of changes. This form of presenting a tree (called

a cladogram) has the advantage of aligning the OTUs neatly in a vertical column.

This may be especially useful if the tree has many dozens of OTUs. Also, it is possible

to infer a time scale on this tree if we assume particular dates of divergence.

In the tree of Fig. 7.8c, the same raw data are used to generate the tree, but the

branch lengths are now scaled. Thus, the branch lengths are proportional to the

FIGURE 7.8. (a) Phylogenetic
trees contain nodes and branches.
A node may be external, internal,
or at the root of a tree (the root is
defined below). A branch connects
two nodes. The nodes represent
taxa or taxonomic units; the taxa
that provide observable features,
such as existing protein sequences
or morphological features, are
called operational taxonomic
units (OTUs). Phylogenetic trees
may be (b) unscaled or (c) scaled.
In an unscaled tree, the branch
lengths are not proportional to the
number of amino acid (or nucleo-
tide) changes. For example, note
that branches FA (two units) and
FB (one unit) have the same appar-
ent length. Here, operational taxo-
nomic units (ABCDE) are neatly
aligned in a column at the tips of
the tree. In the scaled tree in (b),
the branch lengths are proportional
to the number of substitutions.
With this topology it is much
easier to visualize the relatedness
of proteins (or genes) in the tree.
The x axis represents distance
and/or time (in units such as
millions of years).

one unit

(b) (c)
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number of amino acid (or nucleotide) changes that occurred between the sequences.

This format (called a phylogram) has the helpful feature of conveying a clear visual

idea of the relatedness of different proteins within the tree. If one assumes a constant

molecular clock, then time and distance are proportional.

An internal node is bifurcating if it has only two immediate descendant lineages

(branches). Bifurcating trees are also called binary or dichotomous; any branch that

divides splits into two daughter branches. A tree is multifurcating if it has a node with

more than two immediate descendants (Fig. 7.9, ABC).

A clade is a group of all the taxa that have been derived from a common ancestor

plus the common ancestor itself. A clade is also called a monophyletic group. In our

context, a clade is a set of proteins that form a group within a tree. In the example of

either tree in Figs. 7.8b and c, C, D, and H form a clade, but B is not a member of this

clade. A larger clade is defined by C, D, H, A, B, F, and G. The OTU labeled E is not

a member of this larger clade. The taxonomic group ABF that shares a common

ancestor (G) with another taxonomic group (CDH) is paraphyletic.

Tree Roots
A phylogenetic tree has a root representing a most recent common ancestor of all the

sequences. Often this root is not known today, and some tree-making algorithms do

not provide conjectures about placement of a root. The alternative to a rooted tree is

an unrooted tree. An unrooted tree specifies the relationships among the OTUs.

However, it does not define the evolutionary path completely or make assumptions

about common ancestors. Figure 7.10 shows a binary tree with five OTUs that

is either unrooted (Fig. 7.10a) or rooted (Fig. 7.10b). The OTUs (extant taxons,

leaves) are numbered 1 to 5. Some OTUs can be swapped (exchanged) without alter-

ing the topology of the tree, such as 4 and 5 in either tree. A rule is that OTUs or

clades that share an immediate ancestor node can be rotated on that node. But

others cannot be swapped, such as 1 and 2. Note that in the unrooted tree the direc-

tion of time is undetermined.

A

C

C

D

E

B

FIGURE 7.9. A phylogenetic tree
is said to be multifurcating or poly-
tomous if it has a node with three or
more branches (see the node lead-
ing to taxa ABC). It is common
to make a multifurcating tree
when the available data do not pro-
vide enough information to define
a tree with only bifurcating nodes.

A multifurcation is also called a

polytomy. Multifurcating trees are

by definition nonbinary. For an

example of a multifurcating tree,

see Rokas et al. (2005). They

reported that many metazoan

(animal) phyla are unresolved,

reflecting a temporal compression

due to the rapid radiation of many

animal groups. Philippe and

colleagues (Baurain et al., 2007)

suggested that such multifurca-

tions occur in a phylogenetic tree

because of insufficient sampling.
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The principal way to root a tree is to specify an outgroup. In Fig. 7.10c, imagine

that sequences 1 to 5 are mammalian myoglobin orthologs and that the sequence of a

homologous bacterial or invertebrate protein (OTU 6) is obtained. This invertebrate

sequence is clearly derived from a common ancestor that predates the appearance of

all the other OTUs. Thus, it can be used to define the location of the root.

You can select an OTU in order to place a root by identifying the most closely

related outgroup. A second way to place a root is through midpoint rooting. Here,

the longest branch is determined (such as the branch between internal nodes 7

and 8 in Fig. 7.10a). This longest branch is presumed to be the most reasonable

site for a root.

Enumerating Trees and Selecting Search Strategies
The number of possible trees to describe the relationships of a dozen protein

sequences is staggeringly large. It is important to know the number of possible

trees for any tree you are making. There is only one “true” tree representing the evol-

utionary path by which molecular sequences (or even species) evolved. The number

of potential trees is useful in deciding which tree-making algorithms to apply.

The number of possible rooted and unrooted trees is described in Box 7.4. For

two OTUs, there is only one tree possible. For three taxa, it is possible to construct

either one unrooted tree or three different rooted trees (Fig. 7.11). For four taxa, the

number of possible trees rises to 3 unrooted trees or 15 rooted trees (Fig. 7.12).

FIGURE 7.10. A phylogenetic tree
may be (a) unrooted or (b) rooted.
The same raw data are used to gen-
erate each type of tree in (a) and
(b). The placement of a root
implies a hypothesis about the
common ancestor of all members
of the tree. When this information
is not known, an unrooted tree
may be more appropriate. Rooting
of a tree may be accomplished in
two ways. In midpoint rooting the
longest branch (here, the branch
connecting nodes 7 and 8 in [b])
may be used to define the most
likely place to add a root. (c) A
single taxon from a phylogeneti-
cally distant organism is added to
the data set (taxon 6) and used to
define an outgroup in a new tree.
(In [c] we label the six OTUs
1 to 6, and then label the internal
nodes 7 to 11.) An invertebrate
lipocalin is an example of a
taxon that may form an outgroup
relative to a series of mammalian
lipocalins.

4

5

87

1

2

3

6

(a)
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past
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(c)

1
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8 9

10

root

6

root

11

outgroup

In web document 7.3 we include

human cytoglobin as an outgroup

for 12 closely related myoglobin

DNA sequences.

Some phylogeny projects involve

the generation of trees for

thousands of taxa. See the Deep

Green plant project (Q http://
ucjeps.berkeley.edu/bryolab/
GPphylo/). The Ribosomal

Database (Q http://rdp.cme.msu.

edu/) includes an analysis of over

300,000 aligned sequences. For

typical analyses, you may analyze

several dozen taxa. If you want to

make a phylogenetic tree with the

globins that are currently in Pfam

(version 21.0), you could use the

76 proteins available in the seed

alignment or all 2039 proteins

available in the full alignment.
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An exhaustive search examines all possible trees and selects the one with the most

optimal features, such as the shortest overall sum of the branch lengths. An important

practical limit is reached at around 12 sequences, for which there are over 6.5 � 108

possible unrooted trees and 1.3 � 1010 rooted trees. For about 12 texa (or fewer) it is

possible for a standard desktop computer to perform exhaustive searches for which

all possible trees are evaluated. For example, PAUP software (introduced below)

sets an upper limit of 12 taxa to perform an exhaustive search.

The branch-and-bound method provides an exact algorithm for identifying the

optimal tree (or trees) without performing an exhaustive search (Penny et al.,

1982; reviewed in Felsenstein, 2004). In one variant of this approach three taxa are

Box 7.4
Number of Rooted and Unrooted Trees

The number of bifurcating unrooted trees (NU) for n OTUs (n � 3) is given by

Cavalli-Sforza and Edwards (1967):

NU ¼
2n� 5ð Þ!

2n�3 n� 3ð Þ!

The number of bifurcating rooted trees (NR) for n OTUs (n � 2) is

NR ¼
2n� 3ð Þ!

2n�2 n� 2ð Þ!

For example, for four OTUs, NR equals (8 2 3)!/(22)(2)! ¼ 5!/8 ¼ 15. The

number of possible rooted and unrooted trees (up to 50 OTUs) is as follows. The

values were calculated using MATLABw software (MathWorks).

No. of OTUs No. of Rooted Trees No. of Unrooted Trees

2 1 1

3 3 1

4 15 3

5 105 15

6 945 105

7 10,395 945

8 135,135 10,395

9 2,027,025 135,135

10 34,489,707 2,027,025

15 213,458,046,676,875 8 � 1012

20 8 � 1021 2 � 1020

50 2.8 � 1076 3 � 1074

To give a sense of the immense number of possible trees corresponding to just

a few dozen taxa, there are on the order of 1079 protons in the universe.
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FIGURE 7.11. (a) For three oper-
ational taxonomic units (such as
three aligned protein sequences
1–3), there is one possible
unrooted tree. (b) Any of these
edges may be used to select a root
(see arrows), from which (c) three
corresponding rooted trees are
possible.
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1 2 3

(a)

(b)

1 3 2 2 3 1
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FIGURE 7.12. For four oper-
ational taxonomic units (such as
four aligned protein sequences
1–4), there are (a) 3 possible
unrooted trees and (b) 15 possible
rooted trees. Only one of these is a
true tree in which the topology
accurately describes the evolution-
ary process by which these
sequences evolved.
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used to make a tree; only one unrooted tree is possible. A fourth taxon is added,

creating three possible trees (as shown in Fig. 7.12a). Upon addition of a fifth

taxon there are three times five (i.e., 15) possible trees. By considering the tree in

each group having the shortest branch lengths, it is possible to efficiently identify can-

didates for the optimal tree(s). This allows a strategy of not performing exhaustive

searches for trees (or subtrees) having a worse score than the potential optimal

tree. The name of this method refers to a boundary that is reached once the search

process has identified a subtree with a suboptimal score.

For more than a dozen sequences it is generally necessary to use a heuristic

algorithm to identify an optimal tree (or trees). A heuristic algorithm explores a

subset of all possible trees, discarding vast numbers of trees that have a topology

that is unlikely to be useful. In this way it is possible to create phylogenetic trees

having hundreds or even thousands of protein (or DNA) sequences. As an example

of how a heuristic algorithm works, consider a data set in which the algorithm seeks a

tree with the shortest total branch lengths (i.e., the most parsimonious tree). This

search occurs without evaluating all possible trees, but instead by performing a

series of rearrangements of the topology. Once a tree with a particular score is

obtained, the algorithm can establish that score as an upper limit and discard all

trees for which rearrangements are unlikely to yield a shorter tree.

A variety of heuristic approaches are available. Stepwise addition involves the

addition of taxa (as described for branch-and-bound) with subsequent branch swap-

ping on the shortest tree(s). The choice of which three taxa are joined initially may be

determined arbitrarily (e.g., by the order in which the sequences are input), randomly,

A

B

C D
E

F

G

A

B

C D

E

F

G

A

C

B G
F

D

E

(a)

(b)

(c)

FIGURE 7.13. Branch swapping
using the tree bisection reconnec-
tion (TBR) approach. After a tree
is made it is bisected along a
branch to form two subtrees.
These are reconnected by joining
one branch from each subtree. All
possible bisections are evaluated,
as well as all possible reconnection
patterns. The goal is to identify the
most optimal tree(s). Adapted from
the PAUP user’s manual. Used
with permission.

By analogy to the

branch-and-bound approach, the

Needleman–Wunsch method

identifies the optimal subpaths in a

pairwise alignment without

exhaustively evaluating all possible

subpaths (Chapter 3).
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or based on which three taxa are most closely related. Another heuristic algorithm is

branch swapping. In the “tree bisection and reconnection” version, a tree is bisected

along a branch, generating two subtrees. These are reconnected by systematically

joining all possible pairs of branches with one branch originating from each subtree

(Fig. 7.13). Heuristic algorithms have an inherent trade-off between search time and

confidence in the search result. One can assume that they provide an approximation

of the “best” tree.

TYPE OF TREES

Species Trees versus Gene/Protein Trees
Species evolve and proteins (and genes) evolve. The analysis of protein evolution can

be complicated by the time that two species diverged. Speciation, the process by

which two new species are created from a single ancestral species, occurs when the

species become reproductively isolated (Fig. 7.14). In a species tree, an internal

node represents a speciation event. For example, for a species tree containing

human and mouse taxa connected by a node, that node corresponds to the last

common ancestor of humans and mice, a creature that lived some 80 million years

ago. In a gene tree (or protein tree), an internal node represents the divergence of an

species 1
(e.g. human)

species 2
(e.g. rat)

speciation event

past

present

1 2 3 4 5

FIGURE 7.14. A species tree and a protein (or gene) tree can have a complex relationship. A
speciation event, such as the divergence of the lineage that generated modern humans and
rodents, can be dated to a specific time (e.g., 80 MYA). When speciation occurs, the species
become reproductively isolated from one another. This event is represented by dotted lines (see
horizontal arrow). Phylogenetic analysis of a specific group of homologous proteins is compli-
cated by the fact that a gene duplication could have preceded or followed the speciation event.
In essentially all phylogenetic analyses, the extant proteins (OTUs) are sequences from organ-
isms that are alive today. It is necessary to reconstruct the history of the protein family as well
as the history of each species. In the above example, there are two human paralogs and three
rat paralogs. Proteins 1 and 5 diverged at a time that greatly predates the divergence of the
two species. Proteins 2 and 3 diverged at a time that matches the date of species divergence.
Proteins 4 and 5 diverged recently, after the time of species divergence. It is possible to reconstruct
both species trees and protein (or gene) trees. Modified from Nei (1987) and Graur and
Li (2000).
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ancestral gene into two new genes (or proteins) with distinct sequences. Phylogeny soft-

ware such as PAUP can reconstruct ancestral DNA or protein sequences that are pre-

sent at an inferred node. An example is shown for a group of myoglobin sequences

(Fig. 7.15). For a tree containing rat and mouse myoglobin sequences, the node con-

necting those two taxa represents the sequence of an ancestral rodent that existed at

the time of the rat-mouse speciation (perhaps 20 million years ago). In almost all

cases this ancestral sequence is not known but is inferred. Reconstructions of ancestral

states are subject to a variety of artifacts, especially when rates of evolution are rapid in

some branches of the tree (Cunningham et al., 1998).

The interpretation of a phylogenetic tree should be in terms of historical events

(Baum et al., 2005). Consider the tree of globins shown in Fig. 7.1. Is a globin from

lamprey (a fish) more closely related to insect globin than to horse alpha globin? No,

it is not: lamprey globin and horse alpha globin are members of a clade that share a

(a)

(b)
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orangutan

sperm whale
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sheep
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Taxon/          111111111122222222223333333333444444444455555555556666666666777777777 
Node   123456789012345678901234567890123456789012345678901234567890123456789012345678 
------------------------------------------------------------------------------------- 
13     atggggctcagcgacggggaatggcagttggtgctgaatgcctgggggaaggtggaggctgatgtcgcaggccatggg 
14     atggggctcagcgacggggaatggcagttggtgctgaacgtctgggggaaggtggaggctgatgtcgcaggccatggg 
15     atggggctcagcgacggggaatggcagttggtgctgaacgtctgggggaaggtggaggctgatgtcgcaggccatggg 
16     atggggctcagtgatggggagtggcagctggtgctgaacatctgggggaaagtggaggccgaccttgctggccatgga 
17     atggggctcagcgacggggagtggcagctggtgctgaacatctgggggaaagtggaggccgaccttgctggccatgga 
18     atggggctcagcgacggggaatggcagttggtgctgaacatctgggggaaggtggaggctgacctggcgggccatggg 
19     atggggctcagcgacggggaatggcagttggtgctgaacgtctgggggaaggtggaggctgacctcgcaggccatggg 
20     atggggctcagcgacggggaatggcagttggtgctgaacgtctgggggaaggtggaggctgacatcccaagccacggg 
21     atggggctcagcgacggggaatggcagttggtgctgaacgtctgggggaaggtggaggctgacatcccaagccacggg 
22     atggggctcagcgacggggaatggcagttggtgctgaacgtctgggggaaggtggaggctgacatcccaggccatggg 

FIGURE 7.15. Reconstruction of
ancestral sequences. (a) 12 myo-
globin DNA coding sequences
were aligned and a phylogenetic
tree was constructed in PAUP
using the maximum parsimony cri-
terion. An unrooted phylogram is
shown in which values on the
branches correspond to the
number of nucleotide changes
(scale bar ¼ 10 changes). Several
values were removed for clarity.
In addition to the 12 terminal
nodes for the OTUs, there are 10
internal nodes (assigned numbers
13 to 22 in boxes). (b) PAUP soft-
ware generates the inferred ances-
tral sequence at each node. A
portion of the output is shown for
nucleotides 1 to 78 of nodes 13
to 22.
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common ancestor (see the node at arrow 1 having a multifurcation), and that ancestor

is the descendant of the last common ancestor of insect globin and lamprey globin

(Fig. 7.1, arrow 2). Interpreting trees in phylogeny contrasts with the analysis of

trees in other areas of biology such as microarray data analysis (Chapter 9). There

the nodes connecting samples or genes do not have a historical meaning.

In a genetically polymorphic population, gene duplication events may occur

before or after speciation. A protein (or gene) tree differs from a species tree in two

ways (Graur and Li, 2000): (1) The divergence of two genes from two species may

have predated the speciation event. This may cause overestimation of branch lengths

in a phylogenetic analysis. (2) The topology of the gene tree may differ from that

of the species tree. In particular, it may be difficult to reconstruct a species tree

from a gene tree. A molecular clock may be applied to a gene tree in order to date

the time of gene divergence, but it cannot be assumed that this is also the time that

speciation occurred.

Reconstructing a phylogenetic tree based upon a single protein (or gene) can

thus give complicated results. For this reason, many researchers construct trees

from a variety of distinct protein (or gene) families in order to assess the relationships

of different species. Another strategy that has been adopted is to generate concate-

nated protein (or DNA) sequences. For example, Baldauf et al. (2000) used four

concatenated protein sequences to create a comprehensive phylogenetic tree of

eukaryotes (see Fig. 18.1). Such a strategy produces a tree that is weighted by the

average protein length, and the choice of which sequences are included will impact

the outcome.

In looking at phylogenetic trees, it is important to be aware of the type of data that

were used to generate the tree. It is also important to inspect the scale bar (if present)

which describes whether the units are number of substitutions per site, number of

substitutions per branch, elapsed time, or some other measure.

DNA, RNA, or Protein-Based Trees
When you generate a phylogenetic tree using molecular sequence data, you can use

DNA, RNA, or protein sequences. In one common scenario, you may want to evalu-

ate the relationship of a group of molecules such as globins. The choice of whether to

study protein or DNA depends in part on the question you are asking. In some cases,

protein studies are preferable; you may prefer to study a multiple sequence alignment

of proteins, or the lower rate of substitutions in protein relative to DNA may make

protein studies more appropriate for comparisons across widely divergent species.

In many other cases, studying DNA is more informative than protein. There are

several reasons for this.

† DNA allows the study of synonymous and nonsynonymous mutation rates, as

dicussed above (Fig. 7.7).

† Substitutions in DNA include those that are directly observed in an alignment,

such as single-nucleotide substitutions, sequential substitutions, and coinci-

dental substitutions (depicted in Fig. 7.16). By analyzing two sequences

with reference to an ancestral sequence (Fig. 7.16a and b), it is possible to

infer a great deal of information about mutations that do not appear in a

direct comparison of two (or more) sequences. These mutational processes

include parallel substitutions, convergent substitutions, and back substi-

tutions (Fig. 7.16c).

Synapomorphy is defined as a

character state that is shared by

several taxa. Homoplasy is defined

as a character state that arises

independently (e.g., through con-

vergent substitutions or back sub-

stitutions) but is not derived from

a common ancestor (i.e., is not

homologous). See Graur and Li

(2000).
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† Noncoding regions (such as the 50- and 30-untranslated regions of genes, or

introns; see Fig. 7.7) may be analyzed using molecular phylogeny. For some

portions of noncoding DNA, there is little evolutionary pressure to conserve

the nucleotide sequence, and these regions may vary greatly. That is, the

nucleotide substitution rate equals the neutral mutation rate. In other cases

there is tremendous nucleotide conservation, perhaps because of the presence

of a regulatory element such as a transcription factor binding motif.

A  A   A   AA
G  G          C  G         C  CC
T  T   T   TT
C  C   C          G  CG
C  C   C          T          A  CA
T  T   T   TT
G  G   G   GG
T  T          A  T          C  AC
T  T          G  T   GT
C  C          G  C          T          G  GG
A  A   A   AA
G  G          T          G G   GG

ancestral      M   V   H   L   S   P   V   E   K   S   A   V
human          M   V   H   L   T   P E   E   K   S   A   V
mouse          M   V   H   L   T   D A   E   K   S   A   V

ancestral  5’ ATG GTG CAT CTG AGT CCT GTT CAG AAG TCT GCT GTT 3’
human      5’ ATG GTG CAT CTG ACT CCT GAG GAG AAG TCT GCC GTT 3’
mouse      5’ ATG GTG CAC CTG ACT GAT GCT GAG AAG TCT GCT GTC 3’

ancestral beta globin

mouse beta globin human beta globin

T T

(a)

(b)

(c)

Substitution mechanism

single substitution
sequential substitution

coincidental substitutions

parallel substitutions

convergent substitutions

back substitution

ancestral globin
(hypothetical)

human globin mouse globin observed 
alignment

FIGURE 7.16. Multiple types of mutations occur in sequences. (a) There is a hypothetical,
ancestral globin sequence from which human and murine beta globin diverged in the past at
time T when these organisms last shared a common ancestor. We can infer the nucleotide and
amino acid sequences of the ancestor. (b) Consider a portion of the coding sequence of human
and murine beta globin (the data are from Fig. 7.7). There are two observed mismatches at
the amino acid level, and seven observed mismatches at the nucleotide level. Many more than
seven mutations may have occurred in this region. Hypothetical ancestral protein and DNA
sequences are shown, selected for the purpose of illustration. (c) Comparison of 12 nucleotides
of the hypothetical ancestral sequence with the observed human and murine sequences illustrates
several mutational mechanisms. Single-nucleotide substitution, sequential substitution, and
coincidental substitution all could account for observed mutations (red-colored nucleotides).
Parallel, convergent, and back substitutions all could occur without producing an observed mis-
match. In this example, four mutations are observed (nucleotides colored red) while 13
mutations actually occurred. [(a, c) Adapted from Graur and Li (2000).] Used with permission.

We describe several ribosomal

RNA databases in Chapter 8.

These serve as excellent sources of

sequences for phylogenetic

analyses.
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† Pseudogenes have been studied using molecular phylogeny, for example to

estimate the neutral rate of evolution. By definition, pseudogenes do not

encode functional proteins (see Chapter 16). Similarly, inactive DNA trans-

posons and other repetitive DNA elements have been analyzed as “molecular

fossils” to explore speciation events and the evolution of chromosomes.

† The rate of transitions and transversions can be evaluated (Box 7.5). In

a comparison of mitochondrial DNA among a group of primate species

(human, chimpanzee, and gorilla), 92% of the differences were transitions

(Brown et al., 1982). Transitions commonly occur far more frequently than

transversions in nuclear DNA as well, and this is reflected in various models

of nucleotide substitution (see below).

While the analysis of DNA can offer many advantages, it is sometimes preferable

to study proteins for phylogenetic analysis. The evolutionary distance between two

organisms may be so great that any DNA sequences are saturated. That is, at

many sites all the possible nucleotide changes may occur (even multiple times), so

that phylogenetic signal is lost. Proteins have 20 states (amino acids) instead of

only four states for DNA, so there is a stronger phylogenetic signal. We saw that

blastp searches of human globins against plants were more sensitive than blastn

searches (Chapter 4). For closely related sequences, such as mouse versus rat beta

globin, DNA-based phylogeny can be more appropriate than protein studies,

because of the advantages of DNA discussed above.

Whether nucleotides or amino acids are selected for phylogenetic analysis, the

effects of character changes can be defined. An unordered character is a nucleotide

or amino acid that changes to another character in one step. An ordered character

is one that must pass through one or more intermediate states before it changes to

a different character. Partially ordered characters have a variable or indeterminate

number of states between the starting value and the ending value. Nucleotides are

unordered characters: any one nucleotide can change to any other in one step

Box 7.5
Transitions and transversions

A transition is a nucleotide substitution between two purines (A to G or G to A)

or between two pyrimidines (C to Tor T to C). A transversion is the substitution

between a purine and a pyrimidine (e.g., A to C, C to A, G to T; there are eight

possible transversions). The International Union of Pure and Applied Chemistry

(IUPAC; Q http://www.iupac.org) defines many symbols commonly used in

science. The abbreviations of the four nucleotides are adenine (A), cytosine (C),

guanine (G), and thymine (T). Additional abbreviations are for an unspecified or

unknown nucleotide (N), an unspecified purine nucleotide (R), and an

unspecified pyrimidine nucleotide (Y). You can assess the rate of transitions and

transversions using the MEGA package. Open a protein-coding DNA alignment

file in MEGA. Visit the Sequence Data Editor, and under the Statistics pull-down

menu choose Nucleotide Pair Frequencies (Directional). The output tabulates

the number of identical pairs of nucleotides, the transitional and transversional

pairs, and their ratio. Alternatively, use the Pattern pull-down menu, and choose

Computer Transition/Transversion Bias.

We will show how the entire

genome of a fungus duplicated

(Chapter 17). The evidence for

this consisted of blastp searches of

all Saccharomyces cerevisiae pro-

teins against each other, resulting

in the detection of conserved

blocks of sequence from various

chromosomes (see Fig. 15.9).

Here, blastn searches would not

have been sensitive enough to

reveal the homology between

different chromosomes.
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(Fig. 7.17a). Amino acids are partially ordered. If you inspect the genetic code, you

will see that some amino acids can change to a different amino acid in a single step of

one nucleotide substitution, while other amino acid changes require two or even three

nucleotide mutations (Fig. 7.17b).

FIVE STAGES OF PHYLOGENETIC ANALYSIS

Molecular phylogenetic analyses can be divided into five stages: (1) selection of

sequences for analysis, (2) multiple sequence alignment of homologous protein

or nucleic acid sequences, (3) specification of a statistical model of nucleotide or

amino acid evolution, (4) tree building, and (5) tree evaluation. The remainder

of this chapter discusses these stages.

Stage 1: Sequence Acquisition
We have discussed some issues regarding the choice of DNA, RNA, or protein

sequences for molecular phylogeny. You can acquire the sequences from many

sources, including the following.

† HomoloGene at NCBI includes thousands of eurkaryotic protein families.

HomoloGene entries can be viewed as sequences in the fasta format (or as a

multiple sequence alignment).

(a)

(b)

   A  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  W  Y
A  0  2  1  1  2  1  2  2  2  2  2  2  1  2  2  1  1  1  2  2
C     0  2  3  1  1  2  2  3  2  3  2  2  3  1  1  2  2  1  1
D        0  1  2  1  1  2  2  2  3  1  2  2  2  2  2  1  3  1
E           0  3  1  2  2  1  2  2  2  2  1  2  2  2  1  2  2
F              0  2  2  1  3  1  2  2  2  3  2  1  2  1  2  1
G                 0  2  2  2  2  2  2  2  2  1  1  2  1  1  2
H                    0  2  2  1  3  1  1  1  1  2  2  2  3  1
I                       0  1  1  1  1  2  2  1  1  1  1  3  2
K                          0  2  1  1  2  1  1  2  1  2  2  2
L                             0  1  2  1  1  1  1  2  1  1  2
M                                0  2  2  2  1  2  1  1  2  3
N                                   0  2  2  2  1  1  2  3  1
P                                      0  1  1  1  1  2  2  2  
Q                                         0  1  2  2  2  2  2
R                                            0  1  1  2  1  2
S                                               0  1  2  1  1
T                                                  0  2  2  2
V                                                     0  2  2
W                                                        0  2
Y                                                           0

 A C T G

A 0 1 1 1

C 1 0 1 1

T 1 1 0 1

G 1 1 1 0

FIGURE 7.17. Step matrices for
(a) nucleotides or (b) amino acids
describe the number of steps
required to change from one char-
acter to another. For the amino
acids, between one and three
nucleotide mutations are required
to change any one residue to
another. Adapted from Graur and
Li (2000). Used with permission.
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† Results from the BLAST family of proteins can be selected, viewed in Entrez

Protein or Entrez Nucleotide, and formatted in the fasta format.

† Sequences from a large variety of databases can be output in the fasta

format (or as multiple sequence alignments). For RNA, these databases

include Rfam and the Ribosomal Database (Chapter 8). For proteins, these

databases include Pfam and InterPro (Chapter 6). For viruses, examples

include reference databases for human immunodeficiency virus and hepatitis

C virus.

Stage 2: Multiple Sequence Alignment
Multiple sequence alignment (Chapter 6) is a critical step of phylogenetic analysis. In

many cases, the alignment of nucleotide or amino acid residues in a column implies

that they share a common ancestor. If you misalign a group of sequences, you will still

be able to produce a tree. However, it is not likely that the tree will be biologically

meaningful. And if you create a multiple alignment of sequences and include a non-

homologous sequence, it may still be incorporated into the phylogenetic tree.

In preparing a multiple sequence alignment for phylogenetic analysis, there

are several important considerations in creating and editing the alignment. Let us

introduce these ideas by referring to a specific example of 13 globins. We presented

a phylogenetic tree of these proteins in Fig. 7.1. The multiple sequence alignment

from which this tree was generated is shown in Fig. 7.18. There are several

notable features:

1. Carefully inspect the alignment to be sure that all sequences are homologous.

It is sometimes possible to identify a sequence that is so distantly related that it

is not homologous. You can further test this possibility by performing

pairwise alignments (is the expect value significant?), BLAST searches, or

checking whether the proteins are members of a Pfam family. If a sequence

is not apparently homologous to the others, it should be removed from the

multiple sequence alignment.

2. Some multiple sequence alignment programs may treat distantly related

sequences by aligning them outside the block of other sequences. If necessary,

lower the gap creation and/or gap extension penalties to accommodate the

distantly related homolog(s) into the multiple sequence alignment. As dis-

cussed in Chapter 6, include methods that incorporate structural information

into the alignment of proteins when possible. In some cases, a group of

proteins share a domain (defined in Chapter 10) but are unrelated outside

the domain; you can restrict your analyses to the just region of the

homologous domain using software such as PAUP or MEGA. These pro-

grams allow you to select any specific residues for inclusion or exclusion in

the phylogenetic analysis.

3. The complete sequence is not known for many sequences. In general, the

multiple sequence alignment data used for phylogenetic analyses should be

restricted to portions of the proteins (or nucleic acids) that are available for

all the taxa being studied. There are both terminal and internal gaps in this

alignment (Fig. 7.18, arrowheads). A gap could represent an insertion in

some of the sequences or a deletion in the others. Most phylogeny algorithms

are not equipped to evaluate insertions or deletions (also called indels). Many

You can access the HIV Sequence

Database at Q http://www.hiv.

lanl.gov/, and the HCV database

at Q http://hcv.lanl.gov/.

Web document 7.6 (at Q http://
www.bioinfbook.org/chapter7)

includes 13 quasi-randomly

selected protein sequences. If you

import these into MEGA you can

align them using ClustalW and

generate a tree. Can you dis-

tinguish that tree from one gener-

ated using a group of homologous

proteins?
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myoglobin_kanga -------------MGLSDGEWQLVLNIWGKVETDEGGHGKDVLIRLFKGHPETLEKFDKF
myoglobin_harbo -------------MGLSEGEWQLVLNVWGKVEADLAGHGQDVLIRLFKGHPETLEKFDKF
myoglobin_gray_ -------------MGLSDGEWHLVLNVWGKVETDLAGHGQEVLIRLFKSHPETLEKFDKF
alpha_globin_ho ------------MV-LSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF
alpha_globin_ka -------------V-LSAADKGHVKAIWGKVGGHAGEYAAEGLERTFHSFPTTKTYFPHF
alpha_globin_do -------------V-LSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF
beta_globin_dog ------------MVHLTAEEKSLVSGLWGKV--NVDEVGGEALGRLLIVYPWTQRFFDSF
beta_globin_rab ------------MVHLSSEEKSAVTALWGKV--NVEEVGGEALGRLLVVYPWTQRFFESF
beta_globin_kan -------------VHLTAEEKNAITSLWGKV--AIEQTGGEALGRLLIVYPWTSRFFDHF
globin_riverlam -PIVDS----GSPAVLSAAEKTKIRSAWAPVYSNYETSGVDILVKFFTSTPAAQEFFPKF
globin_sealampr MPIVDT----GSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
globin_soybean  -------------VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFL
globin_insect   MKFLILALCFAAASALSADQISTVQASFDKVKGD----PVGILYAVFKADPSIMAKFTQF
                               ::  :   :   :  .               :   *     *  :
                
myoglobin_kanga KHLKSEDEMKASEDLKKHGITVLTALGNILKKKGHHEAELKPLAQS---HATKHKIPVQF
myoglobin_harbo KHLKTEAEMKASEDLKKHGNTVLTALGGILKKKGHHDAELKPLAQS---HATKHKIPIKY
myoglobin_gray_ KHLKSEDDMRRSEDLRKHGNTVLTALGGILKKKGHHEAELKPLAQS---HATKHKIPIKY
alpha_globin_ho -DLSHGSA-----QVKAHGKKVGDALTLAVGHLDDLPGALSNLSDL---HAHKLRVDPVN
alpha_globin_ka -DLSHGSA-----QIQAHGKKIADALGQAVEHIDDLPGTLSKLSDL---HAHKLRVDPVN
alpha_globin_do -DLSPGSA-----QVKAHGKKVADALTTAVAHLDDLPGALSALSDL---HAYKLRVDPVN
beta_globin_dog GDLSTPDAVMSNAKVKAHGKKVLNSFSDGLKNLDNLKGTFAKLSEL---HCDKLHVDPEN
beta_globin_rab GDLSSANAVMNNPKVKAHGKKVLAAFSEGLSHLDNLKGTFAKLSEL---HCDKLHVDPEN
beta_globin_kan GDLSNAKAVMANPKVLAHGAKVLVAFGDAIKNLDNLKGTFAKLSEL---HCDKLHVDPEN
globin_riverlam KGMTSADELKKSADVRWHAERIINAVNDAVASMDDTEKMSMK--DLSGKHAKSFQVDPQY
globin_sealampr KGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTEKMSMKLRDLSGKHAKSFQVDPQY
globin_soybean  ANPTDG----VNPKLTGHAEKLFALVRDSAGQL-KASGTVVADAALGSVHAQKAVTNPEF
globin_insect   AG-KDLESIKGTAPFEIHANRIVGFFSKIIGELPNIEADVNTFVAS---HKPRGVTHDQ-
                   .          .  *.  :   .        .              *          
                
myoglobin_kanga LEFISDAIIQVIQSKHAGNFGADAQAAMKKALELFRHDMAAKYKEFGFQG
myoglobin_harbo LEFISEAIIHVLHSRHPAEFGADAQGAMNKALELFRKDIATKYKELGFHG
myoglobin_gray_ LEFISEAIIHVLHSKHPAEFGADAQAAMKKALELFRNDIAAKYKELGFHG
alpha_globin_ho FKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------
alpha_globin_ka FKLLSHCLLVTFAAHLGDAFTPEVHASLDKFLAAVSTVLTSKYR------
alpha_globin_do FKLLSHCLLVTLACHHPTEFTPAVHASLDKFFAAVSTVLTSKYR------
beta_globin_dog FKLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH------
beta_globin_rab FRLLGNVLVIVLSHHFGKEFTPQVQAAYQKVVAGVANALAHKYH------
beta_globin_kan FKLLGNIIVICLAEHFGKEFTIDTQVAWQKLVAGVANALAHKYH------
globin_riverlam FKVL-AVIADTVAAG---------DAGFEKLSMCIILMLRSAY-------
globin_sealampr FKVLAAVIADTVAAG---------DAGFEKLMSMICILLRSAY-------
globin_soybean  --VVKEALLKTIKAAVGDKWSDELSRAWEVAYDELAAAIKAK--------
globin_insect   ---LNNFRAGFVSYMKAHTDFAGAEAAWGATLDTFFGMIFSKM-------
                   :       .              .       .   :           

FIGURE 7.18. We will introduce tree-making approaches with a multiple sequence alignment of
13 globins, made using MAFFT at EBI (FFT-NS-1 v5.861). The sequences correspond to those in
Fig. 7.1. There are three myoglobins (red kangaroo Macropus rufus, P02194; harbor porpoise
Phocoena phocoena, P68278; gray seal Halichoerus grypus, P68081); three alpha globins
(horse Equus caballus, P01958; eastern gray kangaroo Macropus giganteus, P01975; dog
Canis lupus familiaris, P60529); three beta globins (dog Canis lupus familiaris, XP_537902;
rabbit Oryctolagus cuniculus, NP_001075729; eastern gray kangaroo Macropus giganteus,
P02106); two fish globins (European river lamprey Lampetra fluviatilis, 690951A; sea lamprey
Petromyzon marinus, P02208); an insect globin (midge larva Chironomus thummi thummi,
P02229); and a plant leghemoglobin (soybean Glycine max 711674A). Gaps in the alignment
(solid arrowheads) are not easily interpretable by phylogenetic algorithms and could represent
either insertions or deletions. Four positions are 100% conserved (open diamonds). Amino acids
in many other positions distinguish the groups of myoglobins, alpha globins, beta globins, and
other globins (examples are shown in columns with open circles; in some cases the groups are
perfectly distinguishable in an aligned column). A phylogenetic tree provides a visualization
of these relationships (Fig. 3.2 and this chapter).
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experts recommend that any column of a multiple sequence alignment that

includes a gap in any position should be deleted, and software programs typi-

cally delete columns with incomplete data as a default option.

4. In this example, note that the sequences include three myoglobins, three

alpha globins, three beta globins, and four other globins. Intuitively, we

expect these globin sequences to be distinguished in a phylogenetic tree,

and this is the case (Figs. 7.1 and 7.2). Indeed, we can see such differences

by inspecting the multiple sequence alignment. There are positions in

which the amino acid in a particular position differs between the myoglobins,

alpha globins, and beta globins (Fig. 7.18, columns with open circles and

red lettering). Other positions are highly conserved among all these proteins

(columns indicated with diamonds), as expected for a family of proteins

having closely related structures. The phylogenetic tree (Fig. 7.1) visualizes

these various relationships. Any time you inspect a multiple sequence align-

ment and a tree, you are looking at related information from different

perspectives.

A variety of tree-building programs accept a multiple sequence alignment as

input. ReadSeq is a convenient web-based program that translates multiple sequence

alignments into formats compatible with most commonly used phylogeny packages.

Several ReadSeq servers are listed in Table 7.3.

Stage 3: Models of DNA and Amino Acid Substitution
Phylogenetic analyses rely on models of DNA or amino acid substitution. These

models may be implicit or explicit. For distance-based methods, statistical models

are employed to estimate the number of DNA or amino acid changes that occurred

in a series of pairwise comparisons of sequences. For maximum likelihood and

Bayesian approaches, statistical models are applied to individual characters (residues)

in order to assess the most likely topology as well as other features such as substitution

rates along individual branches. For maximum parsimony, the criterion for finding

the best tree is based on the shortest branch lengths, and while individual characters

are also evaluated, many of these statistical models are not applicable.

The simplest approach to defining the relatedness of a group of nucleotide

(or amino acid) sequences is to align pairs of sequences and count the number of

differences. The degree of divergence is sometimes called the Hamming distance.

TABLE 7-3 ReadSeqServersAvailable on the Internet
Source URL

Baylor College of Medicine Q http://searchlauncher.bcm.tmc.edu/seq-util/
readseq.html

Center for Information Technology,
National Institutes of Health

Q http://bimas.dcrt.nih.gov/molbio/readseq/

Pasteur Institute Q http://bioweb.pasteur.fr/seqanal/interfaces/
readseq-simple.html

European Bioinformatics Institute Q http://www.ebi.ac.uk/readseq/

Many other servers are also available.

First released in 1993, ReadSeq

was written by Don Gilbert and is

in the public domain.
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For an alignment of length N with n sites at which there are differences, the degree of

divergence d is defined as

d ¼ n

N
� 100 (7:3)

Earlier in this chapter we discussed an example of this type of calculation by

Zuckerkandl and Pauling (1962), who counted the number of amino acid differences

between human beta globin and delta, gamma, and alpha globin. The Hamming

distance is simple to calculate, but it ignores a large amount of information about

the evolutionary relationships among the sequences. The main reason is that charac-

ter differences are not the same as distances: the differences between two sequences are

easy to measure, but the genetic distance involves many mutations that cannot be

observed directly. As shown in Fig. 7.16, there are many kinds of mutations that

occur but are not detected in an estimate of divergence based on counting differ-

ences. We also discussed a correction implemented by Dickerson (1971) that was

proposed by Margoliash and Smith (1965) and by Zuckerkandl and Pauling

(1965); see Equations 7.1 and 7.2. In MEGA software this is referred to as the

Poisson correction (see Nei and Kumar, 2000, p. 20). The Poisson correction for dis-

tance d assumes equal substitution rates across sites and equal amino acid frequen-

cies. It uses the following formula to correct for multiple substitutions at a single site:

d ¼ � ln 1� pð Þ (7:4)

where d is the distance, and p is the proportion of residues that differ. We make the

following assumptions (Uzzell and Corbin, 1971). First, the probability of observing

a change is small but nearly identical across the genome. This probability is pro-

portional to the length of the time interval lDt for some constant l. The probability

of observing no changes is thus 12lDt. Second, we assume the number of nucleotide

or amino acid changes is constant over the time interval t. When a mutation does

occur, this does not alter the probability of another mutation occurring at this

same position. Third, we assume that changes occur independently. Equation 7.4

is derived from the Poisson distribution, which describes the random occurrence of

events when that probability of occurrence is small. The Poisson distribution is

used to model a variety of phenomena, such as the decay of radioactivity over time.

It is given by the formula:

P(X) ¼ e�mmX

X !
(7:5)

where P(X ) is the probability of X occurrences per unit of time, m represents the

population mean number of changes over time, and e is �2.71828 (Zar, 1999).

Let us consider a practical example of how different substitution models affect

the distances that are measured in a set of 13 globin proteins. We enter the proteins

into MEGA and select the Distances pull-down menu to compute pairwise distances

between the 13 proteins. We can view the number of amino acid differences per

sequence (Fig. 7.19a), highlighting several pairwise comparisons that are relatively

closely or distantly related. Next we estimate the differences based on the

Hamming distance (Equation 7.3; called the p-distance in MEGA) (Fig. 7.19b).

When we next use the Poisson correction, the distance values are comparable (relative

to the Hamming distance) for closely related sequences such as globins from two

lampreys (Fig. 7.19c, dashed red boxes). However, the estimated evolutionary
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divergence for distantly related sequences is dramatically different using the Poisson

correction (Fig. 7.19d, solid red boxes). The consequence of these differences is that

entirely different phylogentic trees may be constructed depending on the particular

model you choose. We can use this data set of globin proteins to construct a

neighbor-joining tree (defined below) using either the p-distance (Fig. 7.20a) or

the Poisson correction (Fig. 7.20b). Note that the topologies of the two trees differ

in this example (inspect soybean and insect globin), and the branch lengths differ.

(a) Number of differences

(b) p-distance

(c) Poisson correction

FIGURE 7.19. Estimating the evolutionary divergence between sequences. The MEGA software
package includes a menu for choosing models of nucleotide or amino acid substitution. Similar
options are available in other software packages such as PAUP and PHYLIP. (a) The number of
amino acid differences per sequence is displayed below the diagonal, based on pairwise analyses
of 13 globins (see Fig. 7.18 legend for their accession numbers). Two closely related globins (with
few differences) are highlighted in dashed red boxes, while two divergent globins (with many
differences) are highlighted in solid red boxes. Standard error estimates are displayed above
the diagonal and were obtained by using analytic formulas. (b) Evolutionary divergence was
estimated using the p-distance option to calculate the number of amino acid differences per
site. Note that each cell (below the diagonal) represents the number of observed differences
divided by the total number of positions in the dataset (113 in this case, with all columns contain-
ing gaps eliminated from the final data matrix). For example, the value of 0.87 for a comparison
of taxa 1 (myoglobin from kangaroo) and 12 (soybean globin), shown in a red box, is obtained
by dividing 98 by 113. (c) Evolutionary divergence was estimated using the Poisson correction.
Note that this introduces a substantial increase in the estimated distance for the more divergent
sequences. Such larger estimates are likely to be more realistic than simple Hamming distances,
and will lead to the creation of trees with different branch lengths and topologies.
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For the optimal tree using the p-distance correction, the sum of the branch lengths

is 2.81, while for the tree made with the Poisson correction the sum of the branch

lengths is 4.93. Such differences can have large effects on the interpretation of a

phylogenetic tree, and this example shows how it is important to choose an appropri-

ate model.

In order to model substitutions that occur in DNA sequences, Jukes and Cantor

(1969, p. 100) proposed another fundamentally useful corrective formula:

D ¼ �3

4
ln 1� 4

3
p

� �
(7:6)

(a) Neighbor-joining tree with p-distance correction

(b) Neighbor-joining tree with Poisson correction

 alpha globin horse

 alpha globin dog

 alpha globin kangaroo

 beta globin kangaroo

 beta globin dog

 beta globin rabbit

 globin lamprey

 globin sea lamprey

 myoglobin kangaroo

 myoglobin harbor porpoise

 myoglobin gray seal

 globin insect

 globin soybean
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0.11

0.07

0.07

0.12
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0.18

0.19
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0.03

0.1
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0.07
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0.83

0.81

0.57

0.63

0.06

0.32

0.14

0.13

0.12

0.32

0.1

 alpha globin horse

 alpha globin dog

 alpha globin kangaroo

 beta globin kangaroo

 beta globin dog

 beta globin rabbit

 globin lamprey

 globin sea lamprey

 myoglobin kangaroo

 myoglobin harbor porpoise

 myoglobin gray seal

 globin insect

 globin soybean

59

100

65

100

79

100

47

63

52

100

100

85

100

94
100

69

100

79

62

60

FIGURE 7.20. The effect of differ-
ing models of amino acid sub-
stitution on phylogenetic trees.
Phylogenetic trees of 13 globin pro-
teins were made using the neigh-
bor-joining method, which uses the
distance information that is pre-
sented in Fig. 7.19. The trees were
made using (a) the p-distance or
(b) the Poisson correction. Branch
lengths are in the units of evol-
utionary distances used to infer
each tree. The sum of the branch
lengths was 2.81 in (a) and 4.93
in (b). Trees were created using
MEGA software. Bootstrapping
was performed using 500 bootstrap
replicates to identify the percent of
instances (indicated in red) in
which bootstrap trees support each
clade in the inferred tree. For
example, in panel (b) in 100% of
the bootstrap trials, horse, dog,
and kangaroo alpha globin were
supported as being in a clade.
However, the clade containing
horse and dog alpha globin proteins
was supported in only 52% of the
bootstrap replicates. This means
that in 48% of the bootstrap trees,
kangaroo alpha globin joined that
group of proteins, and we can
infer that there is not strong sup-
port for a distinct, closely related
horse/dog group that shared an
ancestor with the kangaroo
protein. In general the bootstrap
can provide a measure of how
well supported an inferred tree top-
ology is upon repeated samplings of
the data set.
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As an example of how to use Equation 7.6, consider an alignment where 3

nucleotides out of 60 aligned residues differ. The normalized Hamming distance is
3
60
¼ 0:05. The Jukes–Cantor correction D ¼ � 3

4
ln [1� (4� 0:05=3)] ¼ 0:052. In

this case, applying the correction causes only a small effect. When 30
60

nucleotides

differ, the Jukes–Cantor correction is � 3
4

ln (1� [4� 0:5=3]) ¼ 0:82, a far more

substantial adjustment.

The Jukes–Cantor one-parameter model describes the probability that each

nucleotide will mutate to another (Fig. 7.21a). It makes the simplifying assumption

that each residue is equally likely to change to any of the other three residues

and that the four bases are present in equal frequencies. Thus, this model assumes

that the rate of transitions equals the rate of transversions. The corrections are

minimal for very closely related sequences but can be substantial for more distantly

related sequences. Beyond about 70% differences, the corrected distances are

difficult to estimate. This approaches the percent differences found in randomly

aligned sequences.

Dozens of models have been developed that are more sophisticated than

Jukes–Cantor. Usually, the transition rate is greater than the transversion rate; for

eukaryotic nuclear DNA it is typically twofold higher. The Kimura (1980) two-

parameter model adjusts the transition and transversion ratios by giving more

weight to transversions to account for their likelihood of causing nonsynonymous

changes in protein-coding regions (Fig. 7.21b). In any region of DNA (including

noncoding sequence), the transition/transversion ratio corrects for the biophysical

threshold for creating a purine-purine or pyrimidine-pyrimidine pair in the double

helix. For example, Tamura (1992) extended the two-parameter model to adjust

for the guanine and cytosine (GC) content of the DNA sequences (Fig. 7.21c).

We will see in Part III of this book that the GC content varies greatly among different

organisms and different chromosomal regions within an organism’s genome.

Changes in nucleotide substitution at a given position of an alignment represent

one kind of DNA variation, and we have been discussing several ways to correct for

changes that occur. Substitution rates are often variable across the length of a

group of sequences. This represents a second distinct category of DNA variation,

A G

T C

(a) α

α

α α
α

α

A G

T C

(b) α

α

β β
β

β

A G

T C

(c)

αθ1

βθ2

αθ2

βθ1

αθ1

αθ2

βθ2 βθ1

βθ2

βθ2
βθ1

βθ1

FIGURE 7.21. Models of nucleotide substitution. (a) The Jukes–Cantor model of evolution cor-
rects for superimposed changes in an alignment. The model assumes that each nucleotide residue
is equally likely to change to any of the other three residues and that the four bases are present in
equal proportions. The rate of transitions (a) equals the rate of transversions (b). (b) In the
Kimura two-parameter model, a=b. Typically, transversions are given more weight.
(c) Tamura’s model, which accounts for variations in GC content. This is an example of a
more complex model of nucleotide substitution. Note that there are distinct parameters for
nucleotide substitutions, and that many of these parameters are directional (e.g. the rate of
changing from nucleotides T to C differs from the rate for C to T).
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and we can also model these changes. Some sites (columns of aligned residues) are

invariant, while others do undergo substitutions.

† Because of the degeneracy of the genetic code, the third position of a

codon almost always has a higher substitution rate than the first and second

codon position.

† Some regions of a protein have conserved domains. We saw an example of

this with the insulin orthologs in Fig. 7.3. Viruses or immunoglobulins

often display hypervariable regions of mutation.

† Noncoding RNAs (Chapter 8) often have functional constraints such as

stem and loop structures that include highly conserved positions with low

substitution rates.

A gamma (G) model accounts for unequal substitution rates across variable sites

(Box 7.6). The gamma family of distributions can be plotted with the substitution

rate (x axis) versus the frequency (y axis) (Fig. 7.22). This shape of the distribution

varies as determined by the gamma shape parameter (a). Zhang and Gu (1998)

measured a for protein sequences from 51 vertebrate nuclear genes and 13 mamma-

lian mitochondrial genes. They reported a range of values from 0.17 to 3.45 (median

value 0.71) for the 51 nuclear genes. There was a negative correlation between

the extent of among-site rate variation and the mean substitution rate. Genes with

a high level of rate variation among sites (large a) have a low mean substitution

rate and thus are slowly evolving. Rapidly evolving proteins have a low level of rate

variation among sites.

Box 7.6
The Gamma Distribution

In mathematics, the gamma distribution (G) is commonly used to model

continuous variables that have skewed distributions. The gamma distribution has

been used to model the among-site rate variation of proteins. Given a substitution

rate r at a site, the G distribution has the following probability density function

(Zhang and Gu, 1998):

g(r) ¼ a=mð Þa

G að Þ ra�1e� a=mð Þr

The two parameters in this equation are the mean rate m ¼ E(r) and the shape

parameter a. Here E(r) is the mean substitution rate (or the expectation of r).

Small values of a correspond to a high degree of rate variation among sites. In a

study by Zhang and Gu (1998), genes with a high value of a included the C-kit

proto-oncogene (a ¼ 3.45) and alpha globin (a ¼ 1.93) while genes with a low a

value included histone H2A.X (a ¼ 0.19) and b2 thyroid hormone receptor

(a ¼ 0.21). In the R programming language, you can invoke the gamma

distribution with the commands prompt> x = seq(0,10,length = 101)
Prompt> plot(x,dgamma(x,shape = 2),type = "l") Prompt>
lines(x,dgamma(x,shape = 0.25)) You can also display the gamma

distribution using Microsoft Excel with the formula gammadist.
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When we create a phylogenetic tree using 13 globin protein sequences using

PAUP or MEGA software, we can specify that there is a uniform rate of variation

among sites (thus not invoking the gamma distribution), or we can set the shape par-

ameter of a to any positive value. For a group of globin proteins, there are dramatic

differences in the branch lengths and the topologies of trees created using the same

neighbor-joining method and the Poisson correction with varying gamma

distributions and shape parameters a ¼ 0.25, a ¼ 1, or a ¼ 5 (Fig. 7.23a to c).

There are many choices for nucleotide or amino acid substitution models in

programs such as PAUP, Phylip, and MEGA (Fig. 7.24). In addition to and indepen-

dent of the substitution model, there are many choices for the shape parameter a of

the gamma distribution. Several groups have developed strategies to estimate the

appropriate models to apply to a data set for phylogenetic analysis. For example,

the ModelTest program implements a log likelihood ratio test to compare models

(Posada and Crandall, 1998; Posada, 2006). The log likelihood ratio test is a statisti-

cal test of the goodness-of-fit between two models. After a DNA data set is executed

in PAUP software, ModelTest systematically tests up to 56 models of variation. The

likelihood scores of a null model (L0) and an alternative model (L1) are calculated for

comparisons of a relatively simple model and a relatively complex model. A likelihood

ratio test statistic is obtained:

d ¼ �2 logL (7:7)

where

L ¼ max [L0 NullModeljDatað Þ]
max [L1 AlternativeModeljDatað Þ] (7:8)

L is the Greek letter corresponding to L.

FIGURE 7.22. The gamma distri-
bution describes the substitution
rate (x axis; from low to high) with
a frequency distribution (y axis)
that is dependent on shape par-
ameter a. For small values of a

(e.g., a ¼ 0.25), most of the nucleo-
tides undergo substitutions at slow
rates, and thus most of the observed
variation is attributed to relatively
few nucleotide sites that evolve
rapidly. For large values of a (e.g.,
a ¼ 5) few nucleotide sites undergo
very fast or very slow evolution, and
there is minimal among-site rate
variation. For intermediate values
of a (e.g., a ¼ 2) some nucleotides
evolve with high substitution rates.
This figure was generated in the R
programming language as described
in Box 7.6.
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ModelTest was developed by

David Posada and colleagues, and

is available from Q http://darwin.

uvigo.es/software/modeltest.

html. The site includes a

ModelTest server. An example of

an output file from ModelTest,

showing the results of analyzing 56

substitution models from 11

myoglobin coding sequences, is

shown in web document 7.7 at

Q http://www.bioinfbook.org/
chapter7. The Hepatitis C Virus

(HCV) sequence database at the

Los Alamos National Laboratories

(Q http://hcv.lanl.gov/) offers

Findmodel, a web-based

implementation of ModelTest that

accepts DNA sequences as input.

It displays over two dozen models

in the format of Fig. 7.21

(Q http://hcv.lanl.gov/content/
hcv-db/findmodel/matrix/all.

html).
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This test statistic follows a x2 distribution, and so given the number of degrees

of freedom (equal to the number of additional parameters in the more complex

model), a probability value is obtained. As an alternative to log likelihood ratio

tests, ModelTest also uses the Akaike information criterion (AIC) (Posada and

Buckley, 2004). This measures the best fitting model as that having the smallest

AIC value:

AIC ¼ �2 ln Lþ 2 N (7:9)

where L is the maximum likelihood for a model using N independently adjusted

parameters for that model. In this way, good maxium likelihood scores are rewarded,

while using too many parameters is penalized.

(a) Neighbor-joining tree with Poisson correction and gamma distribution shape parameter α = 0.25

(b) Neighbor-joining tree with Poisson correction and gamma distribution shape parameter α = 1

(c) Neighbor-joining tree with Poisson correction and gamma distribution shape parameter α = 5
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FIGURE 7.23. Effect of changing
the a parameter of the G distri-
bution on phylogenetic trees. A
data set consisting of 13 globin pro-
teins (see fig. 7.1) was aligned and
trees were generated in MEGA soft-
ware using the neighbor-joining
technique, the Poisson correction,
and a parameters of (a) 0.25, (b)
1, or (c) 5. Note the dramatic
effects on the estimated branch
lengths. Also note that the topolo-
gies differ within the alpha globin,
beta globin, and myoglobin clades.
The scale bars are in units of
number of substitutions.
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For the example of 11 myoglobin coding sequences, ModelTest selected the

Kimura (1980) two-parameter model with a G distribution shape parameter of

a ¼ 0.45. You can perform a similar analysis using the web-based Findmodel tool

of the HCV database.

Stage 4: Tree-Building Methods
There are many ways to build a phylogenetic tree, reviewed in books (Nei, 1987; Graur

and Li, 2000; Li, 1997; Maddison and Maddison, 2000; Durbin et al., 1998; Baxevanis

and Ouellette, 2001; Clote and Backofen, 2000; Hall, 2001; Felsenstein, 2004) and

articles (Bos and Posada, 2005; Felsenstein, 1996, 1988; Hein, 1990; Nei, 1996;

Thornton and DeSalle, 2000). We will consider four principal methods of making

trees: distance-based methods, maximum parsimony, maximum likelihood, and

Bayesian inference. Distance-based methods begin by analyzing pairwise alignments

of the sequences and using those distances to infer the relatedness between all the

taxa. Maximum parsimony is a character-based method in which columns of residues

are analyzed in a multiple sequence alignment to identify the treewith the shortest over-

all branch lengths that can account for the observed charcter differences. Maximum

likelihood and Bayesian inference are model-based statistical approaches in which the

best tree is inferred that can account for the observed data.

Molecular phylogeny captures and visualizes the sequence variation that occurs

in homologous DNA, RNA, or protein molecules. As we learn how to make trees we

will also use some of the most popular software tools for phylogeny. All are extremely

versatile and offer a broad range of approaches to making trees.

† PAUP (Phylogenetic Analysis Using Parsimony) was developed by David

Swofford.

FIGURE 7.24. Models of nucleo-
tide and amino acid substitution.
Software packages for phylogenetic
analysis such as PAUP (shown
here in the Macintosh version)
include many choices for models
of nucleotide and amino acid sub-
stitution. In addition, the shape
parameter a of the gamma distri-
bution can be specified (arrow 1).

Phylip is available from Q http://
evolution.genetics.washington.

edu/phylip/general.html.

MEGA4 can be downloaded from

Q http://www.megasoftware.net/.

The TREE-PUZZLE site is

Q http://www.tree-puzzle.de/.

MrBayes is available from

Q http://mrbayes.csit.fsu.edu/
download.php. Joseph Felsenstein

offers a web page with about 200

phylogeny software links

(Q http://evolution.genetics.

washington.edu/phylip/software.

html).
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† MEGA (Molecular Genetic Evolutionary Analysis) was written by Sudhir

Kumar, Koichiro Tamura, and Masatoshi Nei. Many of its concepts are

explained in an excellent textbook by Nei and Kumar (2000), Molecular

Evolution and Phylogenetics.

† PHYLIP (the PHYLogeny Inference Package) was developed by Joseph

Felsenstein. It is perhaps the most widely used phylogeny program, and together

with PAUP is the most-used software for published phylogenetic trees.

Felsenstein has written an outstanding book, Inferring Phylogenies (2004).

† TREE-PUZZLE was developed by Korbinian Strimmer, Arndt von Haeseler,

and Heiko Schmidt. It implements a maximum likelihood method, which is a

model-based approach to phylogeny.

† MrBayes was developed by John Huelsenbeck and Fredrik Ronquist. It

implements Bayesian estimation of phylogeny, another model-based

approach. MrBayes estimates a quantity called the posterior probability distri-

bution, which is the probability of a tree conditioned on the observed data.

All of these programs are useful. PAUP has a particularly user-friendly interface for

the Macintosh platform, although of the programs discussed in this chapter it is the only

one that is a commercial package. The others are freely available by download. MEGA

is particularly inviting for the PC platform. PHYLIP is perhaps the most popular

program, and is command-line driven without an accessible graphical user interface.

PHYLOGENETIC METHODS

Distance
Distance-based methods begin the construction of a tree by calculating the pairwise

distances between molecular sequences (Felsenstein, 1984; Desper and Gascuel,

2006). A matrix of pairwise scores for all the aligned proteins (or nucleic acid

sequences) is used to generate a tree. The goal is to find a tree in which the branch

lengths correspond as closely as possible to the observed distances. The main dis-

tance-based methods include the unweighted pair group method with arithmetic

mean (UPGMA) and neighbor joining (NJ). Distance-based methods of phylogeny

are computationally fast, and thus they are particularly useful for analyses of a larger

number of sequences (e.g., .50 or 100).

These methods use some distance metric, such as the number of amino acid

changes between the sequences, or a distance score (see Box 6.3). A distance

metric is distinguished by three properties: (1) the distance from a point to itself

must be zero, that is, D(x, x) ¼ 0; (2) the distance from point x to y must equal the

distance from y to x, that is, D(x, y) ¼ D( y, x); and (3) the triangle inequality must

apply in that D(x, y) � D(x, z) þ D(z, y). While similarities are also useful, distances

(which differ from differences when they obey the above properties) offer appealing

properties for describing the relationships between objects (Sneath and Sokal, 1973).

The observed distances between any two sequences i, j can be denoted dij. The

sum of the branch lengths of the tree from taxa i and j can be denoted d0ij. Ideally,

these two distance measures are the same, but phenomena such as the occurrence

of multiple substitutions at a single position typically cause dij and d0ij to differ. The

goodness of fit of the distances based on the observed data and the branch lengths
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can be estimated as follows (see Felsenstein, 1984):

X
i

X
j

wij dij � d0ij

� �2

(7:10)

The goal is to minimize this value; it is zero when the branch lengths of a tree match

the distance matrix exactly. For Cavalli-Sforza and Edwards (1967) wij ¼ 1 while for

Fitch and Margoliash (1967) wij ¼ 1/dij
2.

We can inspect the multiple sequence alignment in Fig. 7.18 as well as the tree in

Fig. 7.1 to think about the essence of distance-based molecular phylogeny. In this

approach, one can calculate the percent amino acid similarity between each pair of

proteins in the multiple sequence alignment. Some pairs, such as dog and rabbit

beta globins, are very closely related and will be placed close together in the tree.

Others, such as insect globin and soybean globin, are more distant than the other

sequences and will be placed farther away on the tree. In a sense, we can look at

the sequences in Fig. 7.18 horizontally, calculating distance measurements between

the entire sequences. This approach discards a large amount of information about the

characters (i.e., the aligned columns of residues), instead summarizing information

about the overall relatedness of sequences. In constrast, character information is eval-

uated in maximum parsimony, maximum likelihood, and Bayesian approaches. All

strategies for inferring phylogenies must make some simplifying assumptions, but

nonetheless the simpler approaches of distance-based methods very often produce

phylogenetic trees that closely resemble those derived by character-based methods.

The UPGMA Distance-Based Method
We introduce UPGMA here because the tree-building process is relatively intuitive

and UPGMA trees are broadly used in the field of bioinformatics. However, the

algorithm most phylogeny experts employ to build distance-based trees is neigh-

bor-joining (described below). We can make a distance-based tree in PAUP by select-

ing the distance criterion from the analysis menu. A dialog box allows you to choose

either the UPGMA or neighbor-joining algorithm. MEGA4 similarly offers a pull-

down menu for these options. UPGMA clusters sequences based on a distance

matrix. As the clusters grow, a tree is assembled. A tree of 13 globins using

UPGMA is shown in Fig. 7.25. As we would expect, the alpha globins, beta globins,

lamprey globins, and myoglobins are clustered in distinct clades. The two most clo-

sely related protein (lamprey globins) are clustered most closely together.

The UPGMA algorithm was introduced by Sokal and Michener (1958) and

works as follows. Consider five sequences whose distances can be represented as

points in a plane (Fig. 7.26a). We also represent them in a distance matrix. Some

protein sequences, such as 1 and 2, are closely similar, while others (such as 1 and

3) are far less related. UPGMA clusters the sequences as follows (adapted from

Sneath and Sokal, 1973, p. 230):

1. We begin with a distance matrix. We identify the least dissimilar groups (i.e.

the two OTUs i and j that are most closely related). All OTUs are given

equal weights. If there are several equidistant minimal pairs, one is picked

randomly. In Fig. 7.26a we see that OTUs 1 and 2 have the smallest distance.

2. Combine i and j to form a new group ij. In our example, groups 1 and 2

have the smallest distance (0.1) and are combined to form cluster (1, 2)

The Clusters of Orthologous

Groups (COG) database

(Table 10.9 and Chapter 15) relies

on distance-based assignments of

gene relatedness.

We described the use of a distance

matrix to create a guide tree in

Chapter 6.
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FIGURE 7.26. Explanation of the
UPGMA method. This is a simple,
fast algorithm for making trees. It
is based on clustering sequences.
(a) Each sequence is assigned to
its own cluster. A distance matrix,
based on some metric, quantitates
the distance between each object.
The circles in the figure represent
these sequences. (b) The taxa with
the closest distance (sequences 1
and 2) are identified and con-
nected. This allows us to name an
internal node [right, node 6, in
(b)]. The distance matrix is recon-
structed counting taxa 1 and 2 as a
group. We can also identify the
next closest sequences (4 and 5;
their distance is shaded red in the
table). (c) These next closest
sequences (in the table 4 and 5)
are combined into a cluster, and
the matrix is again redrawn. In
the tree (right side) taxa 4 and 5
are now connected by a new
node, 7. We can further identify
the next smallest distance (value
0.3, shaded red) corresponding to
the union of taxon 3 to cluster
(4,5). (d) The newly formed
group (cluster 4,5 joined with
sequence 3) is represented on the
emerging tree with new node 8.
Finally, (e) all sequences are con-
nected in a rooted tree.
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FIGURE 7.25. UPGMA phyloge-
netic tree of 13 globins. Branch
lengths are proportional to evol-
utionary distances which were
calculated using the Poisson correc-
tion method. The units are the
number of amino acid substitutions
per site. Note that UPGMA trees
are rooted; the root is placed at
the left of the tree. The sum of the
branch lengths was 4.93. All pos-
itions containing gaps were elimi-
nated from the analysis. The tree
was generated using MEGA4
software.
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(see Fig. 7.26b). This results in the formation of a new, clustered distance

matrix having one fewer row and column than the initial matrix.

Dissimilarities that are not involved in the formation of the new cluster

remain unchanged; for example, in the distance matrix of Fig. 7.25b taxa 3

and 4 still maintain a distance of 0.3. The values for the clustered taxa

(1,2) reflect the average of OTUs 1 and 2 to each of the other OTUs. The dis-

tance of OTU 1 to OTU 4 was initially 0.8, of OTU 2 to OTU 4 was 1.0, and

then the distance of OTU (1,2) to OTU 4 becomes 0.9.

3. Connect i and j through a new node on the nascent tree. This node corre-

sponds to group ij. The branches connecting i to ij and j to ij each have a

length Dij/2. In our example, OTUs 1 and 2 are connected through node

6, and the distance between OTU1 and node 6 is 0.05 (Fig. 7.25b, right

side). We label the internal node 6 because we reserve the numbers 1 to 5

on the x axis as the terminal nodes of the tree.

4. Identify the next smallest dissimilarity (between OTUs 4 and 5 in Fig. 7.25b),

and combine those taxa to generate a second clustered dissimilarity matrix

(Fig. 7.25c). In this step it is possible that two OTUs will be joined (if they

share the least dissimilarity), or a single OTU (denoted i) will be joined

with a cluster (denoted jk), or two clusters will be joined (ij, kl). The dissim-

ilarity of a single OTU i with a cluster jk is computed simply by taking the

average dissimilarity of ij and ik. In this process a new distance matrix is

formed, and the tree continues to be constructed. In Fig. 7.25c the smallest

distance in the matrix is 0.3 corresponding to the relation of OTU 3 to the

combined OTU 4,5. These are joined in Fig. 7.25d in the graphic represen-

tation, in the distance matrix, and in the tree.

5. Continue until there are only two remaining groups, and join these.

The tree shown in Fig. 7.25 was made by the UPGMA approach using the

sequences of 13 globin proteins, and for which the Poisson-corrected distances are

shown in Fig. 7.19c. We demonstrate how to perform UPGMA calculations on

this data set in a series of 12 tables available on the supplementary website.

Compare Figs. 7.19c and 7.25 and note that the two closest OTUs of the distance

matrix (globin from lamprey and sea lamprey) have the shortest branch lengths on

the UPGMA tree. The second closest group (myoblobin from harbor porpoise and

gray seal) has the next shortest branch lengths. That group of two OTUs collectively

has a short branch length to kangaroo myoglobin. These relationships are visualized

in the phylogenetic tree.

A critical assumption of the UPGMA approach is that the rate of nucleotide or

amino acid substitution is constant for all the branches in the tree, that is, the molecu-

lar clock applies to all evolutionary lineages. If this assumption is true, branch lengths

can be used to estimate the dates of divergence, and the sequence-based tree mimics a

species tree. An UPGMA tree is rooted because of its assumption of a molecular

clock. If it is violated and there are unequal substitution rates along different branches

of the tree, the method can produce an incorrect tree. Note that other methods

(including neighbor-joining) do not automatically produce a root, but a root can

be placed by choosing an outgroup or by applying midpoint rooting.

The UPGMA method is a commonly used distance method in a variety of appli-

cations including microarray data analysis (see Chapter 9). In phylogenetic analyses

using molecular sequence data its simplifying assumptions tend to make it signifi-

cantly less accurate than other distance-based methods such as neighbor-joining.

Visit Q http://www.bioinfbook.

org/chapter7/for a detailed

UPGMA analysis.
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Making Trees by Distance-Based Methods:
Neighbor Joining
The neighbor-joining method is used for building trees by distance methods (Saitou

and Nei, 1987). It produces both a topology and branch lengths. We begin by defin-

ing a neighbor as a pair of OTUs connected through a single interior node X in an

unrooted, bifurcating tree. In the tree of globins shown in Fig. 7.1, porpoise and

seal myoglobins are neighbors, while kangaroo myoglobin is not a neighbor because

it is separated from those two proteins by two nodes. In general, the number of neigh-

bor pairs in a tree depends on the particular topology. For a bifurcating tree with

N OTUs, N 2 2 pairs of neighbors can potentially occur. The neighbor-joining

method first generates a full tree with all the OTUs in a starlike structure with no hier-

archical structure (Fig. 7.27a). All N(N 2 1)/2 pairwise comparisons are made to

identify the two most closely related sequences. These OTUs give the smallest

sum of branch lengths (see taxa 1 and 2 in Fig. 7.27b). OTUs 1 and 2 are now treated

as a single OTU, and the method identifies the next pair of OTUs that gives the smal-

lest sum of branch lengths. This could be two OTUs such as 4 and 6, or a single OTU

such as 4 paired with the newly formed clade that includes OTUs 1 and 2. The tree

has N 2 3 interior branches, and the neighbor-joining method continues to succes-

sively identify nearest neighbors until all N 2 3 branches are identified.

The process of starting with a star-like tree and finding and joining neighbors

is continued until the topology of the tree is completed. The neighbor-joining,

algorithm minimizes the sum of branch lengths at each stage of clustering OTUs

(see Box 7.7); although the final tree is not necessarily the one with the shortest overall

branch lengths. Thus, its results may differ from minimum evolution strategies or

maximum parsimony (discussed below). Neighbor joining produces an unrooted

tree topology (because it does not assume a constant rate of evolution), unless an out-

group is specified or midpoint rooting is applied.
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FIGURE 7.27. The NJ method is a
distance-based algorithm. (a) The
OTUs are first clustered in a star-
like tree. “Neighbors” are defined
as OTUs that are connected by a
single, interior node in an
unrooted, bifurcating tree. (b)
The two closest OTUs are ident-
ified, such as OTUs 1 and 2.
These neighbors are connected to
the other OTUs via the internal
branch XY. The OTUs that are
selected as neighbors in (b) are
chosen as the ones that yield the
smallest sum of branch lengths.
This process is repeated until the
entire tree is generated. Adapted
from Saitou and Nei (1987).
Used with permission.
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We have shown several examples of neighbor-joining trees for 13 globins

(Figs. 7.20 and 7.23). This algorithm is especially useful when studying large

numbers of taxa. There are many recent examples of its use in the literature, such

as studies of the 1918 influenza virus (Taubenberger et al., 2005). There are

many alternative distance-based approaches, some of which have been systematically

compared (Hollich et al., 2005; Desper and Gascuel, 2006).

Phylogenetic Inference: Maximum Parsimony
The main idea behind maximum parsimony is that the best tree is that with the short-

est branch lengths possible (Czelusniak et al., 1990). Parsimony-based phylogeny

based on morphological characters was described by Hennig (1966), and Eck and

Dayhoff (1966) used a parsimony-based approach to generating phylogenetic trees

such as that in Fig. 7.1. According to maximum parsimony theory, having fewer

changes to account for the way a group of sequences evolved is preferable to more

complicated explanations of molecular evolution. Thus we seek the most parsimo-

nius explanations for the observed data. The assumption of phylogenetic systematics

is that genes exist in a nested hierarchy of relatedness, and this is reflected in a hier-

archical distribution of shared characters in the sequences. The most parsimonious

tree is supposed to best describe the relationships of proteins (or genes) that are

derived from common ancestors.

The steps are as follows:

† Identify informative sites. If a site is constant (e.g., Fig. 7.18, diamonds), then

it is not informative (see below). MEGA software includes an option to view

parsimony-informative sites (Fig. 7.28a, arrow). Noninformative sites include

constant sites (Fig. 7.28a, closed arrowheads) and positions in which there are

Box 7.7
Branch Lengths in a Neighbor-Joining Tree

Saitou and Nei (1987) defined the sum of the branch lengths as follows. Let

Dij equal the distance between OTUs i and j, and let Lab equal the branch

lengths between nodes a and b. The sum of the branch lengths S for the tree in

Fig. 7.27a is

S ¼
XN
i¼1

LiX ¼
1

N � 1

X
i,j

Dij

This result follows from the fact that in computing the total distance each branch

is counted N 2 1 times. For the tree in Fig. 7.27b the branch length between

nodes X and Y (given by LXY) is:

LXY ¼
1

2(N � 2)

XN
k¼3

D1 k þD2 kð Þ � N � 2ð Þ L1X þ L2Xð Þ � 2
XN
i¼3

LiY

" #

In this equation, the first term in the brackets is the sum of all distances

that include LXY, and the other terms exclude irrelevant branch lengths.

Saitou and Nei (1987) provide further detailed analyses of the total branch

lengths of the tree.

The word parsimony (from the

Latin parcere, “to spare”) refers to

simplicity of assumptions in a

logical formulation.
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not at least two states (e.g. two different amino acid residues) with at least two

taxa having each state (such noninformative sites are indicated in Fig. 7.28a,

open arrowheads).

† Construct trees. Every tree is assigned a cost, and the tree with the lowest cost

is sought. When a reasonable number of taxa are evaluated, such as about a

dozen or fewer, all possible trees are evaluated and the one with the shortest

branch length is chosen. When necessary, a heuristic search is performed to

reduce the complexity of the search by ignoring large families of trees that

are unlikely to contain the shortest tree.

† Count the number of changes and select the shortest tree (or trees).

Parsimony analysis assumes that characters are independent of each other.

The length L of a full tree is computed as the sum of the lengths lj of the individual

characters:

L ¼
XC

j¼1

wjlj (7:11)

kangaroo   LKGH
porpoise   LKGH
gray seal  LKSH
horse α    MLGF
kangaroo α THSF

LKGH
1

3

2

LKGH LKGH LKSH MLGF THSF

MLGFLKGH

LKGF

0

0 0 1 0

Total cost: 7

LKGH
4

3

1

LKGH LKGH LKSH MLGF THSF

MLGFLKGH

MLHF

0

0 0 1 0

Total cost: 9

(a)

(b)

(c) (d)

FIGURE 7.28. Principle of maxi-
mum parsimony. (a) Considering
the columns of aligned residues,
many are informative for parsi-
mony analysis. However, columns
having entirely conserved residues
(filled arrowheads) are not infor-
mative, nor are columns in which
there are at least two different resi-
dues that occur at least two times
(open arrowheads). This align-
ment of 13 globin proteins was
viewed in MEGA4 software, with
the option to display parsimony-
informative characters selected
(see arrow); other options include
viewing conserved or variable pos-
itions. (b) Example of four amino
acid residues from five different
species (taken from the top left of
panel [a]). Maximum parsimony
identifies the simplest (most parsi-
monious) evolutionary path by
which those sequences might have
evolved from ancestral sequences.
(c, d) Two trees showing possible
ancestral sequences. The tree in
(c) requires seven changes from
its common ancestor, while the
tree in (d) requires nine changes.
Thus, maximum parsimony
would select the tree in (c).
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where C is the total number of characters, and the weight wj assigned to each

character is typically 1. A different weight might be assigned if, for example,

nucleotide transversions are more penalized than transitions.

As an example of how maximum parsimony works, consider five aligned amino

acid sequences (Fig. 7.28b, taken from the upper left of Fig. 7.28a). Two possible

trees describe these sequences (Fig. 7.28c and d); each tree has hypothetical

sequences assigned to ancestral nodes. One of the trees (Fig. 7.28c) requires fewer

changes to explain how the observed sequences evolved from a hypothetical

common ancestor. In this example, each site is treated independently.

In PAUP, you can set the tree-making criterion to parsimony. It is preferable to

perform an exhaustive search of all possible trees to find the one with the shortest

total branch lengths. In practice, this is not possible for more than 12 taxa, so it is

often necessary to perform a heuristic search. Both heuristic and exhaustive searches

often result in the identification of several trees having the same minimal value for

total branch length of the tree. Trees can be visualized as a phylogram or a cladogram.

An artifact called long-branch attraction sometimes occurs in phylogenetic infer-

ence, and parsimony approaches may be particularly susceptible. In a phylogenetic

reconstruction of protein or DNA sequences, a branch length indicates the

number of substitutions that occur between two taxa. Parsimony algorithms

assume that all taxa evolve at the same rate and that all characters contribute the

same amount of information. Long-branch attraction is a phenomenon in which

rapidly evolving taxa are placed together on a tree, not because they are closely

related, but artifactually because they both have many mutations. Consider the

true tree in Fig. 7.29, in which taxon 2 represents a DNA or protein that changes

rapidly relative to taxa 1 and 3. The outgroup is (by definition) more distantly related

than taxa 1, 2, and 3 are to each other. A maximum parsimony algorithm may gen-

erate an inferred tree (Fig. 7.29) in which taxon 2 is “attracted” toward another long

branch (the outgroup) because these two taxa have a large number of substitutions.

Anytime two long branches are present, they may be attracted.

Model-Based Phylogenetic Inference: Maximum Likelihood
Maximum likelihood is an approach that is designed to determine the tree topology

and branch lengths that have the greatest likelihood of producing the observed data

set. A likelihood is calculated for each residue in an alignment, including some

model of the nucleotide or amino acid substitution process. It is among the most

computationally intensive but most flexible methods available (Felsenstein, 1981).

Maximum parsimony methods sometimes fail when there are large amounts of

evolutionary change in different branches of a tree. Maximum likelihood, in contrast,

provides a statistical model for evolutionary change that varies across branches. Thus,

true tree inferred tree

outgroup
      1
      2
      3

outgroup
      2
      1
      3

FIGURE 7.29. Long branch chain attraction. The true tree includes a taxon (labeled 2) that
evolves more quickly than the other taxa. It shares a common ancestor with taxon 3.
However, in the inferred tree taxon 2 is placed separately from the other taxa because it is
attracted by the long branch of the outgroup. Adapted from Philippe and Laurent (1998).
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for example, maximum likelihood can be used to estimate positive and negative selec-

tion across individuals branches of a tree. The relative merits of maximum parsimony

and maximum likelihood continue to be explored. For example, Kolaczkowski and

Thornton (2004) reported that when sequences evolve in a heterogeneous fashion

over time maximum parsimony can outperform maximum likelihood.

A computationally tractable maximum likelihood method is implemented in the

Tree-Puzzle program (Strimmer and von Haeseler, 1996; Schmidt et al., 2002). The

program allows you to specify various models of nucleotide or amino acid substitution

and rate heterogeneity (e.g., the G distribution). There are three steps. First, Tree-

Puzzle reduces the problem of tree reconstruction to a series of quartets of sequences.

For quartet A,B,C,D there are three possible topologies (Fig. 7.12a). In the maximum

likelihood step the program reconstructs all quartet trees. For N sequences there are

N

4

� �

possible quartets; for example, for 12 myoglobin DNA sequences there are

12

4

� �

or 495 possible quartets. The three quartet topologies are weighted by their posterior

probabilities.

n

k

� �

is a binomial coefficient that is read as “n choose k.” It describes the number of com-

binations, that is, how many ways there are to choose k things out of n possible

choices. Given the factorial functions n! and k! we can write the binomial coefficient

n

k

� �
¼ n!

k! � n� kð Þ!

For

12

4

� �

this corresponds to

12!

4! 8ð Þ! or
12 � 11 � 10 � 9

4 � 3 � 2 � 1

which is 495.

In the second step, called the quartet puzzling step, a large group of intermediate

trees is obtained. The program begins with one quartet tree. Since that tree has four

sequences, N 2 4 sequences remain. These are added systematically to the branches

that are most likely based on the quartet results from the first step. Puzzling allows

estimates of the support to each internal branch of the tree that is constructed;

such estimates are not available for distance- or parsimony-based trees. In the

third step, the program generates a majority consensus tree. The branch lengths

and maximum likelihood value are estimated. An example of a consensus tree is

shown in Fig. 7.30a.

The Tree-Puzzle program also allows an option called likelihood mapping which

describes the support of an internal branch as well as a way to visualize the

A file showing how to format 13

globin proteins for input into the

Tree-Puzzle program is provided

in web document 7.8 at Q http://
www.bioinfbook.org/chapter7.

Web document 7.9 shows the

Tree-Puzzle output file.
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phylogenetic content of a multiple sequence alignment (Strimmer and von Haeseler

1996, 1997). The quartet topology weights sum to 1, and likelihood mapping plots

them on a triangular surface. In this plot, each dot corresponds to a quartet that is

positioned spatially according to its three posterior weights (Fig. 7.30b). For 13

globin protein sequences, 9.7% of the quartets were unresolved (as indicated in the

center of the triangle). An additional 0.3% þ 0.4% þ 0.1% of the quartets were par-

tially resolved. For 12 myoglobin DNA coding sequences, only 3% of the quartets

were unresolved (not shown). Likelihood mapping summarizes the strength (or con-

versely the ambiguity) inherent in a data set for which you perform tree puzzling.

Tree Inference: Bayesian Methods
Bayesian inference is a statistical approach to modeling uncertainty in complex

models. Conventionally we calculate the probability of observing some data (such

as the result of a coin toss) given some probability model. This probability is denoted

FIGURE 7.30. Maximum likeli-
hood inference of phylogenetic
trees using quartet puzzling. (a)
The taxa in any tree with four or
more sequences can be represented
as quartets of sequences (A,B,C,D)
as shown in fig. 7.12a. These can
be placed in a tree with three possible
topologies. Quartet puzzling applies
maximum likelihood criteria to
identify the most likely tree. This
tree of 13 globin proteins was con-
structed using the Tree-Puzzle pro-
gram. (b) Likelihood mapping (in
Tree-Puzzle) indicates the fre-
quency with which quartets are suc-
cessfully resolved. In the top triangle,
there are 495 points corresponding
to all possible quartets. Each quartet
has three posterior weights which are
mapped in triangles. For the
analysis of 13 globins, only 9.7%
of the quartets were unresolved.
Likelihood mapping provides an esti-
mate of the ability of a given data
set to be successfully analyzed in
quartets.

0.2

soybean globin

insect globin

lamprey
globin

sea lamprey
globin

kangaroo
myoglobin

harbor porpoise
myoglobin

gray seal
myoglobin

horse alpha globin
dog alpha globin

kangaroo alpha globin

rabbit beta globin

dog 
beta 

globin

kangaroo beta globin

33.8%

33.4% 32.7%

30.9%

29.2% 29.4%0.1%

9.7%

0.4%

0.
3%

(b)

(a)

The Tree-Puzzle program of

Korbinian Strimmer and col-

leagues is available at Q http://
www.tree-puzzle.de/. You can also

perform maximum likelihood

(and quartet puzzling) using

DNAML (Phylip) and PAUP.
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P(datajmodel), that is, the probability of the data given the model. (This is also read

as “the probability of the data conditional upon the model.”) Bayesian inference

instead seeks the probability of a tree conditional on the data (that is, based on

the observations such as a given multiple sequence alignment). This assumes the

form P(modeljdata), P(hypothesisjdata), or in our case P(treejdata). According to

Bayes’s theorem (Huelsenbeck et al., 2001),

Pr[Tree jData] ¼ Pr[Data jTree]� Pr[Tree]

Pr[Data]
(7:12)

Bayesian estimation of phylogeny is focused on a quantity called the posterior

probability distribution of trees, Pr[Tree jData]. (This is read as “the probability

of observing a tree given the data.”) For a given tree, the posterior probability is

the probability that the tree is correct, and our goal is to identify the tree with the

maximum probability. On the right side of Equation 7.12, the denominator

Pr[Data] is a normalizing constant over all possible trees. The numerator consists

of the prior probability of a phylogeny (Pr[Tree]) and the likelihood Pr[Data j
Tree]. These terms represent a distinctive feature of Bayesian inference of phylogeny:

the user specifies a prior probability distribution of trees (although it is allowable for

all possible trees to be given equal weight).

Practically, we can apply a Bayesian inference approach using the MrBayes soft-

ware program. There are four steps. First, read in a Nexus data file. This can be

accomplished by performing a multiple sequence alignment of interest, then convert-

ing it into the Nexus format with a tool such as ReadSeq. We will use an example of

13 globin protein-coding DNA sequences.

Second, specify the evolutionary model. This includes options for data that are

DNA (whether coding or not), ribosomal DNA (for the analysis of paired stem

regions; see Chapter 8), and protein. Before performing the analysis, one specifies

a prior probability distribution for the parameters of the likelihood model. There

are six types of parameters that are set as the priors for the model in the case of the

analysis of nucleotide sequences: (1) the topology of the trees (e.g. some nodes

can be constrained to always be present), (2) the branch lengths, (3) the stationary

frequencies of the four nucleotides, (4) the six nucleotide substitution rates (for

A $C, A$G, A$T, C$G, C$ T, and G$ T), (5) the proportion of invariant

sites, and (6) the shape parameter of the gamma distribution of rate variation. For

protein sequences, both fixed-rate and variable-rate models are offered.

Your decisions on how to specify these parameters may be subjective. This can be

considered either a strength of the Bayesian approach (because your judgment may

help you to select optimal parameters) or a weakness (because there is a subjective

element to the procedure). All priors do not have to be informative; one can select

conservative settings.

Third, run the analysis. This is invoked with the mcmc (Monte Carlo Markov

Chain) command. The posterior probability of the possible phylogenetic trees is

ideally calculated as a summation over all possible trees, and for each tree, all

combinations of branch lengths and substitution model parameters are evaluated.

In practice this probability cannot be determined analytically, but it can be approxi-

mated using MCMC. This is done by drawing many samples from the posterior dis-

tribution (Huelsenbeck et al., 2002). MrBayes runs two simultaneous, independent

analyses beginning with distinct, randomly initiated trees. This helps to assure that

your analysis includes a good sampling from the posterior probability distribution.

MrBayes is available from

Q http://mrbayes.csit.fsu.edu/.

Web document 7.10 shows how to

format 13 globin proteins for

input into MrBayes, and web

document 7.11 shows the output.

See Q http://www.bioinfbook.

org/chapter7.
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Eventually the two runs should reach convergence. An MCMC analysis is performed

in three steps: first, a Markov chain is started with a tree that may be randomly

chosen. Second, a new tree is proposed. Third, the new tree is accepted with some

probability. Typically tens to hundreds of thousands of MCMC iterations are

performed. The proportion of time that the Markov chain visits a particular tree is

an approximation of the posterior probability of that tree. Some authors have cau-

tioned that MCMC algorithms can give misleading results, especially when data

have conflicting phylogenetic signals (Mossel and Vigoda, 2005).

Fourth, summarize the samples. MrBayes provides a variety of summary

statistics including a phylogram, branch lengths (in units of the number of expected

substitutions per site), and clade credibility values. An example for 13 globin proteins

is shown in Fig. 7.31. The summary statistics for a Bayesian analysis are provided.

They include a list of all trees sorted by their probabilities; this is used to create a

“credible” list of trees (Fig. 7.31a). A consensus tree showing branch lengths and

support values for interior nodes is generated (Fig. 7.31b).

Bayesian inference of phylogeny resembles maximum likelihood because each

methodseeks to identifya quantity called the likelihood which isproportional toobserv-

ing the data conditional on a tree. The methods differ in that Bayesian inference

includes the specification of prior information and uses MCMC to estimate the

posterior probability distribution. Although they were introduced relatively recently,

Bayesian approaches to phylogeny are becoming increasingly commonplace.

Stage 5: Evaluating Trees
After you have constructed a phylogenetic tree, how can you assess its accuracy?

The main criteria by which accuracy may be assessed are consistency, efficiency,

and robustness (Hillis, 1995; Hillis and Huelsenbeck, 1992). One may study the

accuracy of a tree-building approach or the accuracy of a particular tree. The most

common approach is bootstrap analysis (Felsenstein, 1985; Hillis and Bull, 1993).

Bootstrapping is not a technique to assess the accuracy of a tree. Instead, it describes

the robustness of the tree topology. Givena particular branching order, how consistently

does a tree-building algorithm find that branching order using a randomly permuted

version of the original data set? Bootstrapping allows an inference of the variability in

an unknown distribution from which the data were drawn (Felsenstein, 1985).

Nonparametric bootstrapping is performed as follows. A multiple sequence

alignment is used as the input data to generate a tree using some tree-building

method. The program then makes an artificial data set of the same size as the original

data set by randomly picking columns from the multiple sequence alignment. This is

usually performed with replacement, meaning that any individual column may

appear multiple times (or not at all). A tree is generated from the randomized data

set. A large number of bootstrap replicates are then generated; typically, between

100 and 1000 new trees are made by this process. The bootstrap trees are compared

to the original, inferred tree(s). The information you get from bootstrapping is the

frequency with which each clade in the original tree is observed.

An example of the bootstrap procedure using MEGA4 is shown in Fig. 7.20. The

percentage of times that a given clade is supported in the original tree is provided

based on how often the bootstraps supported the original tree topology. Bootstrap

values above 70% are sometimes considered to provide support for the clade desig-

nations. Hillis and Bull (1993) have estimated that such values provide statistical

significance at the p , 0.05 level. This approach measures the effect of random

Accuracy refers to the degree to

which a tree approximates the true

tree. We will define and discuss

precision and accuracy in Chapter

9 in the context of microarray data

analysis.

Parametric bootstrapping refers to

repeated random sampling with-

out replacement from the original

sample. It is not used as often as

nonparametric bootstrapping.
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weighting of characters in the original data matrix, giving insight into how strongly

the phylogenetic signal that produces a tree is distributed through the multiple

sequence alignment. In Fig. 7.20a and b, the clade containing three alpha globins

has 100% bootstrap support, indicating that in all 500 bootstrap replicates that

clade maintained its integrity (with none of the three alpha globins assigned to a

different clade, and no non-alpha globin joining that clade). However, the clade

containing horse and dog alpha globin received only 52% bootstrap support

(Fig. 7.20b), suggesting that about half the time kangaroo alpha globin was in a

clade with the dog or horse orthologs. This example shows how viewing the bootstrap

(a) Phylogram 

(b) Radial tree with clade credibility values

   /--- mbkangaro (1)
   |                                                                               
   |-- mbharbor_ (2)
   |                                                                               
   |- mbgray_se (3)
   |                                                                               
   |                                    /--- alphahors (4)
   |                                   /+                                          
   |                                   |\---- alphadog (6)
   +                         /---------+                                           
   |                         |         \--- alphakang (5)
   |                         |                                                     
   |                   /-----+          /-- betadog (7)
   |                   |     |        /-+                                          
   |                   |     |        | \-- betarabbi (8)
   |                   |     \--------+                                            
   |                   |              \----- betakanga (9)
   \-------------------+                                                           
                       |                    /- globinlam (10)
                       |     /--------------+                                      
                       |     |              \-- globinsea (11)
                       \-----+                                                     
                             |            /------------------------- globinsoy (12)
                             \------------+                                        
                                          \---------------------- globinins (13)
                                                                                   
   |--------------| 0.500 expected changes per site

0.5

lamprey globin

sea lamprey globin

soybean globin

insect globin

100

85

89

10086
90

100

100

53

kangaroo myoglobin

harbor porpoise myoglobin
gray seal myoglobin

horse alpha globin

dog alpha globin

kangaroo alpha globin

rabbit beta globin
dog beta globin kangaroo 

beta globin

FIGURE 7.31. Bayesian inference
of phylogeny for 13 globin proteins
using MrBayes software (version
3.1.2). The input sequences were
aligned using MAFFT at EBI (see
Chapter 6). The amino acid
model (using default settings) was
Poisson, with 20 states correspond-
ing to the amino acids and equal
rates of substitution. Prior par-
ameters included equal, fixed fre-
quencies for the states, an equal
probability for all topologies, and
unconstrained branch lengths.
Monte Carlo Markov Chain esti-
mation of the posterior distribution
was achieved using a run of
600,000 trials from which over
11,000 trees were evaluated.
Clade credibility values give
strong support for the separation
of groups containing myoglobins,
alpha globins, beta globins, and
lamprey globins (all these clades
had 100% support). (a) The phylo-
gram output shows clades contain-
ing various globin subtypes. (b)
Tree files can be exported and
viewed using TreeView software.
Here a radial tree is shown with
clade credibility values added. The
scale bar is 0.5 expected changes
per amino acid site. The procedure
for performing this analysis is
described in web document 7.10
at Q http://www.bioinfbook.org/
chapter7.
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percentages can be useful to estimate the robustness of each clade in a tree. Note that

bootstrapping supports a model in which alpha globins, beta globins, myoglobins,

and lamprey globins each are assigned to a unique clade.

Maximum likelihood approaches report the tree with the greatest likelihood, and

they also report the likelihood for internal branches. For Bayesian inference of

phylogeny, the result is typically the most probable tree (called a maxiumum a

posteriori probability estimate). The results are often summarized using a majority

rule consensus tree in which the values represent the posterior probability that

each clade is true. The confidence estimates may sometimes be too liberal

(Suzuki et al., 2002). For example, Mar et al. (2005) found that Bayesian posterior

probabilities reached 100% at bootstrap percentages of 80%.

PERSPECTIVE

Molecular phylogeny is a fundamental tool for understanding the evolution and

relationships of protein (and nucleic acid) sequences. The main output of this analy-

sis is a phylogenetic tree, which is a graphical representation of a multiple sequence

alignment. The recent rapid growth of DNA and protein sequence data, along with

the visual impact of phylogenetic trees, has made phylogeny increasingly important

and widely applied. We will show examples of trees in Chapters 13 to 20 as we explore

genomes across the tree of life.

The field of molecular phylogeny includes conceptually distinct approaches,

including those outlined in this chapter (distance, maximum parsimony, maximum

likelihood, and Bayesian methods). For each of these approaches software tools con-

tinue to evolve. Thus it is reasonable for you to obtain a multiple sequence alignment

and perform phylogenetic analyses with all four tree-making approaches and with a

variety of substitution models. The relative merits of these maximum-parsimomy

versus model-based approaches continue to be debated (e.g., see Kolaczkowski and

Thornton, 2004; Steel, 2005).

PITFALLS

The quality of a phylogenetic tree based on molecular sequence data depends on the

quality of the sequence data and the multiple sequence alignment. It is also necessary

to choose the appropriate models of nucleotide substitution for the phylogeny. There

is an active debate within the field concerning the importance of selecting models

without too few or too many parameters. Furthermore, the choice of tree-making

approaches (from distance to maximum parsimony, maximum likelihood, and

Bayesian frameworks) may produce an optimal tree having different topologies and

branch lengths. In contrast to multiple sequence alignments of proteins having

known structures, there are few “gold standard” benchmark data sets that allow

objective definitions of the true trees.

In practice, for many published phylogenetic trees the underlying multiple

sequence alignments are not available and it is challenging to assess the quality of

published trees. A group of 28 phylogeny experts has begun to define reporting stan-

dards for phylogenetic analysis (called “Minimum Information about a Phylogenetic

Analysis” or MIAPA) (Leebens-Mack et al., 2006). Such standards may someday
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require those who report trees to include the underlying data as well as descriptions of

the models used to construct trees.

Finally, your understanding of the output of the phylogenetic analysis is critical.

Each of the methods used to reconstruct phylogenetic trees involves many assump-

tions and suffers from potential weaknesses. It is also important to learn how to inter-

pret trees as graphs that reflect the historical relationships of taxa; in a tree of protein

sequences, for example, the nodes correspond to inferred ancestral sequences.

WEB RESOURCES

DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

The best starting point for phylogeny resources on the World Wide

Web is the site of Joseph Felsenstein (Q http://evolution.genetics.

washington.edu/phylip/software.html). About 200 links are

listed, organized by categories such as phylogenetic methods, com-

puter platforms, and assorted types of data. All of the major soft-

ware tools listed in this chapter have websites that we have listed,

and most of these sites include detailed documentation and

examples that further illustrate both the practical use of the soft-

ware and the conceptual issues addressed by the authors’ particu-

lar approach to phylogeny.

The HIV Sequence Database at the Los Alamos National

Laboratory (discussed in Chapter 14, on viruses) offers a brief

online guide to making and interpreting phylogenetic trees

(Q http://www.hiv.lanl.gov/content/hiv-db/TREE_TUTORIAL/

Tree-tutorial.html). This site includes links to PAUP, Phylip, and

other tree-making programs. The National Center for

Biotechnology Information also offers an online primer (Systematics

and Molecular Phylogenetics) that introduces molecular trees

(Q http://www.ncbi.nlm.nih.gov/About/primer/phylo.html).

Please note that web links described in this chapter are avail-

able online at Q http://www.bioinfbook.org/chapter7.

[7-1] Consider a multiple sequence alignment containing a

grossly incorrect region. What is the likely consequence of

using this alignment to infer a phylogenetic tree using a dis-

tance-based or character-based method?

[7-2] Are there gene (or protein) families for which you expect dis-

tance-based tree-building methods to give substantially

different results than character-based methods?

[7-3] How would you test whether a particular human

gene (or protein) is under positive selection? What

species would you select for comparison to the human

sequence?

[7-1] Determine whether human and chimpanzee mitochondrial

DNA sequences have equal evolutionary rates between lineages.

To do this, use Tajima’s relative rate test as implemented in

MEGA.

(1) Obtain MEGA software.

(2) Obtain mitochondrial DNA sequences from human, chim-

panzee, bonobo, orangutan, gorilla, and gibbon from web

document 7.12 at Q http://www.bioinfbook.org/chapter7.

[7-2] Perform phylogenetic analyses using PAUP software.

Alignment Input

(1) Go to Conserved Domain Database (CCD) at

NCBI (Q http://www.ncbi.nlm.nih.gov/Structure/cdd/

cdd.shtml).

(2) On the homepage for CDD you will find the option to

“Find CDs in Entrez” by keyword; type in “lipocalins.”

The search result will include “pfam00061.” Click on the

family. As an alternative, do this exercise beginning with a

query for “globins” or another family of interest.

(3) The new window will present you with the brief introduc-

tion of the lipocalin protein family, including a representa-

tive multiple sequence alignment.

(4) Select the mFasta format then click “Reformat.”

(5) Copy the FASTA alignment into a simple text file. Change

names of the sequences from gi number into a name having

up to nine characters in the first row of the alignment. It is

helpful to change the filenames as follows: convert

“gij809398” to “btrbp” (Bos taurus retinol binding protein).

PAUP does not usually tolerate “/” and numbers. If your

data set includes a consensus sequence, delete the text up

to the beginning of the protein sequence and rename it

with a nine-character name (such as “consensus”).
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Convert to Readable Format (via ReadSeq)

(6) Open a new window in your browser and go to a ReadSeq

page such as Q http://searchlauncher.bcm.tmc.edu/seq-

util/readseq.html. You can find this URL easily by entering

the query “readseq” into a search engine.

(7) Paste your FASTA sequences into the provided window.

Choose the PAUP/NEXUS output format. Double click

on “Perform Conversion.”

(8) Take the output alignment, and copy it into your compu-

ter’s clipboard. Alternatively copy it into simple text or a

notepad file. Start copying with the #NEXUS and end

with the symbols “end;”.

Import into PAUP

(9) Open the PAUP program.

(10) Under the File heading, choose “New.”

(11) Paste in your alignment.

(12) Under the File menu, choose “Execute.”

(13) If you get some error message you may have to try several

alternatives such as

(i) Look for the line “format datatype ¼ protein interleave

missing ¼ -;” and change the hyphen (-) in this line to

a period (.)

(ii) Under the Edit menu choose “Find.” Replace all

instances of the symbol / with the underscore (-).

(14) When the Execute command is successful, you will be noti-

fied that “Data matrix has 10 taxa (i.e., 10 proteins) and

163 characters (amino acids).”

Tree Analysis Based on Maximum Parsimony:

(a) Heuristic Search

(15) Under the Analysis heading, select “Parsimony.”

(16) Under the Analysis menu, choose “Heuristic search.” Click

“Search” and use the default setting to find the tree.

(17) Once the search finishes, the small window with

“Heuristic Search Status” will have a clickable close

icon. The program describes the number of tree

rearrangements that were tried and the scores for the best

tree(s).

(18) View the tree. Go under the Trees menu and choose

“Print Tree.” You will have the option to see an unrooted

phylogram or cladogram among several options. In phylo-

gram displays, the branch lengths are proportional to

amino acid changes, and the tree is accompanied by a

scale bar. On the other hand, branch lengths are not pro-

portional to amino acid changes in the cladogram. A cla-

dogram portrays evolutionary relationships within species

and populations. In addition, if you have more than one

tree found to have the same best score, you will have

the option to view the particular tree individually or to

display all trees at once.

(19) How many amino acid changes occur in the shortest

branch and longest branch in your tree? Which OTUs

(taxa) are connected by these branches?

(20) If you have more than one tree, you can choose a consensus

tree. Under the Trees menu, select “Compute consensus.”

Evaluation of Trees

(i) The principle of the random tree test is to compare the

score of the found tree to the score distribution of X ran-

domly generated trees starting with your alignment.

(21) Evaluate the tree by frequency distribution of lengths of

100, 1000, and 10,000 random trees.

(22) Go under the Analysis icon and use the “Evaluate random

tree.” option. Change the number of random trees and see

how the mean and standard deviation change.

(23) Is the score of your tree found by a heuristic search signifi-

cantly better than the score distribution from randomly

generated trees?

(24) Perform the heuristic search for the most parsimonious tree

again and check the score. How good is your score this

time? Since we are working with the protein alignment of

10 taxa (OTUs), we can perform the exhaustive search

for the tree with maximum parsimony. Go under the

Analysis icon and choose “Exhaustive search.” What

score did you get and how does it compare to the score(s)

obtained using the heuristic search strategy?

(ii) The bootstrap test is another type of resampling test.

The principle is to randomly sample the individual col-

umns of aligned amino acid sequence data from the

original alignment. The newly generated data sets will

maintain the identical size of the original alignment.

The bootstrap describes the percent of instances in

which a particular clade designation is supported.

(25) Perform the bootstrap test. Go under the Analysis icon and

choose “Bootstrap/Jacknife.” Then change the number of

sampling. Try 1000 and 10,000 replicate samplings with

replacement.

(26) After each test you can view the tree! Trees! Print

Bootstrap Consensus! Preview. (The plot type can be

changed to “unrooted.”)

(27) Analyze the tree with 10,000 replicate samplings. Based on

your bootstrap values, how many strongly supported clades

(bootstrap value .70%) are present in your tree and what

taxa do they comprise?

(28) Can you determine if members of the particular clade are

paralogs or orthologs? What kind of information do you

need to make this inference?

Change Input Files

(29) Go back into the CDD database and retrieve the lipocalin

“pfam00061” family (points 1 to 3 above).

(30) Instead of choosing “10 most diverse sequences” as is set by

default (see point 4), choose “top listed sequences” in the
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SELF-TEST QUIZ

[7-1] According to the molecular clock hypothesis:

(a) All proteins evolve at the same, constant rate.

(b) All proteins evolve at a rate that matches the fossil record.

(c) For every given protein, the rate of molecular evolution

gradually slows down like a clock that runs down.

(d) For every given protein, the rate of molecular evolution is

approximately constant in all evolutionary lineages.

[7-2] The two main features of any phylogenetic tree are:

(a) The clades and the nodes

(b) The topology and the branch lengths

(c) The clades and the root

(d) The alignment and the bootstrap

[7-3] Which one of the following is a character-based phylogenetic

algorithm?

(a) Neighbor joining

(b) Kimura

(c) Maximum likelihood

(d) PAUP

[7-4] Two basic ways to make a phylogenetic tree are distance based

and character based. A fundamental difference between

them is:

(a) Distance-based methods essentially summarize relatedness

across the length of protein or DNA sequences while

character-based methods do not.

(b) Distance-based methods are only used for DNA data while

character-based methods are used for DNA or protein data.

(c) Distance-based methods use parsimony while character-

based methods do not.

(d) Distance-based methods have branches that are pro-

portional to time while character-based methods do not.

[7-5] An example of an operational taxonomic unit (OTU) is:

(a) Multiple sequence alignment

(b) Protein sequence

(c) Clade

(d) Node

[7-6] For a given pair of OTUs, which of the following is true?

(a) The corrected genetic distance is greater than or equal to

the proportion of substitutions.

(b) The proportion of substitutions is greater than or equal to

the corrected genetic distance.

[7-7] Transitions are almost always weighted more heavily than

transversions.

(a) True

(b) False

[7-8] One of the most common errors in making and analyzing a phy-

logenetic tree is:

(a) Using a bad multiple sequence alignment as input

(b) Trying to infer the evolutionary relationships of genes

(or proteins) in the tree

(c) Trying to infer the age at which genes (or proteins) diverged

from each other

(d) Assuming that clades are monophyletic

option of sequences in the output alignment. (Alternatively,

e.g., your can increase the input of your sequences up to 25.)

(31) Repeat the above exercise and observe the differences.

(32) You can also customize the input of the sequences. Choose

the option “Selected sequences” and check the chosen

sequences listed below this menu (see point 4).

(33) Analysis of trees based on distance method. This method is

based on comparing the number of pairwise differences

in sequences and using the computed distances between

the sequences to construct a tree. Unfortunately, some of

these mutations (especially if you are constructing a DNA

rather than a protein tree) can become overlooked if a

mutation occurs following another mutation back to the

original character.

Under the Analysis icon choose the “Distance” option.

Then perform the heuristic search for the tree. View the

tree and see if the taxa (OTUs) separated as they did in a

tree based on maximum parsimony. In addition, perform

an evaluation of your tree with randomness testing and

bootstrap as you did with the tree above.

(34) Analysis of trees based on maximum likelihood method. This is

a character-based tree-building method (as is maximum

parsimony). In this case, the trees are evaluated based on

the likelihood of producing the observed data. The PAUP

program will let you to construct the tree only with aligned

DNA sequences.

One way to obtain aligned DNA sequences is to retrieve

the alignment from the PopSet database. (Go to the main

NCBI site and choose Entrez! click PopSet! browse

the Popset for your favorite alignment). Paste the

PHYLIP formatted alignment from PopSet into ReadSeq

and proceed as above.

A tree based on the maximum-likelihood method from

protein alignment can be created with program Puzzle

(Q http://www.tree-puzzle.de).

[7-3] Perform phylogenetic analyses using MEGA software.

[7-4] Perform Bayesian inference of phylogeny using MrBayes soft-

ware. A detailed analysis for 13 globin proteins is provided in

web documents 7.10 and 7.11. A detailed analysis for DNA

coding sequences from a group of myoglobins (and cytoglobin

as an outgroup) is provided in web document 7.3.

SELF-TEST QUIZ 271



[7-9] ClustalX can be used to generate neighbor-joining trees with or

without bootstrap values.

(a) True

(b) False

[7-10] You have 200 viral DNA sequences of 500 residues each, and

you want to know if there are any pairs that are identical

(or nearly identical). Which of the following is the most effi-

cient method to use?

(a) BLAST

(b) Maximum-likelihod phylogenetic analysis

(c) Neighbor-joining phylogenetic analysis

(d) Popset
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Part II

Genomewide Analysis of RNA
and Protein
In the first third of this book, we described how to find sequences (and other

information) in databases, how to align DNA or protein sequences in a pairwise

fashion or in a multiple sequence alignment, and how to perform evolutionary

studies, including the visualization of aligned sequences through molecular

phylogeny. In this middle third of the book we follow the flow of central dogma of

molecular biology by moving from DNA to RNA (Chapters 8 and 9) to protein

(Chapters 10 and 11). We then discuss functional genomics (Chapter 12), which

is the genomewide study of the function of genes and gene products.



Miller and colleagues (1970, p. 394) visualized gene expression. They showed Escherichia coli chromosomal DNA (oriented vertically
as a thin strand in each figure) in the process of transcription and translation. As mRNA is transcribed from the genomic DNA and
extends off to the side, polyribosomes (dark objects) appear like beads on a string, translating the mRNA to protein. Used with
permission.



8

Bioinformatic Approaches
to Ribonucleic Acid (RNA)

INTRODUCTION TO RNA

The word “gene” was introduced by Johannsen in 1909 to describe the entity that

determines how characteristics of an organism are inherited. Classic studies by

Beadle and Tatum (1941) in the fungus Neurospora showed that genes direct the syn-

thesis of enzymes in a 1:1 ratio. As early as 1944, Oswald T. Avery demonstrated that

deoxyribonucleic acid (DNA) is the genetic material. Avery et al. (1944) showed that

DNA from bacterial strains with high pathogenicity could transform strains with low

to high pathogenicity. Further experiments involving bacterial transformation, per-

formed by Avery, McLeod, McCarthy, Hotchkiss, and Hershey confirmed that

DNA is the genetic material.

James Watson and Francis Crick proposed the double helical nature of DNA in

1953 (Fig. 8.1). Soon after, Crick 1958 could formulate the central dogma of mol-

ecular biology that DNA is transcribed into RNA then translated into protein.

Crick wrote (1958, p. 153) that the central dogma “states that once ‘information’

has passed into protein it cannot get out again. In more detail, the transfer of

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

You can learn about some of the

original discoveries concerning

nucleic acids by reading about

their Nobel Prize awards. Albrecht

Kossel was awarded the Nobel

Prize in 1910 for characterizing

nucleic acids (Q http://
nobelprize.org/nobel_prizes/
medicine/laureates/1910/).

Beadle and Tatum were awarded

Nobel Prizes in 1958 for their one

gene-one enzyme hypothesis (see

Q http://nobelprize.org/nobel_

prizes/medicine/laureates/
1958/). Severo Ochoa and Arthur

Kornberg shared a 1959 Nobel

Prize “for their discovery of the

mechanisms in the biological syn-

thesis of ribonucleic acid and

deoxyribonucleic acid” (Q http://
nobelprize.org/nobel_prizes/
medicine/laureates/1959/).

Although Oswald Avery was the

first to show that DNA is the gen-

etic material, he did not receive a

Nobel Prize.
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information from nucleic acid to nucleic acid, or from nucleic acid to protein may be

possible, but transfer from protein to protein, or from protein to nucleic acid is

impossible. Information means here the precise determination of sequence, either

of bases in the nucleic acid or of amino acid residues in the protein.” In this article

Crick further postulated the existence of an adaptor molecule to convert the infor-

mation from codons in RNA to amino acids in proteins; transfer RNA (tRNA) was

indeed later identified.

During the 1960s the genetic code was solved (e.g., Nirenberg, 1965), showing

the relationship between messenger RNA codons and the amino acids that are speci-

fied. This completed a detailed model for the flow of genetic information from DNA

to RNA to protein. However, even by the 1950s, this model was called into question

by the nature of RNA. Why did hybridization experiments suggest that only a minute

fraction of RNA was complementary to DNA of genes? RNA could be purified from

DNA and proteins, and then shown to separate into discrete bands on density gradi-

ents having sedimentation coefficients of 23S, 16S, and 4S. The 23S and 16S species

were found to localize to ribosomes and constituted about 85% of all RNA in bacteria.

tRNA was found to constitute about 15% of all RNA. Thus, surprisingly, mRNA was

found to represent only a small percentage of total RNA (about 1% to 4%).

FIGURE 8.1. Deoxyribonucleic
acid (DNA) and ribonucleic acid
(RNA). While DNA usually
adopts a double helical confor-
mation, RNA tends to be single
stranded. A notable exception is
the double-stranded base pairing
of many noncoding RNAs to form
stem-loop structures, described in
this chapter. The image is adapted
from the RNA entry of the National
Human Genome Research
Institute (NHGRI) Talking Glos-
sary (Q http://www.genome.gov/
glossary.cfm).

nitrogenous
bases

RNA
(composed of

G,A,U,C)

DNA
(composed of

G,A,T,C)

sugar
phosphate
backbone

base pair

Francis Crick, James Watson, and

Maurice Wilkins shared the 1962

Nobel Prize in Physiology or

Medicine “for their discoveries

concerning the molecular struc-

ture of nucleic acids and its sig-

nificance for information transfer

in living material.” See Q http://
nobelprize.org/nobel_prizes/
medicine/laureates/1962/.

The 1968 Nobel Prize in

Physiology or Medicine was

awarded to Robert Holley, Har

Khorana, and Marshall Nirenberg

“for their interpretation of the

genetic code and its function in

protein synthesis.” Visit Q http://
nobelprize.org/nobel_prizes/
medicine/laureates/1968/.
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DNA consists of the four nucleotides adenine, guanine, cytosine, and thymidine

(A, G, C, T). It can be transcribed into ribonucleic acid (RNA), consisting of the

nucleotides A, G, C, and U (uracil) (Fig. 8.2). RNA has a backbone consisting of

the five-carbon sugar ribose with a purine or pyrimidine base attached to each

sugar residue. A phosphate group links the nucleoside (i.e., the sugar with base) to

form a nucleotide.

The process of transcription of DNA results in the formation of RNA molecules

in two broad classes. The first class is coding RNA, formed when DNA is transcribed

into messenger RNA (mRNA). This mRNA is subsequently translated into protein

on the surface of a ribosome in a process mediated by transfer RNA (tRNA) and
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FIGURE 8.2. The nucleotide bases.
(a) The purine bases are guanine
and adenine. (b) The pyrimidine
bases are thymine, uracil (which
substitutes for thymine in RNA),
and cytosine. (c) 20-deoxyadeno-
sine triphosphate (dATP) and (d)
adenosine triphosphate (ATP).
The nitrogenous bases (a, b) are
attached to ribose sugars and tri-
phosphate groups. In the case of
DNA, the ribose lacks an oxygen
side group (arrow 1) that is present
in RNA (arrow 2).

The purines include adenine and

guanine, and the pyrimidines

include cytosine, thymine and

uracil. To view their structures at

the NCBI website, enter their

names into a search of Entrez, and

view the results in the PubChem

database.
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ribosomal RNA (rRNA) as well as by proteins. A second class is noncoding RNA in

which RNA products that are transcribed from DNA function without being further

translated into protein. We will next discuss noncoding and coding RNA from a

bioinformatics perspective. There is considerable excitement about many recent

advances in our understanding of all classes of RNAs, as we begin to recognize

their diverse functional properties. By the 1980s the extraordinary versatility of

RNA began to be appreciated when, in addition to the three major RNAs (rRNA,

tRNA, mRNA), RNAs with catalytic properties were discovered. Previously, nucleic

acids had been considered molecules underlying heredity while proteins functioned

as enzymes or other modulators of cellular processes (see Chapter 10). The discovery

of ribozymes is consistent with a model of the early evolution of life on earth in which

RNA was the first genetic material, prior to the emergence of DNA. Another impli-

cation is that RNA has many potential functional roles in the cell beyond serving as an

intermediary between DNA and protein. For example, rRNA catalyzes peptide bond

formation during translation.

Throughout this chapter we will use human chromosome 21 to demonstrate the

nature of various RNAs. This is among the smallest human chromosomes (about 47

million base pairs) and one of the five human chromosomes having ribosomal DNA

clusters that produce rRNA.

NONCODING RNA

The major classes of noncoding RNAs are tRNA and rRNA, which together account

for approximately 95% of all RNAs. Other noncoding RNAs, discussed below,

include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA),

microRNA, and short interfering RNA (siRNA). Beyond tRNA and rRNA, relatively

few noncoding RNAs have had their functions defined. A prominent example of a

functionally characterized noncoding RNA is Xist. This gene, located in the X inac-

tivation center of the X chromosome, encodes an RNA transcript (called X (inac-

tive)-specific transcript or Xist) that functions in X chromosome inactivation.

While males have one copy of the X chromosome (with XY sex chromosomes),

females have two copies, of which one is inactivated in every diploid cell. Xist is

expressed from the inactive X and binds to its chromatin facilitating chromosome

inactivation (Borsani et al., 1991). Another functional noncoding RNA is Air

which functions at the Igf2R locus (Sleutels et al., 2002). Some genes that are present

in two copies are imprinted, that is, expressed selectively from an allele of one parent.

In mouse, noncoding Air RNA is required to suppress expression of three genes

(Igf2r/Slc22a2/Slc22a3) from the paternal chromosome. It is notable that many non-

coding RNAs are very poorly conserved between species, and we explore this for

XISTand Air in problem 8-1 at the end of this chapter.

Considering all the noncoding RNAs, the abundant and well-characterized ones

(tRNA, rRNA, and mRNA) have central roles in protein synthesis, while the smaller

and more poorly characterized ones have been proposed to have a broad variety of

functions in the regulation of gene expression, development, and assorted physiologi-

cal and pathophysiological processes. In the following sections we will introduce sev-

eral prominent databases that collect information about noncoding RNAs. These

include Rfam and MirBase. We will also introduce two main methods for predicting

RNA structures: a comparative method that is based on multiple sequence align-

ments of RNAs, and the thermodynamic approach that seeks the minimum free

energy of a structure.

Sidney Altman and Thomas Cech

shared the 1989 Nobel Prize in

Chemistry “for their discovery of

the catalytic properties of RNA.”

See Q http://nobelprize.org/
nobel_prizes/chemistry/
laureates/1989/. Altman charac-

terized RNA enzymes (ribozymes)

in the bacterium Escherichia coli,

while Cech studied ribozymes in

Tetrahymena thermophila. An

example of a human gene encod-

ing a noncoding RNA with enzy-

matic activity is RNA component

of mitochondrial RNA processing

endoribonuclease (RMRP, acces-

sion NR_003051, assigned to

chromosome 9p21-p12).

The RefSeq accession for the

human XIST is NR_001564,

spanning 19,271 base pairs. The

accession for murine “antisense

Igf2r RNA” (AIR) on chromo-

some 17 is NR_002853 (3699

base pairs).

In addition to Rfam and MirBase

there are many other excellent

noncoding RNA databases such as

RNAdb (Pang et al., 2005) at

Q http://research.imb.uq.edu.

au/rnadb/.
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Noncoding RNAs in the Rfam Database
We introduced the Pfam database for protein families in Chapter 6 as an important

bioinformatics resource. The Rfam database serves a comparable role in characteriz-

ing RNA families (Griffiths-Jones et al., 2005). Rfam includes RNA alignments, con-

sensus secondary structures, and covariance models (discussed below). Each Rfam

family has a covariance model that is a statistical model of that family’s sequence

and structure.

The contents of Rfam permit a survey of all currently known noncoding RNAs

(Fig. 8.3). These include several well-characterized families that span all three

domains of life: tRNAs, rRNAs, SRP RNA (responsible for protein export), and

RNaseP (necessary for tRNA maturation). Table 8-1 lists the most abundant RNA

families in Rfam for all species.

We can further survey typical noncoding RNAs by viewing an Rfam summary of

those present on the long arm of human chromosome 21 (Fig. 8.4). This has 19 dis-

tinct families in 35 regions. These include a tRNA gene, an rRNA gene, small nuclear

genes involved in splicing, small nucleolar genes, and microRNAs. We will next

examine these various noncoding RNA types.

Transfer RNA
Transfer RNA molecules carry a specific amino acid and match it to its corresponding

codon on an mRNA during protein synthesis. tRNAs occur in 20 amino acid accep-

tor groups corresponding to the 20 amino acids specified in the genetic code. tRNA

forms a structure consisting of about 70 to 90 nucleotides folded into a characteristic

tRNA
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FIGURE 8.3. The Rfam family
includes alignments and descrip-
tions of RNA families from the
three domains of life. Adapted
from Griffiths-Jones et al. (2005).
Used with permission.

You can access the Rfam database

at Q http://www.sanger.ac.uk/
Software/Rfam/ or Q http://
rfam.janelia.org/. Release 8.0

(February 2007) has 574 models

and over 13,400 candidate non-

coding RNA genes.

Chromosome 21p (the short arm

of chromosome 21) is about 12

million base pairs in length and

contains rDNA clusters

(described below) and a total of

eight RefSeq genes. Chromosome

21q (the long arm) extends for

about 35 million base pairs and

has 322 RefSeq genes.
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cloverleaf. Key features of this structure include a D loop, an anticodon loop which

is responsible for recognizing messenger RNA codons, a T loop and a 30 end to

which aminoacyl tRNA synthetases attach the appropriate amino acid specific for

each tRNA.

We will demonstrate a computational approach to identifying tRNAs using the

tRNAscan-SE program (Lowe and Eddy, 1997). As an input, we will use a tRNA

known to be assigned to human chromosome 21. The output includes the anticodon

counts (Fig. 8.5a), listing the anticodons that have been identified corresponding to

the 20 amino acids as well as stop codons and the modified amino acid selenocys-

teine. In this example, the isotype is GCC indicating that this is a glycine tRNA

(in the genetic code glycine is encoded by GGG, GGA, GGT, or GGC; the GCC

anticodon matches the GGC codon). Other information in the output shows the pre-

dicted tRNA secondary structure in a bracket notation (Fig. 8.5b) as well as a model

of its structure (Fig. 8.5c).

tRNAscan-SE produces just one false positive per 15 billion nucleotides of random

DNA sequence. It achieves high sensitivity and specificity by combining the output of

three separate methods of tRNA identification (Lowe and Eddy, 1997). There are three

FIGURE 8.4. Summary of non-
coding RNA families in the Rfam
database that are assigned to the
long arm of human chromosome
21. This table was accessed by
browsing genomes from the Rfam
website (Q http://www.sanger.ac.
uk/Software/Rfam/index.shtml,
September 2007).

The tRNAscan-SE server is avail-

able at Q http://lowelab.ucsc.

edu/tRNAscan-SE/, Q http://
selab.janelia.org/tRNAscan-SE/,

or Q http://bioweb.pasteur.fr/
seqanal/interfaces/trnascan-

simple.html. You can also visit

Todd Lowe’s site to download

tRNAscan-SE and run it locally.

The human chromosome 21

tRNA is given in web document

8.1 at Q http://www.bioinfbook.

org/chapter8. (This 71 base pair

sequence also matches nucleo-

tides 84511 to 84581 of clone

AP001670.1.) In Chapter 3 we

introduced Dotlet for pairwise

alignments. Try using it (Q http://
myhits.isb-sib.ch/cgi-bin/dotlet)
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stages. First, it runs two programs that find tRNAs in DNA (or RNA) sequences. One

program identifies conserved intragenic promoter sequences found in prototypic

tRNAs, and also requires base pairings that occur in tRNA stem-loop “cloverleaf”

structures (Fichant and Burks, 1991). The other program searches for signals that

occur in eukaryotic RNA polymerase III promoters and terminators (Pavesi et al.,

1994). The results of these two programs are merged. In the second stage,

tRNAscan-SE analyzes the sequences using a covariance model or stochastic context-

free grammar (SCFG) (Eddy and Durbin, 1994). A covariance model or SCFG is a

FIGURE 8.5. Identification of
tRNAs using the tRNAscan-SE
server; 71 base pairs of DNA
were input conrresponding to a
known human chromosome 21
tRNA (see web document 8.1
at Q http://www.bioinfbook.org/
chapter 8). (a) Anticodon counts.
These indicate that the input
sequence includes a single tRNA
having an anticodon that pairs
with glycine codons GGC. (b) The
predicted secondary structure of
the tRNA. (c) Graphic of the pre-
dicted secondary structure showing
the characteristic cloverleaf pattern
of tRNAs. Note that the RNA
nucleotides (A, G, C, U) are used,
while in panel (b) the DNA nucleo-
tides (A, G, C, T) are used. The first
nucleotide is indicated (arrow 1),
as is the anticodon GCC (arrow 2).

(a)

(b)

1

2

with the human tRNA as a query

against itself, employing a small

window size to find the internally

matching stem-loop structures.
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probabilistic model of RNA secondary structure and sequence consensus, allowing

insertions, deletions, and mismatches (Box 8.1). The covariance model includes a

training step based on over 1000 previously characterized tRNAs. In the third stage

tRNAscan-SE performs a secondary structure prediction and identifies the anticodon

of the tRNA. tRNAs with introns and tRNA pseudogenes are further identified.

The approach adopted by tRNAscan-SE involves the alignment of multiple RNA

sequences in order to infer a common structure of each family based on the two inter-

related properties of primary sequence and secondary structure. Such an approach is

motivated by the fact that noncoding RNAs may diverge over time in a way that pre-

serves each molecule’s base-paired structure while conserving only a limited amount

of sequence similarity between homologous RNAs.

A distinct approach to determining RNA structures is to estimate the minimum

free energy of folding. This thermodynamic approach was pioneered by Zuker and

Stiegler 1981. It is implemented in a variety of programs, including the Vienna

RNA package (Hofacker, 2003) which incorporates several folding algorithms. A

sample output using the Vienna RNA webserver, using a chromosome 21 tRNA

sequence as input, is shown in Fig. 8.6.

BOX 8.1
Stochastic Context-Free Grammars, or Covariance Models

Hidden Markov models (HMMs) are probabilistic models that are useful in many

areas of bioinformatics to identify features in sequences such as conserved

residues that define a particular protein family (Chapter 5), or nucleotide

residues that constitute the structure of a gene (Chapter 16). Stochastic context-

free grammars (SCFG; Sakakibara et al., 1994) or covariance models (Eddy and

Durbin, 1994) constitute another class of probabilistic models that account for

long-range correlations along a sequence that occur because of base pairing of

noncoding RNA sequences. Such base pairing is required to form appropriate

secondary structure such as a stem. Eddy and Durbin 1994 introduced a

covariance model in which an RNA sequence is described as an ordered tree in

which there are states M (including match states, insert states, and delete states),

symbol emission probabilities (these are assigned to specific bases according to

the 16 possible pairwise nucleotide combinations or the four unpaired

nucleotides), and state transition probabilities (scores assigned to changing states

such as entering an insert state). They found that the information content in the

secondary structure of tRNA molecules is comparable to that of the primary

sequences.

SCFGs are comparable to covariance models. The input of a SCFG is a

multiple sequence alignment of noncoding RNAs (such as tRNAs) (Sakakibara

et al., 1994). The SCFG models how to derive the observed sequences based on a

set of “production rules.” Production rules and their associated probabilities

define a grammar. The advantages of a SCFG are that its parameters are derived

from known RNA sequences and structures, and its probabilistic framework

yields confidence estimates on its predictions. SCFGs (like HMMs) originate in

the field of language processing (speech recognition).

The Rfam covariance models generated by software called Infernal do not

provide expect (E) values, but they do offer bit scores. These are derived from

log-odds ratios of the probability that a sequence matches a covariance model

divided by the probability that the sequence was generated by a random model

(Griffith-Jones, 2005).

The Vienna RNA package is

available at Q http://www.tbi.

univie.ac.at/RNA/.

NONCODING RNA 287



In sequencing complete genomes it is of interest to identify all the tRNA genes.

In the human genome, there are over 600 tRNA genes, making this among the largest

gene families. The reason for so many genes is the necessity for large amounts of

tRNAs to enable protein synthesis to occur in all cells throughout life. Two major

resources are the Genomic tRNA Database and TFAM (Tåquist et al., 2007). A sum-

mary of the number of tRNA genes in selected organisms is presented in Table 8-2.

Ribosomal RNA
Ribosomal RNA molecules form structural and functional components of ribo-

somes, the subcellular units responsible for protein synthesis. rRNA constitutes

approximately 80% to 85% of the total RNA in a cell. In eukaryotes, synthesis of

rRNA occurs in the nucleolus, a specialized structure within the nucleus. Purified

ribosomes include particles that migrate at characteristic sedimentation coefficients

upon centrifugation through a gradient (Table 8-3). In bacteria these include the

FIGURE 8.6. RNA structure pre-
diction based on the minimum
free energy of folding. A chromo-
some 21 sequence known to
encode a tRNA (see Fig. 8.5 and
web document 8.1) was analyzed
using the Vienna RNA web
server. (a) Optimal predicted struc-
ture of an RNA using bracket nota-
tion. Unpaired nucleotides are
represented as dots, while base
paired nucleotides are represented
by a pair of matching parentheses.
The minimum free energy was
235.96 kcal/mol. (b) Predicted
structure of the RNA including
stems (double-stranded regions
with base pairing) and loops
(single-stranded regions). (c) Plot
of the minimum free energy (mfe)
and a positional entropy measure
(pf) (y axis) versus the nucleotide
position of the input DNA sequence
(x axis).

18.000

mfe

pf

16.000

14.000

12.000

10.000

8.000H
ei

g
h

t

6.000

4.000

2.000

0.000
0 10 20 30

Position

40 50 60 70

U

U
C

C

C

C

C
C

C C
C

C

C

C

C
C

A
(b)

(c)

(a)

A

A

A

A

A
AA

G

G
G

G
G

G
G

G
G

GG G

G

G

G

G

G G G
G
G

G

G
G G

A

A

C
C C

C C
C

C

U
U

U

U

U

U
U

U
U

U U
U

U

GCAUGGGUGGUUCAGUGGUAGAAUUCUCGCCUGCCACGCGGGAGGCCCGGGUUCGAUUCCCGGCCCAUGCA
((((((((......(((((((.........))))))).((((((...((....)).)))))))))))))).

The Genomic tRNA Database

(G�tRNA�db) from the labora-

tory of Todd Lowe is available at

Q http://lowelab.ucsc.edu/
GtRNAdb/ and contains tRNA

identifications of many genomes

made using tRNAscan-SE. Web

document 8.1 at Q http://www.

bioinfbook.org/chapter8 includes

all human tRNAs from the Lowe

database. TFAM is available at

Q http://www.lcb.uu.se/�dave/
TFAM and is especially useful for

classifying tRNAs having unusual

modifications. Another very

useful resource is the tRNA data-

base of Mathias Sprinzl and
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70S ribonucleoprotein particle that is composed of 30S and 50S subunits, further

containing three major rRNA forms (16S, 23S, and 5S). In eukaryotes the 80S ribo-

nucleoprotein particle consists of a 45S ribosomal RNA subunit that is further pro-

cessed to generate 18S, 28S, and 5.8S subunits.

rRNA derives from a multicopy ribosomal DNA (rDNA) gene family. In humans

these families are localized to the p arms (i.e., short arms) of the five acrocentric

chromosomes (13, 14, 15, 21, and 22) (Henderson et al., 1972). The rDNA loci con-

sist of a repeat unit, about 43 kilobases in length, of which 13 kilobases are tran-

scribed and the remainder are nontranscribed spacers (Fig. 8.7). The rDNA genes

are identified as RNR1 (mitochondrially encoded 12S RNA), RNR2 (mitochond-

rially encoded 16S RNA), RNR3, RNR4, and RNR5. In the human genome,

there are typically �400 copies of the rDNA repeat. These loci share a high degree

of sequence conservation in a process of homogenization that involves both con-

certed evolution through recombination and gene conversion.

Ribosomal DNA genes have a complex repetitive structure, tremendous conser-

vation across loci on different chromosomes, and enormous variability in the size of

the loci between individuals. Thus, they are not currently incorporated into the

reference human genome at NCBI, UCSC, or Ensembl. To identify human

rRNA RefSeq sequences from GenBank, take the following steps. (1) From the

home page of NCBI, select TaxBrowser; click Homo sapiens then choose

Nucleotides and follow the link for Core Nucleotides. This is equivalent to beginning

in Entrez Nucleotide and restricting the search to human using the command

“txid9606[Organism:exp].” (2) Currently (September 2007) thereareover 12 million

entries. Click “limits” and under the molecule option select rRNA. (3) There are

now three RefSeq entries corresponding to 5.8S rRNA (NR_003285; 156 base

TABLE 8-2 Summary of the Number of tRNA Genes in Selected Organisms

Organism
Common

Name

# tRNAs
Decoding the

20 Amino
Acids

# Predicted
Pseudogenes Other Total

Homo sapiens Human 448 171 3 622

Pan troglodytes Chimpanzee 451 103 15 569

Mus musculus Mouse 431 25,606 3 26,040

Canis familiaris Dog
(canFam1)

889 0 8 897

Drosophila
melanogaster

Fruit fly 289 4 2 295

Saccharomyces
cerevisiae

Baker’s yeast 273 0 2 275

Arabidopsis thaliana Plant 630 8 1 639

Plasmodium
falciparum

Malaria
parasite

42 1 1 44

Methanococcus
jannaschii

Archaeon 36 0 1 37

Escherichia coli K12 Bacterium 86 1 1 88

Mycobacterium leprae Bacterium 45 0 0 45

The “other” category refers to selenocysteine tRNAs (TCA), suppressor tRNAs (CTA,TTA) or tRNAs
with undetermined or unknown isotypes. Additionally, some organisms have tRNAs with introns (e.g.,
human, 32; P. falciparum, 1; Arabidopsis, 83).

Source: G�tRNA�db at Q http://lowelab.ucsc.edu/GtRNAdb/, September 2007.

Konstantin Vassilenkoat Q http://
www.uni-bayreuth.de/
departments/biochemie/trna/.

For an example of a human geno-

mic DNA sequence that you can

use as an input to search Rfam for

rRNA families, see web document

8.2 at Q http://www.bioinfbook.

org/chapter8.

We discuss the structure of the

chromosome in Chapter 16,

including explanations of mech-

anisms for conserving sequence

identity across chromosomal loci,

such as concerted evolution and

gene conversion. The five acro-

centric chromosomes have a cen-

tromere positioned near an end of

the chromosome rather than in the

center.

RefSeq accession numbers having

the format NR_123456 consist of

noncoding transcripts, including

structural RNAs and transcribed

pseudogenes. The three human

RefSeq entries for rRNA are given

in web document 8.3 at Q http://
www.bioinfbook.org/chapter8.
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pairs), 28S rRNA (NR_003287; 5035 base pairs), and 18S rRNA (NR_003286;

1871 base pairs). For each, the chromosomal assignment is to the acrocentric p-arms.

rRNA sequences are particularly important for phylogenetic analyses across life

forms (including the three domains of bacteria, archaea, and eukaryotes). They are

uniquely useful because they are closely conserved enough to permit trusted multiple

sequence alignments, while they are specific enough to each species that they permit

accurate classification. Furthermore, rRNA can be sequenced from environmental

samples such as soil or water, in which vast numbers of species exist but cannot be

cultured (see Chapter 15). Also rRNA genes are generally not subject to lateral

gene transfer (discussed in Chapter 15). That is a form of inheritance in which

genes are transmitted horizontally across species rather than being inherited through

generations within a species, and it can confound phylogenetic analyses.

Currently there are over 700,000 16S rRNA sequences in GenBank from about

100,000 different species (see Schloss and Handelsman, 2004). There are several

major databases of rRNA sequences, including the Ribosome Database Project (RDB)

(Cole et al., 2007). RDP is approaching half a million aligned and annotated rRNA

sequences, one third from cultivated bacterial strains and two thirds from environmental

samples. Alignment is performed against a bacterial rRNA alignment model using a

stochastic context free grammar (Box 8.1) as described by Sakakibara et al. (1994).

The ARB project is another major resource for RNA studies (Ludwig et al.,

2004). It is a UNIX-based program with a graphical interface that provides software

tools to analyze large rRNA databases (including those imported from the RDP).

The related SILVA database includes small subunit (16S, 18S) and large submuit

(23S, 28S) rRNA from bacteria, archaea, and eukaryotes. Sequences are download-

able from a browser in the fasta or other formats.

RNAmmer is a hidden Markov model approach to identifying rRNA genes, par-

ticularly in newly sequenced genomes (Lagesen et al., 2007). It is useful for searching

with large amounts of DNA (e.g., up to 20 million nucleotides) to identify the geno-

mic loci of rRNA genes.

Small Nuclear RNA
Small nuclear RNA (snRNA) is localized to the nucleus and consists of a family of

RNAs that are responsible for functions such as RNA splicing (in which introns

distal
non-rDNA

terminal rDNA unit

18S 28S5‘ETSt-p53 3‘ETS IGSDJU ψ28 ψIGStelomere 18S 28S5‘ETSi-p53 3‘ETS IGS

internal rDNA repeat

FIGURE 8.7. Structure of a eukaryotic ribosomal DNA repeat unit. A region of an acrocentric
chromosome is depicted from the telomere (left side, denoted an end of the chromosome) to a distal
non-rDNA region (containing sequences DJU and two pseudogene regions), then a distal junc-
tion (vertical dotted line). To the right (30 end) of this distal junction a terminal rDNA unit is
shown; this unit is repeated internally many times, with each unit sharing identical or nearly iden-
tical DNA sequence. This region is found in GenBank accession U67616 (8,353 base pairs includ-
ing a variety of repetitive DNA elements and 28S rDNA pseudogenes) and U13369 (42,999 base
pairs including transcribed spacers, DNA encoding 18S, 5.8S, and 28S rRNA, and various repeti-
tive DNA elements). Abbreviation: IGS, intergenic spacer (also called nontranscribed spacer).
Adapted from Gonzalez and Sylvester (2001).

The Ribosome Data Project is

online at Q http://rdp.cme.msu.

edu/index.jsp. Release 9.53

(August 2007) contains over

400,000 16S rRNA sequences.

You can access the ARB project at

Q http://www.arb-home.de/. It

was developed by Wolfgang

Ludwig and colleagues at the

Technical University, Munich.

ARB refers to arbor (Latin for

tree) while silva is Latin for forest.

The SILVA website (including a

browser) is Q http://silva.mpi-

bremen.de/.

You can access RNAmmer at

Q http://www.cbs.dtu.dk/
services/RNAmmer/.
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are removed from genomic DNA to generate mature mRNA transcripts) and the

maintenance of telomeres (chromosome ends). snRNAs associate with proteins to

form small nuclear ribonucleoproteins (SNRNPs).

The spliceosome is a nuclear complex that includes hundreds of proteins and the

five snRNAs U1, U2, U4, U5, and U6 (Valadkhan, 2005). Properties of several of

these snRNAs are given in Table 8-4. In humans there are about 100 copies of the

U4 gene (Bark et al., 1986; Rfam family RF00015) and there are about 1200 copies

of the U6 snRNA, including many pseudogenes (nonfunctional genes) (Rfam family

RF00026). Pseudogenes of protein-coding genes are relatively straightforward to

detect for because one can recognize the interruption of an open reading frame (see

belowand Chapter 16). The identificationof nonfunctional, noncoding RNAs presents

a far greater challenge because there are no such landmarkers as open reading frames,

and functional noncoding RNAs are routinely found to have divergent sequences.

Small Nucleolar RNA
In eukaryotes, ribosome biogenesis occurs in the nucleolus. This process is facilitated

by small nucleolar RNAs (snoRNAs), a group of noncoding RNAs that process and

modify rRNA and small nuclear spliceosomal RNAs. The two main classes of

snoRNAs are C/D box RNAs, which methylate rRNA on a 20-O-ribose position,

and H/ACA box RNAs, which convert uridine to pseudouridine in rRNA.

Table 8-5 presents several online databases that list snoRNAs.

Computational approaches have facilitated the discovery of snoRNAs. For

example, after the genome of the yeast Saccharomyces cerevisiae was completely

sequenced (see Chapter 17), snoRNAs remained challenging to identify. Lowe and

Eddy 1999 used a covariance model to identify 22 snoRNAs whose function in

methylating rRNA they subsequently confirmed.

As another example of a strategy of combining computational and experimental

approaches, Omer et al. (2000) considered the problem that snoRNAs were known to

TABLE 8-4 Examples of Human Noncoding Spliceosomal RNAs
Name Accession Chromosome Length (Base Pairs)

U2 NR_002716 17 q12–q21 186

U4 NR_002760 12 144

U4B2 NR_003925 12 144

U5F NR_002753 1p34.1 116

U6 NR_002752 10p13 45

TABLE 8-5 Small Nucleolar RNA (snoRNA) Resources
Database Focus URL

Plant snoRNA
database

http://bioinf.scri.sari.ac.uk/cgi-bin/
plant_snorna/home

Yeast snoRNA
database

http://people.biochem.umass.edu/
fournierlab/snornadb/main.php

SnoRNABase Human H/ACA and C/D
box snoRNAs

http://www-snorna.biotoul.fr/

SnoRNA database Yeast, archaeal, Arabidopsis http://lowelab.ucsc.edu/
snoRNAdb/
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occur in eukaryotes, but had not been identified in prokaryotes (bacteria or archaea).

They cloned 18 snoRNAs from the archaeon Sulfolobus acidocaldarius (based on

coimmunoprecipitation experiments using antisera against nucleolar proteins fibril-

larin and Nop56). They then trained a probabilistic model and identified several hun-

dred additional sno-like RNAs from archaea.

MicroRNA
MicroRNAs (miRNAs) are noncoding RNA molecules of approximately 22 nucleo-

tides that have been identified in animals and plants. Since their discovery in the

1990s they have gained tremendous interest because of their potential functional

roles in regulating gene expression. The earliest members of this family to be ident-

ified were the lin-4 and let-7 gene products of the worm Caenorhabditis elegans

(Pasquinelli and Ruvkun, 2002). Those genes were identified through positional

cloning in a forward genetics strategy: a worm mutant having a defective cell lineage

was identified, and a mutation in the lin-4 RNA was shown to account for the phe-

notype (Lee et al., 1993). Subsequently many other miRNA candidates have been

identified by complementary DNA (cDNA) cloning of size-selected RNA samples.

The major function of microRNAs appears to be the downregulation of protein func-

tion by inhibiting the translation of protein from mRNA or by promoting the degra-

dation of mRNA.

We can examine a typical microRNA by visiting miRBase, a repository of miRNA

data (Griffiths-Jones, 2004; Griffiths-Jones et al., 2006). One can browse by organ-

ism and find a group of microRNAs assigned to human chromosome 21. Currently,

these include five microRNAs: hsa-let-7c, hsa-mir-99a, hsa-mir-125b-2, hsa-

mir-155, and hsa-mir-802. The entry for let-7c includes the predicted stem-loop

structure, the genomic coordinates on chromosome 21, a description of neighboring

microRNAs (e.g., hsa-mir-99a is less than 10 kilobases away), and database links

(e.g., to the European Molecular Biology Laboratory, Rfam, and the Human

Genome Organization official nomenclature).

MiRBase also provides links to predicted targets of each microRNA. These

targets are RNA transcripts that are potentially regulated by a given microRNA,

and predictions are linked from three databases: MiRanda, TargetScan, and Pictar

(Krek et al., 2005). These predictions serve as useful guides to potential targets,

but most have not been experimentally validated. At present, about 60 microRNA

families, conserved in vertebrates, are proposed to regulate at least 30% of all

human protein-coding genes (Rajewsky, 2006).

It can be challenging to distinguish an authentic microRNA from other classes of

noncoding (or coding) RNA. Ambros et al. (2003) proposed a series of definitions of

microRNAs based on two criteria regarding their expression:

1. microRNAs consist of an RNA transcript of about 22 nucleotides based on

hybridization of the transcript to size-fractionated RNA. Typically, this is

accomplished by a Northern blot in which total RNA is purified from a

sample such as a cell line, electrophoresed on an agarose gel, transferred to

a membrane, and probed with a radioactively labeled form of the candidate

miRNA. This experiment shows the size of the RNA, its abundance, and

whether the probe hybridizes to multiple RNA species in a sample.

2. The �22 nucleotide candidate should be present in a library of cDNAs that is

prepared from size-fractionated RNA.

miRBase is available at Q http://
microrna.sanger.ac.uk/
sequences/. Release 10.0 (August

2007) includes 5071 entries,

including 533 from human. The

five chromosome 21 microRNAs

are available in web document 8.4

at Q http://www.bioinfbook.org/
chapter8. For target predictions,

MiRanda is part of MiRBase and

makes 1480 target predictions for

let-7c. TargetScan, available at

Q http://www.targetscan.org,

makes 691 target predictions (of

which 691 are well conserved and

83 are poorly conserved). Pictar

(Q http://pictar.bio.nyu.edu/)

makes 602 target predictions.

Other software for predictions

includes DIANA (Q http://diana.

pcbi.upenn.edu/cgi-bin/micro_t.

cgi/) and RNAHybrid (Q http://
bibiserv.techfak.uni-bielefeld.de/
rnahybrid/).

We describe cDNA libraries later

in this chapter.
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Ambros et al. (2003) proposed three additional criteria concerning miRNA

biogenesis:

3. The miRNA should have a precursor structure (typically 60 to 80 nucleotides

in animals) that potentially folds into a stem (or hairpin) with the �22 nucleo-

tide mature miRNA located in one arm of the hairpin. Such a structure is pre-

dicted by RNA-folding programs such as mfold (Mathews et al., 1999).

4. Both the �22 nucleotide miRNA sequence and its predicted fold-back pre-

cursor secondary structure must be phylogenetically conserved.

5. Dicer is a protein that functions as a ribonuclease and is involved in processing

small noncoding RNAs. There should be increased precursor accumulation

in organisms having reduced Dicer function.

Ideally, a putative miRNA meets all five of these criteria, although in practice a

subset (such as 1 and 4) may be sufficient.

Short Interfering RNA
In 1998 Andrew Fire, Craig Mello, and colleagues reported that double-stranded

RNA introduced into the nematode Caenhorhabditis elegans can suppress the activity

of a gene (Fire et al., 1988). This process is called RNA interference (RNAi). They

found that gene silencing occurred when they injected annealed, double-stranded

RNA, but not either sense or antisense RNA alone. The silencing was specific to

each target gene they studied (such as unc-22), and depended on the injection of

double-stranded RNA corresponding to exons rather than introns or promoter

sequences. Messenger RNA that is targeted by RNAi is degraded prior to translation,

with double-stranded RNA targeting homologous mRNAs in a catalytic manner.

This process depends on an RNA-inducing silencing complex (RISC) that includes

an endonuclease (to cleave mRNA) and the nuclease Dicer that converts large

double stranded RNA precursors to short interfering RNA.

It is now recognized that RNA interference has many functional implications for

eukaryotic cells. RNAi can protect plant and animal cells against infection by single-

stranded RNA viruses. RNAi further protects cells from the harmful action of

endogenous transposons. These are mobile genetic elements that comprise portions

of the human and other genomes. The RNAi mechanism also offers an experimental

approach to systematically inhibit the function of genes in mammalian systems; we

will consider this approach in Chapter 12 (Functional Genomics).

Noncoding RNAs in the UCSC Genome and Table Browser
As the human genome and other vertebrate genomes continue to be sequenced and

analyzed in increasing depth, the UCSC Genome Browser has emerged as an essen-

tial tool for visualizing genomic data (Hinrichs et al., 2006). For noncoding RNAs we

can view human chromosome 21 and display a series of user-selected annotation

tracks. The following tracks are visible at the resolution of the entire chromosome

21 (46 million base pairs; Fig. 8.8a) and a zoomed in region of 1000 base pairs

from nucleotides 16,833,201 to 16,834,200 (Fig. 8.8b):

† Evofold (Pedersen et al., 2006) shows RNA secondary structure predictions

based on phylogenetic stochastic context-free grammars.

A RefSeq accession for the human

Dicer protein is NP_085124.

Andrew Fire and Craig Mello were

awarded the 2006 Nobel Prize in

Physiology or Medicine “for their

discovery of RNA interference—

gene silencing by double-stranded

RNA.” See Q http://nobelprize.

org/nobel_prizes/medicine/
laureates/2006/.
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† The sno/miRNA track displays information on four types of noncoding RNAs:

(1) microRNAs from the miRNA registry (Griffiths-Jones, 2004; Weber,

2005); (2) C/D box, (3) H/ACA box snoRNAs, and (4) Cajal body-specific

RNAs (scaRNAs) from the snoRNA-LBME-DB (Lestrade and Weber,

2006). In this particular genome assembly four miRNAs are evident (hsa-

let-7c, hsa-mir99, hsa-mir-125b-2, and hsa-mir-155). Also one snoRNA is

present, ACA67. Clicking on it within the Genome Browser leads to a page

of information confirming that it is an H/ACA Box snoRNA of 136 base

pairs on chromosome 21q22.11.

† The TargetScanS miRNA Regulatory Sites track shows putative miRNA bind-

ing sites in the 30untranslated region of RefSeq genes. These sites are predicted

by the TargetScanS program (Lewis et al., 2005).

† The PicTar track also displays putative miRNA target sites. Note that there is

partial overlap with the TargetScanS predictions: there are 230 TargetScanS

predictions on chromosome 21; 172 of these overlap picTarMiRNA4Way pre-

dictions, and 78 overlap picTarMiRNA5Way predictions. You can determine

these overlaps using the Table Browser (see below).

† Evofold and RNAz predictions are made in the ENCODE regions that cur-

rently span 1% of the human genome (Washietl et al., 2007; Gruber et al.,

2007). We describe ENCODE below and in Chapter 16.

FIGURE 8.8. Viewing the genomic
landscape of noncoding RNAs on
human chromosome 21. To recre-
ate this display, visit Q http://
genome.ucsc.edu and select
Genome Browser. Set the clade to
vertebrate, the genome to human,
the assembly to May 2004 (differ-
ent assemblies have varying anno-
tation tracks available), the
position to chr21, and click
submit. (a) All of chromosome 21
is displayed (about 47 million
base pairs). You can specify which
annotation tracks to select using a
series of pull-down menus; under
the Genes and Gene Prediction
Tracks category select EvoFold
(full display option) and sno/
miRNA (full). (b) A region of
1000 base pairs at coordinates
chr21:16,833,201-16,834,200 is
shown. This includes two
miRNAs, hsa-mir99a and hsa-
let7c. Arrows indicate the sense
orientation.

The miRNA Registry at the

Wellcome Trust Sanger Institute is

available at Q http://microrna.

sanger.ac.uk/sequences/. The

snoRNABase is online at

Qhttp://www-snorna.biotoul.fr/.
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The UCSC Table Browser is complementary to the Genome Browser. Suppose

we want to know the exact number of EvoFold entries that occur on chromosome 21.

From the full view of chromosome 21 click the “Tables” link on the top bar. Choose

the table of interest (e.g., EvoFold, Fig. 8.9a, arrow 1) and click “summary/stat-

istics” (arrow 4) to see that there are 329 EvoFold items. For sno/miRNAs there

are five items; by clicking “get output” you can obtain their genomic coordinate pos-

itions (Fig. 8.9b). How many RefSeq genes overlap with these Evofold regions on

chromosome 21? To answer this, simply click the “intersection” button (Fig. 8.9a,

arrow 3) and from the Genes and Gene Prediction Tracks group select RefSeq

genes; the current answer is 140.

INTRODUCTION TO MESSENGER RNA

Gene expression occurs when DNA is transcribed into RNA. Each eukaryotic cell

contains a nucleus with some 2,000 to 60,000 protein-coding genes, depending on

the organism. However, at any given time the cell expresses only a subset of those

genes as mRNA transcripts. The set of genes expressed by a genome is sometimes

called the transcriptome. A conventional view that emerged since the “one gene,

one enzyme” hypothesis of Beadle and Tatum, and continued through the establish-

ment of the central dogma of molecular biology, is that genes correspond to discrete

loci and are transcribed to mRNA in order to make a protein product. We now

appreciate that the situation is vastly more complex because of the existence of non-

coding RNAs, the interruption of genes by introns, the existence of alternative spli-

cing to generate different mRNA transcripts that often produce distinct protein

FIGURE 8.9. Analyzing noncod-
ing RNAs using the UCSC
Table Browser. (a) From a view
in the UCSC Genome Browser
there is a link to the Table
Browser allowing a tabular output
of features of interest. For example,
setting the track to EvoFold (arrow
1) you can click summary/statistics
(arrow 4) to obtain a count of the
number of EvoFold items in any
region of interest (arrow 2) such
as the genome, the chromosome, or
the region just viewed in the
Genome Browser. Additional
options include features to filter
the results, or to intersect two
tables (arrow 3). (b) Sample
output of the summary for
EvoFold items on chromosome 21.
The UCSC site can be used in the
opposite direction: starting with an
appropriately formatted table of
data, custom tracks can be gener-
ated in the Genome Browser.
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products, and the pervasive transcription of most nucleotide bases in the genome. We

discuss these topics below. Furthermore, while humans, chimpanzees, and mice all

have an extremely closely related set of about 20,000 to 25,000 genes per genome,

what distinguishes the phenotypic expression of each species may depend on the

intricacies of the regulation of gene expression. Gene expression is typically regulated

in several basic ways:

† By region (e.g., brain vs. kidney)

† In development (e.g., fetal vs. adult tissue)

† In dynamic response to environmental signals (e.g., immediate–early

response genes that are activated by a drug)

† In disease states

† By gene activity (e.g., mutant vs. wild-type bacterium)

The comparison of gene expression profiles has been used to address a variety of

biological questions in an assortment of organisms. For viruses and bacteria, studies

have focused both on viral and bacterial gene expression and also on the host response

to pathogenic invasion. Among eukaryotes, gene expression studies and in particular

microarrays have been employed to address fundamental questions such as the

identification of genes activated during the cell cycle or throughout development.

In multicellular animals cell-specific gene expression has been investigated, and

the effect of disease on gene expression has been studied in rodents and primates,

including humans. In recent years, gene expression profiling has become especially

important in the annotation of genomic DNA sequences. When the genome of an

organism is sequenced, one of the most fundamental issues is to determine which

genes it encodes (Chapters 13 to 19). Large-scale sequencing of expressed genes,

such as those isolated from cDNA libraries (described in this chapter), is invaluable

in helping to identify gene sequences in genomic DNA.

In recent decades, gene expression has been studied using a variety of techniques

such as Northern blotting, the polymerase chain reaction with reverse transcription

(RT-PCR), and the RNase protection assay. Each of these approaches is used to study

one transcript at a time. In Northern blotting, RNA is isolated, electrophoresed on an

agarose gel, and probed with a radioactive cDNA derived from an individual gene.

RT-PCR employs specific oligonucleotide primers to exponentially amplify specific

transcripts as cDNA products. RNase protection is used to quantitate the amount

of an RNA transcript in a sample based on the ability of a specific in vitro transcribed

cDNA to protect an endogenous transcript from degradation with a ribonuclease.

Gene expression may be compared in several experimental conditions (such as

normal vs. diseased tissue, cell lines with or without drug treatment). The signals

are typically fluorescent or radioactive and may be quantitated. Signals are also nor-

malized to a number of housekeeping genes or other controls that are expected to

remain unchanged in their expression levels.

In contrast to these approaches, several high throughput techniques have

emerged that allow a broad survey of gene expression. A global approach to gene

expression offers two important advantages over the study of the expression of indi-

vidual genes:

† A broad survey may identify individual genes that are expressed in a dramatic

fashion in some biological state. For example, global comparisons of gene

For the range of gene content in

eukaryotic genomes see Chapters

16 to 18.

In addition to viewing gene

expression as a dynamically regu-

lated process, we can also view

proteins and metabolites as regu-

lated dynamically in every cell. See

Chapter 10.

The enzyme reverse transcriptase,

often present in retroviruses, is an

RNA-dependent DNA polymer-

ase (i.e., it converts RNA to

DNA).
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expression in assorted human tissues can reveal which individual transcripts

are expressed in a region-specific manner. Milner and Sutcliffe 1983 per-

formed 191 Northern blots, although this experimental approach is not nor-

mally employed to measure the expression of so many genes in one study. They

found that 30% of the genes were expressed in brain but not in liver or kidney.

This type of approach can now be repeated on a larger scale and far more easily

with high throughput techniques that are described in this chapter.

† High throughput analyses of gene expression can reveal patterns or signatures

of gene expression that occur in biological samples. This may include the

coordinate expression of genes whose protein products are functionally

related. We examine tools for the analysis of gene expression data (such as

clustering trees) in Chapter 9.

Several high throughput approaches to gene expression are displayed in Fig. 8.10.

In each case, total RNA or mRNA is isolated from two (or more) biological samples

that are compared. The RNA is typically converted to cDNA using reverse transcrip-

tase. Complementary DNA is inherently less susceptible to proteolytic or chemical

degradation than RNA, and cDNA can readily be cloned, propagated, and

sequenced. In this chapter we explore three computer-based approaches to the analy-

sis of gene expression: the comparison of cDNA libraries in UniGene, the compari-

son of serial analysis of gene expression (SAGE) libraries, and the most popular

approach to gene expression studies, DNA microarrays. Another very recent

approach, depicted in Fig. 8.10, is high throughput sequencing of cDNA. Once

RNA is isolated, converted to cDNA, and cloned into a library, recently developed

technologies such as Solexa (Chapter 13) can be used to sequence large amounts

of cDNA (e.g., 1 billion base pairs) rapidly at a relatively modest cost.

There are other technologies available for the measurement of gene expression,

such as differential display and subtractive hybridization. While these approaches

have been technically successful for many gene expression problems, they differ

from the techniques shown in Fig. 8.10 because they generally do not involve high

throughput or the establishment of electronic databases. These earlier techniques

used to measure gene expression have been reviewed by Sagerstrom et al. (1997),

Vietor and Huber (1997), and Carulli et al. (1998).

Although databases of gene expression have been established, it is important to

contrast them with DNA databases. A DNA database such as GenBank contains

information about the sequence of DNA fragments, ranging in size from small

clones to entire chromosomes or entire genomes. The error rate involved in genomic

DNA sequencing can be measured (see Chapter 13), and independent laboratories

can further confirm the quality of DNA sequence data. In general, DNA sequence

does not change for an individual organism across time or in different body regions.

In contrast, gene expression is context dependent. A database of gene expression con-

tains some quantitative measurement of the expression level of a specified gene. If

two laboratories attempt to describe the expression level of beta globin from a cell

line, the measurement may vary based on many variables, such as the source of the

cell line (e.g., liver or kidney), the cell-culturing conditions (e.g., cells grown to sub-

confluent or confluent levels), the cellular environment (e.g., choice of growth

media), the age of the cells, the type of RNA that is studied (total RNA vs.

mRNA, each with varying amounts of contaminating biomaterials), the measure-

ment technique, and the approach to statistical analysis. Thus, while it has been
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possible to create a project such as RefSeq to identify high-quality representative

DNA sequences of genes, any similar attempt to describe a standard expression pro-

file for genes must account for many variables related to the context in which tran-

scription occurs.

In an effort to provide a reference set of RNA transcripts that can serve as a “gold

standard,” the External RNA Controls Consortium has been established. This pro-

ject includes the goals of providing access to clones, protocols, and bioinformatics

tools (Baker et al., 2005).

RNA proteinDNA RNA protein

cDNA cDNA

(1) make cDNA library (ESTs) make cDNA library (ESTs)

compare libraries in UniGene;
or high throughput sequencing

(2) make SAGE library make SAGE library

(3) make labeled probe make labeled probe

electronic SAGE

DNA microarray

Condition A (e.g. cells from a normal human brain) Condition B (e.g. cells from a diseased human brain)

DNA

FIGURE 8.10. Gene expression can be measured with a variety of high throughput technologies.
In most cases, two biological samples are compared, such as a cell line with or without drug treat-
ment, cells with or without viral infection, or aged versus neonatal rat brain. RNA can be con-
verted to cDNA allowing broader surveys of transcription in a cell. In this chapter and the
next we will examine several approaches to gene expression. (1) cDNA libraries can be con-
structed, generating expressed sequence tags (ESTs). These can be electronically compared in
UniGene. (2) Serial analysis of gene expression (SAGE) is another technology in which the abun-
dance of transcripts can be compared. This can also be studied electronically. (3) Complex cDNA
mixtures can be labeled with a fluorescent molecule and hybridized on DNA microarrays, which
contain cDNA or oligonucleotide fragments corresponding to thousands of genes. (4) High
throughput sequencing of cDNA libraries represents a recent, powerful approach to comparing
transcripts in two samples. For example, Solexa (Illumina, Inc.) sequencing permits the assess-
ment of genome-wide expression profiles by sequencing millions of cDNAs per sample.

You can read about the progress of

the External RNA Controls

Consortium at Q http://
www.nist.gov.
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mRNA: Subject of Gene Expression Studies
We will now consider what is measured in gene expression studies. In most cases, total

RNA is isolated from cells of interest. (Sometimes, polyadenylated RNA is isolated.)

This RNA is readily purified using chaotropic agents that separate RNA from DNA,

protein, lipids, and other cellular components. In this way steady-state RNA tran-

script levels can be measured. These steady-state levels reflect the activity of a

gene. Gene expression is regulated in a set of complex steps that can be divided

into four categories: transcription, RNA processing, mRNA export, and RNA

surveillance (Maniatis and Reed, 2002) (Fig. 8.11).

1. Transcription. Genomic DNA is transcribed into RNA in a set of highly

regulated steps. In the 1970s, sequence analysis of genomic DNA revealed

that portions of the DNA (called exons) match the contiguous open

reading frame of the corresponding mRNA, while other regions of genomic

DNA (introns) represent intervening sequences that are not present in

mature mRNA.

2. RNA processing. Introns are excised from pre-mRNA by the spliceosome, a

complex of five stable small nuclear RNAs (snRNAs) and over 70 proteins.

Alternative splicing occurs when the spliceosome selectively includes or

excludes particular exons (Modrek and Lee, 2002). Pre-mRNA also is

capped at the 50 end. (Eukaryotic mRNAs contain an inverted guanosine

FIGURE 8.11. RNA processing of
eukaryotic genes. Genomic DNA
contains exons (corresponding to
the mature mRNA) and introns
(intervening sequences). After
DNA is transcribed, pre-mRNA is
capped at the 50 end, and splicing
removes the introns. A polyadeny-
lation signal (most commonly
AAUAAA) is recognized, the
RNA is cleaved by an endonuclease
about 10 to 35 nucleotides down-
stream, and a polyA polymerase
adds a polyA tail (typically 100 to
300 residues in length). Poly-
adenylated mRNA is exported to
the cytoplasm where it is translated
on ribosomes into protein. An
RNA surveillance system involving
nonsense-mediated decay degrades
aberrant mRNAs; a dashed line
indicates that RNA surveillance
machinery can also degrade pre-
mRNAs.

AAAAA 3'5'

genomic DNAexon 1 exon 2 exon 3
5'

5'3'

3'

AAUAAA

intron intron

transcriptional
start site

5' 3'

RNA splicing
(removes introns)

pre-mRNA

mRNA

AAAAA 3'5'

transcription

export to
cytoplasm

transcription

RNA splicing

mRNA export

surveillance
mRNA degradation; nonsense-mediated decay

3'5'

Richard J. Roberts and Phillip A.

Sharp received the 1993 Nobel

Prize in Physiology or Medicine

for their discovery of “split genes.”

See Q http://www.nobel.se/
medicine/laureates/1993/.

A molecule in Drosophila provides

an extraordinary example of

alternative splicing. The Down

syndrome cell adhesion molecule

(DSCAM) gene product poten-

tially exists in more than 38,000

distinct isoforms (Schmucker

et al., 2000; Celotto and Graveley,

2001). The gene contains 95

alternative exons that are orga-

nized into clusters. Functionally,

multiple DSCAM proteins may

confer specificity to neuronal

connections in Drosophila.
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called a cap.) Mature mRNA has the unique property among nucleic acids of

having a long string of adenine residues attached to its 30 end. This tract is

typically preceded by the polyadenylation signal AAUAAA or AUUAAA,

located 10 to 35 nucleotides upstream. Polyadenylation of mRNA is extre-

mely convenient from an experimental point of view, because an oligonucleo-

tide (consisting of a string of thymidine residues attached to a solid support

[oligo(dT) resin]) can be used to rapidly isolate mRNA to a high degree of

purity. In some cases gene expression studies employ total RNA, while

many others employ mRNA.

3. RNA export. After splicing occurs, RNA is exported from the nucleus to the

cytoplasm where translation occurs. Note that the phrase “gene expression

profiling” is commonly used to describe the measurement of steady-state

cytoplasmic RNA transcript levels, but may not be precisely correct. “RNA

transcript level profiling” is what is performed, and the actual expression of

genes is an activity that is not directly measured.

4. RNA surveillance. An extensive RNA surveillance process allows eukaryotic

cells to scan pre-mRNA and mRNA molecules for nonsense mutations (inap-

propriate stop codons) or frame-shift mutations (Maquat, 2002). This non-

sense-mediated decay mechanism is important in the maintenance of

functional mRNA molecules. Additional mechanisms control the half-life

of mRNAs, targeting them for degradation and thus regulating their

availability.

Let us consider human alpha-2 globin mRNA as an example of a transcript. The

function of the globin genes has been characterized in detail. The two alpha globin

genes, HBA1 and HBA2, encode proteins sharing 100% identical amino acid

sequence. However, the HBA2 mRNA transcript and protein are expressed at levels

about threefold higher than the mRNA and protein products of the HBA1 gene

(Liebhaber et al., 1986). We can view the HBA2 gene using the UCSC Genome

Browser. There are three exons, as shown in Fig. 8.12a. The exons are interrupted

by introns; to view this, try performing a blastn search of the RefSeq DNA sequence

for HBA2 against the corresponding region of genomic DNA (Fig. 8.12b). Matches to

the exons are evident as pairwise alignments, but the introns (absent from the mature

mRNA and thus not part of the NM_000517 entry) do not match the genomic refer-

ence. By zooming in on the first exon of HBA2, we can see that it is transcribed along

the top strand (from left to right beginning at the short arm of chromosome 16) (Fig.

8.12c). The RefSeq track shows the portion of the first exon that is at the 50-untrans-

lated end (left side), then the coding portion of the exon is displayed with a thickened

bar (Fig. 8.12c). Here the third or bottom reading frame begins with a methionine and

continues to correspond to the protein sequence of HBA2.

The HBA2 gene locus includes portions corresponding to the coding region as

well as 50- and 30-untranslated regions (UTRs). These UTRs typically contain regu-

latory signals such as a ribosome binding site near the start methionine and a poly-

adenylation signal (often AATAAA) in the 30 UTR. In the case of alpha-2 globin,

the 30 UTR contains three cytosine-rich (C-rich) segments that are critical for main-

taining the stability of the mRNA (Waggoner and Liebhaber, 2003). Specific RNA-

binding proteins interact with the 30 UTR, which adopts a stem-loop structure.

Mutations that disrupt this region can lead to destabilization of alpha globin

mRNA, causing a form of the disease a-thalassemia (Chapter 20).

Some alignments of RNA-derived

sequences and the corresponding

genomic DNA, such as those

analyzed in Fig. 8.12b, have mis-

matches. These discrepancies

reflect polymorphisms or errors

associated with either the sequen-

cing of genomic DNA or cDNA.

One way to decide which sequence

has an error is to look for consist-

ency: if multiple, independently

derived genomic DNA clones or

expressed sequence tags have the

identical nucleotide sequence in a

region of interest, you can be more

confident that sequence is correct.

See Chapter 13 for a further

discussion.

The RefSeq entry for HBA2 and a

list of genomic features are pre-

sented in web document 8.5 at

Q http://www.bioinfbook.org/
chapter8.

INTRODUCTION TO MESSENGER RNA 301



Analysis of Gene Expression in cDNA Libraries
How can we study the majority of mRNA molecules that are expressed from a tissue

sample or other biological system of interest? It is technically straightforward to iso-

late RNA and/or mRNA from a small tissue sample in reasonably large quantities

(e.g., hundreds of micrograms of total RNA). However, RNA is both unstable and

highly complex, typically containing thousands of distinct transcripts. One way to

solve this problem is to generate a cDNA library (Fig. 8.13). In brief, RNA is con-

verted to double-stranded cDNA, cloned into a vector, and propagated in a bacterial

cell line. A vector such as a plasmid has the properties of small size, rapid growth, and

the ability to contain a single cDNA insert derived from the starting tissue sample or

other biological source. Thousands of cDNA libraries are available commercially;

each is derived from a particular organism, cell type, developmental stage, and phys-

iological condition. The clones in a cDNA library may be plated onto Petri dishes.

The cDNA inserts, called expressed sequence tags (ESTs), may then be sequenced.

Millions of ESTs have been sequenced, usually as a single-pass read of approxi-

mately 500 bp from the 30 end and/or the 50 end of the cDNA clone. Adams et al.

(1991, 1993) pioneered the approach of sequencing thousands of ESTs to identify

genes expressed in a particular tissue. (This is called a shotgun single-pass approach.)

These studies revealed which genes are expressed at the highest relative levels (such as

FIGURE 8.12. The HBA2 mRNA
in the context of the corresponding
genomic DNA. (a) The HBA2
gene region of human chromosome
16 is displayed using the UCSC
Genome Browser. The ideogram
(chromosomal diagram) shows
that the region zoomed in on is at
the telomeric region of the p arm
of chromosome 16. A window size
of 1500 base pairs is displayed.
The RefSeq Genes track shows the
three exons of HBA2. (b) To com-
pare the mRNA sequence of
HBA2 to its corresponding genomic
DNA sequence, blastn was per-
formed using the blast 2 sequences
program at NCBI (Chapter 3).
The sequences were NM_000517
and a genomic contig, RefSeq acces-
sion NT_037887.4, nucleotides
162875-163708 from chromosome
16 that spans the HBA2 gene
locus. (c) A detailed view of the
first exon of HBA2, including the
beginning of the protein coding
sequence (the start methionine is
on the bottom of the three reading
frames).

A summary of the number of

ESTs in GenBank is available at

Q http://www.ncbi.nlm.nih.gov/
dbEST/dbEST_summary.html.

UniGene is accessed via Q http://
www.ncbi.nlm.nih.gov/
UniGene/.
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b-actin and myelin basic protein in human brain), and they also described the

regional variation in gene expression across different brain regions.

We previously described UniGene, a system for partitioning ESTs into a nonre-

dundant set of clusters (see Fig. 2.3). In principle, each unique gene (“unigene”) is

assigned a single UniGene entry. UniGene encompasses both well-characterized

genes and those inferred by the existence of ESTs; all ESTs corresponding to a

gene are assigned to that particular UniGene accession number. UniGene clusters

containing ESTs that are similar to a known gene are categorized as “highly similar”

to that gene (defined as .90% identity in the aligned region), “moderately similar”

(70% to 90% identity), or “weakly similar” (,70% identity).

The number of human UniGene clusters provides one estimate for the number

of human genes, although UniGene clusters are retired when two clusters can be

joined into one. Each cluster has some number of sequences associated with

it, from one (singletons) to almost 50,000 (Table 8-6). Of the 124,104 clusters in

Table 8-6, one-third are singletons, suggesting that these may be genes expressed
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FIGURE 8.13. Construction of a
cDNA library. mRNA is hybri-
dized to an oligo(dT) primer at
its 30-polyadenylated tail, and an
mRNA:cDNA hybrid is generated
by reverse transcription. After boil-
ing to denature the RNA, cDNA is
made double stranded with a DNA
polymerase. Linkers (e.g., nucleo-
tides recognized by a restriction
endonuclease) are added to cDNA
so that after appropriate digestion
of both the cDNA (also termed
the insert) and a plasmid or bac-
teriophage (also called the vector),
the two can be ligated. Escherichia
coli bacteria are then transformed
and selected for antibiotic resist-
ance. In this way, a cDNA library
is formed, containing up to thou-
sands of unique cDNA inserts
derived from the starting mRNA
population.
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so rarely that they have been observed only one time. These singletons may represent

portions of the genome that are transcribed without representing functional genes

(see the discussion below of pervasive transacription of the genome). Indeed, the pre-

sence of �125,000 UniGene clusters is inconsistent with the estimate of some

20,000 to 25,000 protein-coding genes in the human genome (Chapter 19).

The presence of thousands of UniGene entries with small cluster sizes suggests

that some genes are expressed only rarely. Other genes (such as actin and tubulin) are

expressed at very high levels. Even some EST clusters that do not correspond to

known, annotated genes are highly represented. The largest cluster sizes represented

in UniGene are described in Table 8-7 for humans and in Table 8-8 for nonhuman

organisms.

DNA hybridization studies from the 1970s suggest that a typical mammalian cell

expresses about 300,000 mRNA transcripts, expressed from between 10,000 and

30,000 distinct genes (Hastie and Bishop, 1976). Bishop and colleagues 1974

grouped mRNA into three classes based on relative abundance: (1) genes that are

expressed at highly abundant levels (accounting for 10% of the overall transcripts),

(2) medium-abundance genes (45% of the mRNA), and (3) low-abundance genes

(45% of the mRNA). These three classes correspond to cluster sizes in UniGene

(Table 8-6), although the cluster sizes are not formally labeled.

Since all ESTs are derived from a specific region of the body at a particular time

of development and a particular physiological state, there is inherently a large amount

of information associated with the analysis of many ESTs (Schuler, 1997). There are

several approaches to extracting information from UniGene. First, if we want to know

where in the body a particular gene (such as RBP or beta globin) is expressed, we can

survey UniGene. The number of ESTs associated with that gene reflects the

TABLE 8-6 Histogram of Cluster Sizes for Human Entries
in UniGene (Build 204, Homo sapiens)
Cluster size Number of clusters

1 40,649

2 19,301

3–4 18,369

5–8 13,447

9–16 8,059

17–32 5,011

33–64 3,926

65–128 4,485

129–256 3,953

257–512 3,997

513–1024 1,886

1,025–2,048 719

2,049–4,096 223

4,097–8,192 55

8,193–16,384 16

16,385–32,768 7

32769-65536 1

Source: Q http://www.ncbi.nlm.nih.gov/unigene/, September
2007.
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TABLE 8-7 Ten Largest Cluster Sizes in UniGene for Human Entries
UniGene Identifier Cluster Size Gene Symbol Gene Name

Hs.644639 47,048 EEF1A1 Eukaryotic translation elongation
factor 1 alpha 1

Hs.586423 29,028 EEF1A1 Eukaryotic translation elongation
factor 1 alpha 1

Hs.520640 25,622 ACTB Actin, beta

Hs.551713 21,908 MBP Myelin basic protein

Hs.520348 19,251 UBC Ubiquitin C

Hs.524390 18,880 TUBA1B Tubulin, alpha 1b

Hs.514581 17,219 ACTG1 Actin, gamma 1

Hs.544577 17,004 GAPDH Glyceraldehyde-3-phosphate
dehydrogenase

Hs.418167 16,306 ALB Albumin

Hs.696053 15,512 HSPA8 Heat shock 70 kDa protein 8

Source: UniGene, September 2007.

TABLE 8-8 Ten Largest Cluster Sizes in UniGene for Nonhuman Entries
UniGene
Identifier Species

Cluster
Size Gene Name

Str.4908 Xenopus tropicalis
(frog)

39,694 Transcribed locus, weakly similar to
XP_001103729.1 similar to
Transcription factor 19
(Transcription factor SC1)
[Macaca mulatta]

Ta.447 Triticum aestivum
(wheat)

32,606 Ribulose-bisphosphate carboxylase
small unit

Bfl.12870 Branchiostoma floridae
(Florida lancelet)

19,456 Transcribed locus, weakly similar to
NP_001038525.1 protein
LOC564619 [Danio rerio]

At.46639 Arabidopsis thaliana
(thale cress)

15,482 Ribulose bisphosphate carboxylase
small chain 1A / RuBisCO small
subunit 1A (RBCS-1A) (ATS1A)

Str.64706 Xenopus tropicalis
(frog)

13,008 Eukaryotic translation elongation
factor 1 alpha 1

Dr.31797 Danio rerio (zebrafish) 12,653 Elongation factor 1-alpha

Ssa.709 Salmo salar (Atlantic
salmon)

12,519 Transcribed locus, weakly similar to
XP_001111161.1 similar to
mitogen-activated protein kinase
kinase kinase 6 isoform 3 [Macaca
mulatta]

Dr.75552 Danio rerio (zebrafish) 12,420 Actin, alpha 1, skeletal muscle

Mm.441437 Mus musculus (mouse) 12,413 CDNA clone IMAGE:40049146

Bmo.418 Bombyx mori
(domestic
silkworm)

11,838 Clone 1-15 mRNA sequence

Source: UniGene, September 2007.
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abundance of the transcript (but see the discussion below), and the tissue source of

the libraries from which ESTs are derived reflects the regional distribution of ESTs.

This approach is sometimes called an electronic Northern blot.

Another approach to extracting information from UniGene is to electronically

subtract cDNA libraries. Electronic cDNA library subtraction in UniGene also

allows the cDNA sequences in two populations to be compared using the digital

differential display (DDD) tool. You can access this tool from the main UniGene

page by selecting DDD and then an organism (e.g., H. sapiens). Select two pools,

FIGURE 8.14. Digital differential
display (DDD) is used to compare
the content of expressed sequence
tags (ESTs) in cDNA libraries
from UniGene. Over 1000
libraries have been generated by
isolating RNA from a tissue
source (such as pancreas in [a]),
synthesizing cDNA, packaging the
cDNA in a cDNA library, and
sequencing up to thousands of
cDNA clones (ESTs) from each
library. (b) The clones in each
library (or in pools of libraries)
may be compared using DDD.
This site is accessed from the
NCBI UniGene site; on the left
sidebar click Homo sapiens, then
select “Library digital differential
display.” At this site, click boxes
corresponding to any library (or
set of libraries) then press “Accept
changes”. You will then be given
the opportunity to select a second
library (or second set of libraries)
for comparison. (c) Result of an
electronic comparison of cDNA
libraries using the DDD tool of
UniGene. The results are displayed
as a list of genes (with UniGene
accession numbers) for transcripts
that are preferentially expressed
in one or the other pool of libraries.
Here, a variety of pancreas-specific
transcripts are displayed (e.g., glu-
cagon, insulin). Other transcripts
(not shown) are more highly rep-
resented in brain-derived libraries.
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such as a series of cDNA libraries from pancreas (Fig. 8.14a) and brain. This search

reveals many transcripts selectively associated with pancreas (e.g., glucagon, insulin)

(Fig. 8.14b) and others selectively associated with brain. The output shows a dot for

each gene whose intensity corresponds to the expression level of that gene. A prob-

ability value is associated with each transcript using a Fisher’s exact test (Box 8.2).

The comparison of gene expression profiles using databases of libraries may be

considered a tool that rapidly provides candidate genes for further analysis. In our

pancreas versus brain library comparison, some of the regulated genes identified

with digital differential display correspond to “hypothetical proteins” that have not

been functionally characterized. These could be studied in further detail. Schmitt

and colleagues 1999 used a similar approach to identify 139 transcripts that are selec-

tively upregulated in breast cancer tissue. Such transcripts could provide markers for

the early detection of breast cancer or they could reflect changes in tumor tissue that

offer targets for therapeutic intervention. Many other studies have employed EST

sequencing and/or electronic analyses of sequenced cDNA libraries (e.g., Carulli

et al., 1998).

BOX 8.2
Fisher’s Exact Test

Fisher’s exact test is used to test the null hypothesis that the number of sequences

for any given gene in the two pools (e.g., insulin in pancreas versus brain) is the

same in either pool (Table 8-9).

The p value for a Fisher’s exact test is given by

p ¼ NA!NB!c!C!

(NA þNB)!g1B!(NA � g1A)!(NB � g1B)!

The null hypothesis (that gene 1 is not differentially regulated between brain and

muscle) is rejected when the probability value p is less than 0.05/G, where 0.05 is

the nominal threshold for declaring significance and G is the number of UniGene

clusters analyzed (thus, G is a conservative Bonferroni correction; see Chapter 9).

While the NCBI website employs Fisher’s exact test, other statistical

approaches to cDNA library comparison have been described. In particular,

Stekel et al. (2000) developed a log-likelihood procedure to assess the probability

that gene expression differences observed in a comparison of two or even multiple

cDNA libraries are due to genuine transcriptional differences and not

sampling errors.

TABLE 8-9 Fisher’s 2 � 2 Exact Test Used to Test Null Hypothesis that a Given Gene (Gene 1) Is Not
Differentially Regulated inTwo Pools

Gene 1 All Other Genes Total

Pool A (e.g., brain) Number of sequences
assigned to gene 1 (g1A)

Number of sequences in this
pool NOT gene 1 (NA–g1A)

NA

Pool B (e.g.,
pancreas)

Number of sequences
assigned to gene 1 (g1B)

Number of sequences in this
pool NOT gene 1 (NB – g1B)

NB

Total c ¼ g1A þg1B C ¼ (NA – g1A) þ (NB – g1B)

Source: Adapted from Claverie (1999).

Experimentally, the differential

display technique allows two RNA

(or corresponding cDNA) sources

to be subtracted from each other.

One population is labeled selec-

tively (e.g., by ligating an oligo-

nucleotide sequence to the ends of

one population of cDNAs), the

two populations are hybridized to

form duplexes between clones

shared in common in the two

populations, and cDNA clones

that are strongly overrepresented

in one of the two original popu-

lations are selectively amplified.

These clones are then sequenced.
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Pitfalls in Interpreting Expression Data from cDNA Libraries
The contents of cDNA libraries in UniGene and elsewhere must be analyzed with

caution for several reasons:

† Investigators choose which libraries to construct, and there is likely to be bias

toward familiar tissues (such as brain and liver) and bias away from more unu-

sual tissues. The rat nose contains over two dozen secretory glands, almost all

of which are of unknown function, but for most of these glands cDNA libraries

have never been constructed.

† The depth to which a library is sequenced affects its ability to represent the

contents of the original cell or tissue. A cDNA library is expected to contain

a frequency of clones that faithfully reflects the abundance of transcripts in

the source material. By sequencing only 500 clones, it is unlikely that many

low-abundance transcripts will be represented when the contents of the

entire library are analyzed. In practice, cDNA libraries are sequenced to vary-

ing depths.

† Another source of bias is in library construction. Many libraries are normal-

ized, a process in which abundant transcripts become relatively underrepre-

sented while rare transcripts are represented more frequently. The goal in

normalizing a library is to minimize the redundant sequencing of highly

expressed genes and to thus discover rare transcripts (Bonaldo et al., 1996).

It would be inappropriate to compare normalized and nonnormalized libraries

directly using a tool such as UniGene’s differential display.

† ESTs are often sequenced on one strand only, rather than thoroughly sequen-

cing both top and bottom strands. Thus, there is a substantially higher error

rate than is found in finished sequence. (We discuss sequencing error rates

in Chapter 13.)

† Chimeric sequences can contaminate cDNA libraries. For example, two unre-

lated inserts are occasionally cloned into a vector during library construction.

Full-Length cDNA Projects
While UniGene is an example of a database that incorporates information on ESTs

and protein-coding genes, it is also of interest to catalog, characterize, and make

available collections of cDNAs. There are two main forms of cDNAs: those having

full-length protein coding sequences (typically including some portions of the 50-

and 30-untranslated regions), and expression clones in which the protein coding por-

tion of the cDNA is cloned into a vector that permits protein expression in the appro-

priate cell type (Temple et al., 2006). There are many important resources for

obtaining cloned, high quality, full-length cDNAs. We will next introduce five of

the many available cDNA resources.

1. The Functional Annotation of the Mouse (FANTOM) project provides func-

tional annotation of the mammalian transcriptome (Maeda et al., 2006).

Currently, over 100,000 full-length mouse cDNAs have been annotated,

including both coding and non-protein-coding transcripts. These have been

mapped to genomic loci using BLAT, blastn, and other search tools. The

annotation categories included artifacts (such as contaminants from other

In UniGene, click Homo sapiens,

then “library browser,” to see the

range of clones that are sequenced

in typical libraries. Currently

(September 2007) there are

almost 2000 human cDNA

libraries in UniGene having at

least 1000 sequences, and many

thousands of smaller libraries.
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species or chimeric mRNAs) and coding sequences (complete, 50- or 30-

truncated, 50- or 30-untranslated regions only, immature, with or without

insertion/deletion errors, stop codons, coding for selenoproteins, or mito-

chondrial transcripts). Upon analyzing transcription start and stop sites,

the 50 and 30 boundaries of over 180,000 transcripts were identified

(Carninci et al., 2005). This study led to the identification of over 5000 pre-

viously unidentified mouse proteins. Another astonishing conclusion of the

FANTOM project is that antisense transcription, in which clustered cDNA

sequences on one strand at least partially match to the opposite strand,

occurs for 72% of all genome-mapped transcriptional units (Katayama

et al., 2005).

2. The H-Invitational Database provides an integrative annotation of human

genes, including gene structures, alternative splicing isoforms, coding as

well as noncoding RNAs, single nucleotide polymorphisms (Chapter 16),

and comparative results with the mouse (Imanishi et al., 2004): 21,037

human gene candidates were analyzed corresponding to 41,118 full-length

cDNAs. Information from this database is available as an optional annotation

track in the UCSC Genome Browser.

3. The Gene Index Project (formerly the Institute for Genomic Research

[TIGR] Gene Indices) is a collection of ESTs organized into several dozen

species-specific databases (Lee et al., 2005). The approach taken by this pro-

ject is to focus on the analysis of EST sequences to assemble unique genes

called tentative consensus sequences. This emphasis on clustering and assem-

bly results in a collection of consensus sequences corresponding to genes.

TIGR Gene Indices are then useful for a variety of purposes not as readily

available with UniGene. (While UniGene does not assemble ESTs into a

single cluster, NCBI does provide a list of the longest EST sequence from

each cluster.) The Eukaryotic Gene Orthologs (EGO) database consists of

orthologous genes identified by pairwise alignments of tentative consensus

sequences, allowing the comparison of homologous genes across dozens of

organisms.

4. The Mammalian Gene Collection (MGC) is an NIH project that originally

aimed to gather full-length cDNA clones for all human and mouse genes,

but subsequently has expanded to include rat, cow, frog, and zebrafish

(Gerhard et al., 2004; Baross et al., 2004). Its site can be searched by

BLAST. MGC clones are distributed through the Integrated Molecular

Analysis of Genomes and Their Expression (IMAGE) consortium.

5. Another important cDNA resource is the Kazusa mammalian cDNA set,

called “KIAA” genes (Nagase et al., 2006). This project focuses on character-

izing full-length cDNAs that encode particularly large genes. Clones are

described and distributed through the HUGE database (Kikuno et al., 2004).

Serial Analysis of Gene Expression (SAGE)
Serial analysis of gene expression allows the quantitative measurement of gene

expression by measuring large numbers of RNA transcripts from tissues of interest.

Short tags of 9 to 14 bp of DNA are isolated from the 30 end of transcripts,

sequenced, and assigned to genes. Major benefits of SAGE experiments are that

You can access the FANTOM

project at Q http://fantom.gsc.

riken.go.jp/.

The H-invitational database is

available at Q http://www.h-

invitational.jp/. Hosted by the

Japan Biological Information

Research Center (JBIRC), this site

features a highly informative

genome browser.

The Gene Index Project at the

Dana Farber Cancer Institute is

available at Q http://compbio.

dfci.harvard.edu/tgi/ along with

EGO and related bioinformatics

tools. It was developed by John

Quackenbush and colleagues.

Currently (September 2007) the

Gene Index Project includes indi-

ces from animals (34 species),

plants (34 species), protists (15

species), and fungi (9 species).

The Mammalian Gene Collection

(MGC) website is Q http://mgc.

nci.nih.gov/. It currently includes

over 26,000 human clones (corre-

sponding to about 16,000 nonre-

dundant genes). The IMAGE

consortium website (Q http://
image.llnl.gov/) can be queried

for clones from a number of

species.

The HUGE database is at

Qhttp://www.kazusa.or.jp/huge/.
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(unlike microarrays) there is no need for prior knowledge of which mRNA transcripts

to study, and (unlike Northern blots or PCR) it is a high throughput technology. Also,

many useful variants of SAGE have been developed (see Wang, 2007). Perhaps the

major limitation is that construction and analysis of SAGE libraries remains a rela-

tively specialized skill. Also in a typical SAGE experiment as many as half the

SAGE tags do not match to known transcripts or genes. For low abundance tran-

scripts the reproducibility is poor. Wang 2007 provides a discussion of these issues,

including a comparison of SAGE and microarray technologies.

The procedure for producing SAGE tags is outlined in Fig. 8.15 (Velculescu et al.,

1995). RNA is isolated from a source of interest and converted to cDNA with a bio-

tinylated oligo(dT) primer. A restriction enzyme (the “anchoring enzyme”) is used to

FIGURE 8.15. Description of
serial analysis of gene expression
(SAGE). Messenger RNA is iso-
lated from a source (such as
brain), and double-stranded
cDNA is synthesized using a bioti-
nylated oligo(dT) primer. The
cDNA is cleaved with a four-
cutter restriction endonuclease
(“anchoring enzyme,” AE) that
cleaves most transcripts in a cell.
The 30 portion of each transcript
is immobilized on streptavidin
beads (large ovals), and linkers
(A or B) are added containing
restriction endonuclease recog-
nition site (“tagging enzyme,”
TE). Cleavage of the ligated
clones with the tagging enzyme
releases the linker with the cDNA
tags (Xs at left, Os at right). The
ligated tag pairs are concatenated,
cloned, and sequenced. Each tag
represents a fragment of 9 bp
of a transcript. Modified from
Velculescu et al. (1995). Used with
permission.

mRNA

ds cDNAAAAAATTTTT

GTAC

CATG

Cleave with anchoring enzyme (AE)
Bind to streptavidin beads

AAAAA

AAAAATTTTT
AAAAATTTTTGTAC

GTAC AAAAATTTTT
AAAAATTTTTGTAC

GTAC AAAAATTTTT
AAAAATTTTTGTAC

CATG

CATG CATG

Isolate mRNA

Synthesize double-stranded cDNA
with biotinylated oligo(dT) primer

Cleave with tagging enzyme (TE)
Blunt end

Divide beads
Ligate to linkers A and B

A

A

B

B

primer A primer B

primer Bprimer A

GGATGCATGXXXXXXXXX
CCTACGTACXXXXXXXXX

GGATGCATGOOOOOOOOO
CCTACGTACOOOOOOOOO

GGATGCATGXXXXXXXXXOOOOOOOOOCATGCATCC
CCTACGTACXXXXXXXXXOOOOOOOOOGTACGTAGG

two tags (one ditag)

TE AE tag TE AE tag

---CATGXXXXXXXXXOOOOOOOOOCATGXXXXXXXXXOOOOOOOOOCATG---
---GTACXXXXXXXXXOOOOOOOOOGTACXXXXXXXXXOOOOOOOOOGTAC---

AE AE AEtwo tags (one ditag) two tags (one ditag)

Cleave with anchoring enzyme; isolate ditags,
concatenate, clone, and sequence

Ligate and amplify
with primers A and B

biotin

strept-
avidin
beads

strept-
avidin
beads

strept-
avidin
beads

The SAGE site at NCBI is at

Q http://www.ncbi.nlm.nih.gov/
SAGE/.
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digest the total population of transcripts so that only short fragments are isolated, and

the tight interaction between biotin and avidin allows the 30 end of each transcript to be

tethered to streptavidin beads. Two populations of linkers are added, allowing the

cDNA to be digested with a specialized restriction enzyme that releases the linker

with a short fragment of cDNA (the “tag”). Tags are concatenated, cloned, and

sequenced. This process results in the description of thousands (or millions) of tags

from a biological source.

FIGURE 8.16. (a) Build process
for the NCBI SAGE database
includes a data generation portion
(top; library production) and a
mapping portion (bottom). (b)
The NCBI SAGE website library
comparison tool (obtained by
clicking “Analyze by library”
at Q http://www.ncbi.nlm.nih.
gov/SAGE/) allows two pools of
SAGE tags to be evaluated in
order to compare gene expression
profiles. In this case, boxes were
clicked under headings A and B
that correspond to human brain
and lung SAGE libraries. (c)
Result of an electronic comparison
of SAGE libraries from brain and
lung shows SAGE tags correspond-
ing to transcripts that are present
in different abundance in the
pools. In this example, group B
(lung) includes tags corresponding
to surfactant and genes known to
be expressed preferentially in
lung. Additional tags correspond
to genes expressed in brain such
as a neurotrophic metallothionein.
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Avariety of SAGE libraries have been constructed. Each tag in a library is likely to

correspond to a single gene. For a 9 bp tag, there are 49, or 262,144, transcripts that

can be distinguished, assuming a random nucleotide distribution at the tag site. In

practice, tags are mapped to genes using UniGene. In some cases, a tag may be

present on more than one gene. In other cases, a gene may have more than one tag

(e.g., there may be alternative splicing of a transcript such that there are multiple

tags for that gene). An assumption of SAGE is that the number of tags found in a

SAGE library is directly proportional to the number of mRNA molecules in that

biological sample.

SAGE has been used to describe the properties of the yeast transcriptome

(Velculescu et al., 1997). The expression of 4665 genes was characterized, the

majority of which had not been functionally characterized. Consistent with the analy-

sis of UniGene clusters (Table 8-6), these data showed that many transcripts are

expressed only rarely. Zhang et al. 1997 used SAGE to profile gene expression in

normal and neoplastic gastrointestinal tissue. They estimated that the number of dis-

tinct transcripts that were expressed in each cell type ranged from about 14,000 to

20,000, and the expression levels ranged from one copy per cell to 5300 copies per

cell. The abundance of each gene was estimated by dividing the observed number

of tags for a transcript by the total number of tags obtained.

SAGE libraries can be queried electronically at the NCBI website, allowing the

comparison of gene expression in any tissues for which SAGE libraries have been

generated (Lash et al., 2000; Lal et al., 1999). The website includes tag data from

SAGE libraries and annotation data in which tags are mapped to genes (Fig. 8.16).

SAGE libraries can be selected in a manner similar to using digital differential dis-

play. The genes that correspond to tags differentially present in lung include surfac-

tant, pronapsin A, and secretoglobin, with hundreds of tags in lung but none in brain.

Assorted brain-enriched transcripts are also identified. Examination of surfactant (by

clicking its link) shows that the mapping of this particular tag (TGCCAGGTCT) to

the surfactant gene (UniGene Hs.177852) appears unambiguous, and 50 tags corre-

sponding to surfactant have been identified selectively in a lung library (Fig. 8.16). In

some cases tags map to multiple UniGene clusters, and only one or several clusters

may be reported as “reliable” as determined by NCBI using criteria such as the avail-

ability of corresponding genomic DNA data.

MICROARRAYS: GENOMEWIDE MEASUREMENT

OF GENE EXPRESSION

DNA microarrays have emerged as a powerful technique to measure mRNA tran-

scripts (gene expression). While EST sequencing projects and SAGE allow high

throughput analyses of gene expression, it is microarrays that have been used most

broadly to assess differences in mRNA abundance in different biological samples.

The use of microarrays has increased rapidly since the pioneering work of Patrick

Brown and colleagues at Stanford University, Jeffrey Trent and colleagues at the

National Institutes of Health, and others (DeRisi et al., 1996).

A microarray is a solid support (such as a glass microscope slide or a nylon mem-

brane) on which DNA of known sequence is deposited in a regular gridlike array. The

DNA may take the form of cDNA or oligonucleotides, although other materials

(such as genomic DNA clones; Chapter 16) may be deposited as well. Typically,
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several nanograms of DNA are immobilized on the surface of an array. RNA is

extracted from biological sources of interest, such as cell lines with or without drug

treatment, tissues from wild-type or mutant organisms, or samples studied across a

time course. The RNA (or mRNA) is often converted to cDNA, labeled with fluor-

escence or radioactivity, and hybridized to the array. During this hybridization,

cDNAs derived from RNA molecules in the biological starting material can hybridize

selectively to their corresponding nucleic acids on the microarray surface. Following

washing of the microarray, image analysis and data analysis are performed to quanti-

tate the signals that are detected. Through this process, microarray technology allows

the simultaneous measurement of the expression levels of thousands of genes rep-

resented on the array.

The term functional genomics refers to the large-scale analysis of the genomewide

function of genes, in contrast to the study of individual protein and nucleic acid mol-

ecules (see Chapter 12). Microarray-based gene expression experiments form one

core of functional genomics. There has been enthusiasm for microarrays in the

research community because of their potential to yield large amounts of information

(Table 8-10). Notably, the rapid accumulation of molecular sequence data in

GenBank has led to the availability of many thousands of clones of unknown func-

tion. DNA sequences corresponding to both known genes and poorly characterized

ESTs have been deposited on microarrays, potentially allowing their function to be

determined. The potential of this technology is great, and fundamental biological

insights have already been obtained (see Chapter 9).

It is also important to realize the limitations of microarray technology (Table

8-11). The costs of microarrays have caused many investigators to perform relatively

TABLE 8-10 Major Advantages of Microarray Experiments
Advantage Comment

Fast One can obtain data on the RNA levels of over 20,000 transcripts within
one week.

Comprehensive Entire transcriptomes can be represented on a microarray.

Flexible cDNAs or oligonucleotides corresponding to any gene can be represented
on a chip. Dozens of applications have been developed, such as
microarrays to measure microRNAs or methylated DNA.

TABLE 8-11 Major Disadvantages of Microarray Experiments
Disadvantage Comment

Cost Many researchers find it prohibitively expensive to perform
sufficient replicates and other controls, and thus
experiments lack statistical power.

Unknown significance of RNA The final product of gene expression is protein, not RNA.

Uncertain quality control There are many artifacts associated with image analysis and
data analysis.

Common occurrence of
artifacts

Because RNA levels are context-dependent, observed
differences may be due to nuisance factors (such
as differences attributable to the date of RNA isolation,
or differences in RNA due to the handling of RNA by
different laboratory scientists) rather than attributable to
the underlying biological comparison (e.g., normal
versus diseased sample).
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few control experiments to assess the reliability and validity of their findings. There

are many potential quality control issues, such as artifacts associated with microarray

manufacture or image acquisition. Perhaps the greatest limitation is that experimen-

tal design may be flawed; for example, if untreated samples are processed on day one

and treated samples are processed on day two then the design is confounded and one

cannot distinguished between observed differences in transcript levels that are due to

treatment or date. Many other factors need to be controlled for, such as the operator

(i.e., the individuals who isolate RNA and otherwise process the samples) and the

batch. A further possible limitation of microarrays is that the ultimate product

of gene expression is not mRNA but protein, and those levels are not necessarily

correlated (discussed below).

An overview of the procedures used in a microarray experiment is shown in

Fig. 8.17, arbitrarily divided into six stages. We will consider each of the stages below.

Stage 1: Experimental Design for Microarrays
In the first stage, total RNA or mRNA is isolated from samples. Notably, experiments

have been performed for organisms as diverse as viruses, bacteria, fungi, and humans.

FIGURE 8.17. Overview of the
process of generating high through-
put gene expression data using
microarrays. In stage 1, biological
samples are selected for a compari-
son of gene expression. In stage 2,
RNA is isolated and labeled, often
with fluorescent dyes. These
samples are hybridized to micro-
arrays, which are solid supports
containing complementary DNA
or oligonucleotides corresponding
to known genes or ESTs. In stage
4, image analysis is performed to
evaluate signal intensities. In
stage 5, the expression data are
analyzed to identify differentially
regulated genes (e.g., using
ANOVA [Chapter 9] and scatter
plots; stage 5, at left) or clustering
of genes and/or samples (right).
Based on these findings, indepen-
dent confirmation of microarray-
based findings is performed (stage
6). The microarray data are depos-
ited in a database so that large-
scale analyses can be performed.

Experimental design
Compare normal vs diseased tissue, 

cells +/- drug, early vs late development
Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

RNA preparation and probe preparation
Isolate total RNA or mRNA, label 
with fluorescence (or radioactivity)

Compare two biological samples 
Hybridize samples to microarrays

Image analysis
Detect signals that represent 
expressed genes; quantitate

Data analysis: Identify significantly regulated genes (e.g. using scatter plots)
Identify co-regulated genes (e.g. cluster analysis); classify samples

Biological confirmation
Independently confirm that genes 
are regulated e.g. by Northern analysis

Deposit data in a database
(e.g. GEO, ArrayExpress)

Analyze data in the context of other, related experiments. Investigate 
behavior of expressed genes in other experimental paradigms
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The amount of starting material that is required is typically several hundreds of

milligrams (wet weight) or several flasks of cells. For many currently available

microarrays, about 1 to 5 mg of total RNA is required. With the amplification of

RNA or cDNA products, it is possible to use substantially less starting material.

However, the amplified population may not faithfully represent the original RNA

population.

The experimental design of a microarray experiment can be considered in three

parts (Churchill, 2002). Different sources of variation are associated with each of

these three areas. We will discuss experimental design further in Chapter 9.

(b) Competitive hybridization paradigms

(a) Single sample hybridizations

Sample 1 Pool

Sample 1 Sample 2 Sample 3 Sample 4 Pool

Sample 3 Sample 4

Sample 2 Pool Sample 3 Pool

Sample 2 Sample 3 Sample 2 Sample 4

(c) Competitive hybridization paradigms using a pool

Sample 4 Pool

Sample 1 Sample 4Sample 1 Sample 2 Sample 1 Sample 3

FIGURE 8.18. Designs of microarray experiments. The four samples may represent a time
course, normal versus diseased tissue, or any other paradigm. (a) Design of arrays to which
only one sample is hybridized (e.g., nylon filters from Clontech that are probed with radiolabeled
cDNA or chips from Affymetrix that are probed with cRNA probes that are visualized with a
fluorescent dye). Each sample is hybridized to one chip. The use of a pool of all the samples is
not necessary. Additional hybridizations may be performed to increase the number of replicates.
(b) For technologies that use competitive hybridization, such as NEN Life Sciences arrays,
samples are labeled with Cy5 (red) and Cy3 (green) dyes and competitively hybridized. A set
of hybridizations may be performed to compare every combination of samples. The data do
not allow intensities from one chip (e.g., sample 1 vs. 2) to be compared across chips. (c) In
order to perform data analysis of every sample compared to every other sample, it is also possible
to hybridize each sample to a pool consisting of a reference.
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First, the biological samples are selected for comparison, such as a cell line with

or without drug treatment. If multiple biological samples are used, these are called

“biological replicates.” When experimental subjects are selected for treatment, it is

appropriate to assign them to groups randomly.

Second, RNA is extracted and labeled (typically as complementary DNA) with

radioactivity or fluorescence. When two RNA extractions are obtained from a bio-

logical sample and hybridized to microarrays, these are called “technical replicates.”

For technologies in which one sample is hybridized to one microarray, the transcripts

are labeled with radioactivity or with a fluorescent dye. Figure 8.18a shows an

example of an experimental design in which four samples are hybridized to arrays.

These samples may represent time points in an assay, different pharmacological treat-

ments, or any other paradigm. Optionally, a reference pool consisting of multiple

samples from the same treatment condition may be employed.

The experimental design differs for microarray technologies that employ com-

petitive hybridization (Fig. 8.18b and c). Samples are labeled with Cy5 (a red dye)

or Cy3 (a green dye). Each labeled molecule can bind to its cognate on the surface

of the microarray. If the transcript is expressed at comparable levels in the two

samples, the color of the spot will be intermediate (i.e., yellow). This approach pro-

duces ratios of gene expression measurements, rather than absolute values. The

experimental design may involve pairwise comparisons of all the samples in order

to allow comprehensive data analysis (Fig. 8.18b). Alternatively, each sample can

be competitively hybridized with a reference pool, such as a mixture of all four

samples (Fig. 8.18c). Churchill (2002) and others have suggested that reference

pools can represent an inefficient experimental design.

For any two-color experimental paradigm, dye swap is an important control. For

two biological samples, two hybridizations are performed. Samples are labeled twice,

first with Cy5 and then with Cy3, and used in independent hybridizations. The dye

swap helps to eliminate artifactual variation that is attributable to the efficiency of dye

labeling.

A third aspect of microarray experimental design is the arrangement of array

elements on a slide. Ideally, the array elements are arranged in a randomized order

on the slide. In some cases, array elements are spotted in duplicate (see Fig. 8.20

below). Artifacts can occur based on the arrangement of elements on an array, or

because a microarray surface is not washed (or dried) evenly.

Stage 2: RNA Preparation and Probe Preparation
RNA can be readily purified from cells or tissues using reagents such as TRIzol

(Invitrogen). For some microarray applications, further purification of RNA to

mRNA [poly(A)þ RNA] is necessary. In comparing two samples (e.g., cells with

or without a drug), it is essential to purify RNA under closely similar conditions.

For example, for cells in culture, conditions such as days in culture and percent con-

fluence must be controlled for.

The purity and quality of RNA should also be assessed spectrophotometrically

(by measuring a260/a280 ratio) and by gel electrophoresis. Fluorescent dyes such

as RiboGreen (Molecular Probes) can be used to quantitate yields. Purity of RNA

may also be confirmed by Northern analysis or PCR. RNA preparations that are con-

taminated with genomic DNA, rRNA, mitochondrial DNA, carbohydrates, or other

macromolecules may be responsible for impure probes that give high backgrounds or

other experimental artifacts.

For microarrays from Affymetrix,

RNA is converted to cDNA and

transcribed to make biotin-labeled

complementary RNA (cRNA).
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The RNA is converted to cDNA or to complementary RNA, then labeled with

fluorescence (or less commonly with radioactivity) to permit detection.

Stage 3: Hybridization of Labeled Samples to
DNA Microarrays
A microarray is a solid support such as a nylon membrane or glass slide to which

DNA fragments of known sequence are immobilized. In some cases, the immobilized

DNA consists of approximately 5 ng of cDNA (length 100 to 2000 bp) arrayed in

rows and columns. In other cases, oligonucleotides rather than cDNAs are immobi-

lized (Lipshutz et al., 1999). This has been accomplished by Affymetrix using a

modified process of photolithography (Fodor et al., 1991). An example of this in

Fig. 8.19 shows the density of oligonucleotides on the surface of a chip.

Depending on the nature of the solid support used to immobilize DNA, the micro-

array is often called a blot, membrane, chip, or slide. The DNA on a microarray is

referred to as “target DNA.” In a typical microarray experiment, the gene expression

patterns from two samples are compared. RNA from each sample is labeled with

fluorescence or radioactivity to generate a “probe.”

After RNA is converted into cDNA or cRNA labeled with fluorescence, the effi-

cient labeling of probe must be confirmed. This is followed by hybridization of the

probe overnight to the filter or slide and washing of the microarray. The next stage

is image analysis.

Stage 4: Image Analysis
After washing, image analysis is performed to obtain a quantitative description of the

extent to which each mRNA in the sample is expressed (Duggan et al., 1999). For

experiments using radioactive probes (typically using [33P] or [32P] isotopes),

FIGURE 8.19. The surface of a typical microarray chip contains oligonucleotides at a density of
0.1 pmol/mm2 on a glass slide or one molecule per 39 Å2 (from Southern et al., 1999). A typical
microarray from Affymetrix contains 20 separate oligonucleotide 25-mers, each corresponding
to a single gene. The extent to which an endogenous transcript has been expressed in a sample is
assessed by analyzing the fluorescence signal from all 40 oligonucleotides corresponding to that
expressed gene. Other microarray platforms, such as arrays from Agilent or Clontech
Laboratories, employ oligonucleotides up to 80 nucleotides long. Used with permission.

Photolithography is a technique

with many applications, including

the microelectronics industry, in

which substances are deposited on

a solid support. For microarray

technology, oligonucleotides are

synthesized in situ on a silicon

surface by combining standard

oligonucleotide synthesis proto-

cols with photolabile nucleotides

that permit thousands of specific

oligonucleotides to be immobi-

lized to a chip surface. Many

researchers refer to the DNA on a

microarray as the probe and the

labeled DNA derived from a bio-

logical sample as the target. Thus,

there are opposite definitions of

probe and target, and the research

community has not reached a

consensus. We will call the labeled

material derived from RNA or

mRNA the “probe.”
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image analysis is performed by quantitative phosphorimaging (Fig. 8.20). Image

analysis involves aligning the pixels to a grid and manually adjusting the grid to

align the spots. Each spot represents the expression level of an individual transcript.

The intensity of a spot is presumed to correlate with the amount of mRNA in the

sample. However, many artifacts are possible. The spot may not have a uniform

shape. An intense signal may “bleed” to a neighboring spot, artifactually lending it

added signal intensity (Fig. 8.21a). Pixel intensities near background may lead to

spuriously high ratios. For example, if a control value is 100 units above background

and an experimental value is 200 units, this suggests that the experimental condition

is upregulated twofold. However, if the pixel values are 50,100 versus 50,200, then no

regulation is described.

For fluorescence-based microarrays, the array is excited by a laser and fluor-

escence intensities are measured (Fig. 8.21b). Data for Cy5 and Cy3 channels may

be sequentially obtained and used to obtain gene expression ratios.

Stage 5: Data Analysis
Analysis of microarray data is performed to identify individual genes that have been

differentially regulated. It is also used to identify broad patterns of gene expression. In

some experiments groups of genes are coregulated, suggesting functional relatedness.

FIGURE 8.20. Example of a
microarray experiment using
radioactive probes: 588 genes are
represented on each array and are
spotted in adjacent pairs. Dark
dots represent genes expressed at
high levels. The filters were hybri-
dized, washed, and exposed to a
phosphorimager screen for 6
hours. The output includes a quan-
titation (in pixel units) of the
signals. (a) Clontech Atlas
Neurobiology array probed with
cDNA derived from the postmor-
tem brain of a girl with Rett syn-
drome, and (b) the profile from a
matched control. The arrows
point at an RNA transcript (b-
crystallin) that is upregulated in
the disease. Note that overall the
RNA transcript profiles appear
similar in the two brains.
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Samples (rather than genes) may be analyzed and classified into discrete groups. The

analysis of microarray data is described in Chapter 9.

In an effort to standardize microarray data analysis, Brazma and colleagues

(2001) at 17 different institutions proposed a system for storing and sharing micro-

array data. Minimum Information About a Microarray Experiment (MIAME)

provides a framework for researchers to describe information in six areas: the exper-

imental design, the microarray design, the samples (and how they are prepared),

the hybridization procedures, the image analysis, and the controls used for

normalization.

FIGURE 8.21. Microarray images.
(a) Six signals are visualized using
NIH Image software. Imageanalysis
software must define the properties of
each signal, including the likelihood
that an intense signal (lower left)
will “bleed” onto a weak signal
(lower right). (b) A microarray
from NEN Perkin-Elmer (repre-
senting 2400 genes) was probed
with the same Rett syndrome and
control brain samples used in
Fig. 8.20. This technology employs
cDNA samples that are fluoresc-
ently labeled in a competitive
hybridization.

The MIAME project is described

at the Microarray Gene

Expression Database Group web-

site (Q http://www.mged.org/).
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Stage 6: Biological Confirmation
Microarray experiments result in the quantitative measurement of thousands of

mRNA transcript values. Data analysis typically reveals that dozens or hundreds of

genes are significantly regulated, depending on the particular experimental paradigm

and the statistical analysis approach. A list of regulated transcripts may include true

positives (those that are authentically regulated) as well as false positives (transcripts

reported as significantly regulated even though they were found by chance). It is

important to independently confirm the differential regulation of at least some of

the most regulated transcripts.

Microarray Databases
Raw as well as processed microarray data are routinely deposited in public reposi-

tories upon publication. The two main public repositories are ArrayExpress at the

European Bioinformatics Institute and the Gene Expression Omnibus (GEO) at

NCBI. Another example of a repository is the Stanford Microarray Database,

which offers links to the complete raw and processed data sets from a variety of micro-

array experiments. We will describe how to acquire data from GEO in Chapter 9.

Further Analyses
Eventually, it is likely that uniform standards will be adopted for all microarray exper-

iments. The greatest variables in these studies are likely to be the quality of the RNA

isolated by each investigator and the nature of the microarray that is used to generate

data. An ongoing trend in the field of bioinformatics is the unification and cross-

referencing of many databases, such as has occurred for databases of molecular

sequences and for databases of protein domains. In the arena of gene expression,

the lack of acceptable standards may limit the extent to which an integrated view of

gene expression is obtained. Nonetheless, it is likely that each gene in each organism

will be indexed so that in addition to “stable” data on molecular sequence and chro-

mosomal location, “dynamic” information on the mRNA corresponding to each

gene will be cataloged. This information will include the abundance level of each

transcript, the temporal and regional locations of gene expression, and other infor-

mation on the behavior of gene expression in a variety of states. Some initial efforts

to integrate information on gene expression are presented in Chapter 9.

INTERPRETATION OF RNA ANALYSES

We began this chapter with a description of noncoding RNA, then described coding

(messenger) RNA. We conclude with several issues about the nature and interpret-

ation of RNA.

The Relationship of DNA, mRNA, and Protein Levels
Many human diseases are associated with changes in the number of chromosomes

(termed aneuploidy); the most well known of these is Down syndrome, associated

with a third copy of chromosome 21. Many diseases are caused by the duplication

or deletion of a small chromosome region (e.g., several million base pairs), and

copy number changes are also commonly associated with cancers. A variety of

ArrayExpress is available at

Q http://www.ebi.ac.uk/
arrayexpress/, while GEO is at

Q http://www.ncbi.nlm.nih.gov/
geo/.
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evidence suggests that an increase in copy number (i.e., of genomic DNA) is

associated with a corresponding increase in mRNA transcript levels. My laboratory

(Mao et al., 2003, 2005) and others have shown this for Down syndrome brain

and heart, and similar findings have been reported in cancers.

Once mRNA levels are present at elevated or reduced levels, are the correspond-

ing proteins differentially expressed in a similar manner? Perhaps surprisingly, there

appears to be only a weak positive correlation between mRNA and protein levels. At

present, high throughput protein analyses are technically more difficult to perform

(especially protein arrays) than transcriptional profiling studies. We will discuss sev-

eral high throughput approaches to protein identification and quantitation (e.g. mass

spectrometry) in Chapters 10 and 12.

Several groups have reported a weak positive correlation between mRNA levels

and levels of the corresponding proteins in the yeast Saccharomyces cerevisiae and

other systems (Futcher et al., 1999; Greenbaum et al., 2002). Greenbaum et al.

2002 performed a meta-analysis of gene expression and protein abundance data

sets and suggested that there is a broad agreement between mRNA and protein

levels. Waters et al. 2006 reviewed eight studies and described correlation coefficients

that were relatively high when highly abundant proteins were considered (e.g., r ¼

0.935, r ¼ 0.86 in two studies) but lower when highly abundant proteins were

excluded (e.g., r ¼ 0.356, r ¼ 0.49, r ¼ 0.21, r ¼ 0.18).

One conclusion from these studies is that it might be appropriate to determine

experimentally whether observed changes in RNA correspond to changes in the

levels of the corresponding proteins. At present, it is common in the scientific litera-

ture for observed changes in RNA transcripts, derived from genes encoding a cate-

gory of proteins such as those involved in glycolysis, to be cited as evidence that

glycolysis has changed in the system being studied. Such a finding represents a

hypothesis that can be tested experimentally.

The Pervasive Nature of Transcription
In recent decades, the transcription of DNA to mRNA has been conceptualized in

terms of a relatively straightforward model in which protein-coding genes are tran-

scribed into mRNA precursors which are then spliced (to remove introns) and pro-

cessed (to facilitate export) into mature mRNA. The number of distinct mRNA

transcripts was assumed to approximate the number of protein-coding genes, and

the exons have been estimated to occupy about 1% of the human genome. More

recently, compelling evidence has emerged that this view is overly simple. Instead,

it is becoming apparent that the majority of the genomic DNA (comprising the

genome) is transcribed.

Strong evidence for pervasive transcription comes from the ENCODE project, in

which 30 megabase pairs (that is 30 million base pairs, spanning 1% of the human

genome in 44 regions) has been analyzed in depth with over 200 experimental data

sets (ENCODE Consortium, 2004, 2007). Transcriptional activity was measured

using three technologies. (1) Total RNA or poly(A) RNA was hybridized to tiling

arrays. Tiling arrays contain oligonucleotides or PCR products that correspond to

positions along each chromosome that are regularly spaced at extremely short inter-

vals such as five base pairs or 30 base pairs. This contrasts with conventional

expression arrays that are targeted to previously annotated exons. Genomic tiling

arrays do not depend on prior genome annotations of gene structures, and they

also offer good sensitivity. (2) Cap-selected RNA was tag sequenced at the 50 or

The correlation coefficient r

ranges from þ1 (perfectly posi-

tively correlated) to 21 (nega-

tively correlated), with r ¼ 0

indicating that two variables are

uncorrelated.
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joint 50/30 ends. 50 cap analysis gene expression (CAGE) is a method of enriching for

full-length cDNA by priming the first strand cDNA synthesis with an oligo-dT

primer (to capture the 30 end of a polyadenylated transcript) or a random primer,

and “trapping” the cap that commonly occurs at the 50 end of mRNAs. (3) EST

and cDNA sequences were annotated using computational, manual, and experimen-

tal approaches. The ENCODE study showed that 14.7% of all the nucleotides in the

tiling arrays were transcribed in at least one tissue, with the majority residing outside

previously annotated exons.

Other studies convincingly show that much of the genome is transcribed. For

example, genomic tiling arrays have demonstrated about ten times more transcrip-

tional activity in human chromosomes 21 and 22 than expected based on current

gene annotations (Kapranov et al., 2002).

There are several main explanations for the existence of pervasive transcription

(Johnson et al., 2005). (1) There may be many protein-coding genes beyond those

described in the RefSeq project. Studies of cDNA projects such as FANTOM

(described above) are consistent with such an interpretation. (2) There are likely to

be many noncoding RNAs that have yet to be annotated and characterized. Only a

subset of these may be evolutionarily conserved (e.g. between human and mouse),

and their functions remain to be established. (3) There may be biological “noise”

associated with low levels of transcription. Such “noise” could, for example, include

retained introns (that are not spliced to form a mature mRNA product). (4) The

widespread transcriptional activity could represent an experimental artifact such as

genomic contamination of RNA samples. However, several different groups using

diverse technological approaches have reached similar conclusions about the extent

of transcription, so artifacts are not likely to account for the observations.

Studies from the ENCODE project led Gerstein et al. 2007 to propose a novel

definition of a gene as “a union of genomic sequences encoding a coherent set of

potentially overlapping functional products.”

PERSPECTIVE

Genes in all organisms are expressed in a variety of developmental, environmental,

or physiological conditions. The field of functional genomics includes the high

throughput study of gene expression. Before the arrival of this new approach, the

expression of one gene at a time was typically studied. Functional genomics may

reveal the transcriptional program of entire genomes, allowing a global view of cellu-

lar function.

Three major shifts have occurred in recent years in our understanding of genes

and their expression. First, complementary DNA microarrays and oligonucleotide-

based microarrays were introduced in the mid-1990s and have emerged as a powerful

and popular tool for the rapid, quantitative analysis of RNA transcript levels in a var-

iety of biological systems. The use of microarrays is likely to increase in the near future

as the number of organisms represented on arrays increases, and the experimental

applications of microarray technology expand. Second, recent studies, including

those of the ENCODE project, have indicated that much of the genome is tran-

scribed, although the biological significance of this is not yet understood. Third,

since the 1990s many small noncoding RNAs such as microRNAs have been ident-

ified and are beginning to be functionally classified. Together these discoveries and

You can learn more about CAGE

at the FANTOM website

(Q http://fantom3.gsc.riken.jp/),

including access to CAGE

databases.

We expand on this definition of a

gene in Chapter 16 (p. 662).
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technological advances are leading to a new appreciation of the tremendous

structural and functional diversity of RNAs.

PITFALLS

The recent discovery of the pervasive nature of transcription leads to the question of

how many mRNA transcripts have functional roles. For small noncoding RNAs we

are only beginning to appreciate the range of possible biological functions. The com-

putational challenge of noncoding RNA identification is great, and many more are

likely to be identified.

For studies of gene expression with techniques such as ESTanalysis, SAGE, or

microarrays, there are many basic concerns. The mRNA molecules are not measured

directly; rather, they are converted to cDNA, and that cDNA is analyzed by sequence

analysis or by visualization of fluorescent tags. It is important to assess whether the

amount of substance that is actually measured corresponds to the amount of

mRNA in the biological sample.

† When RNA (or mRNA) is isolated, is it representative of the entire population

of mRNA molecules in the cell?

† If two conditions are being compared, was the RNA isolated under appropri-

ately matched conditions? Any variations in the experimental protocol may

lead to artifactual differences (discussed in Chatper 9).

† Has degradation of the RNA occurred in any of the samples?

† For microarrays, there are additional concerns. Most researchers cannot con-

firm the identity of what is immobilized on the surface of a microarray.

One response to these assorted concerns about microarrays is that with appropri-

ate experimental design one mayobtain results with confidence. After microarray data

analysis results in the identification of significantly regulated genes (Chapter 9), it is

important to perform independent biochemical assays (such as RT-PCR) to validate

the findings.

WEB RESOURCES

The RNA World website (Q http://www.imb-jena.de/RNA.html) organizes many

links related to RNA and is an excellent starting point. The main portal for the

ENCODE Project is Q http://genome.ucsc.edu/ENCODE.

DISCUSSION QUESTIONS

[8-1] There has been an explosion of interest in small noncoding

RNAs in plant, animal, and other genomes. Why were these

small RNAs not identified and studied in earlier decades?

[8-2] If you have a human cell line and you want to measure gene

expression changes induced by a drug treatment, what are

some of the advantages and disadvantages of using a sub-

traction approach versus SAGE versus microarrays? How

are your answers different if you want to study gene

expression in a less well characterized organism such as a

parasite?

[8-3] When you use a microarray, how can you assess what has

been deposited on the surface of the array? How do you

know the DNA is of the length and composition that the

manufacturer of the array specifies?
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PROBLEMS

SELF-TEST QUIZ

[8-1] Which are the most abundant RNA types?

(a) rRNA and tRNA

(b) rRNA and mRNA

(c) tRNA and mRNA

(d) mRNA and microRNA

[8-2] MicroRNAs may be distinguished from other RNAs because of

the following properties:

(a) They are localized to the nucleolus

(b) Each microRNA is thought to regulate a small number of

homologous target messenger RNAs

(c) They are coding RNAs, each of which is thought to regulate

the function of a large number of messenger RNAs to which

they are homologous

(d) They have a length of about 22 nucleotides, derived from a

larger precursor, and regulated messenger RNA function

[8-3] The stages of mRNA processing include all of the following

except:

(a) Splicing

(b) Export

(c) Methylation

(d) Surveillance

[8-4] Digital differential display (DDD) is used to compare the con-

tent of expressed sequence tags (ESTs) in UniGene’s cDNA

libraries. ESTs are also represented on microarrays. Which

statement best describes ESTs?

(a) Clusters of nonredundant sequences (approximately 500

bp in length)

(b) Stretches of DNA sequence that are repeated many times

throughout the genome

(c) Sequences corresponding to expressed genes that are

obtained by sequencing complementary DNAs

(d) A “tag” (i.e., a fragment of DNA) derived from comp-

lementary DNA (cDNA) that corresponds to a transcript

that has not been identified

[8-5] UniGene hascluster sizes fromverysmall (e.g., 1) tovery large (e.g.,

.10,000). What does it mean for there to be a cluster of size 1?

(a) One sequence has been identified that has a very large

number of EST transcripts (e.g., over 10,000) associated

with it.

(b) One sequence has been identified that corresponds to a

gene that has been expressed one time.

(c) One sequence has been identified (presumably it is an

EST) that matches one other known sequence (thus allow-

ing it to be identified as a UniGene cluster).

(d) One sequence has been identified (presumably it is an

EST) that is thought to correspond to a known gene, but

it matches no other known sequences in UniGene (i.e., it

does not align to any other ESTs).

[8-1] We introduced the noncoding RNAs XISTand AIR in this chap-

ter. We also discussed how many noncoding RNAs are poorly

conserved. Perform a series of blast searches to try to identify

human, mouse and other homologs of Xist and AIR. Try search-

ing the RefSeq, nonredundant, or other nucleotide databases.

[8-2] Choose a human rRNA sequence, then perform blastn searches

against human genomic DNA databases. How many matches do

you find, and to what chromosomes are the rDNA sequences

assigned?

[8-3] How many noncoding RNAs are in the vicinity of the human

beta globin gene? To assess this, go to the UCSC bioinformatics

site (Q http://genome.ucsc.edu), select the Genome Browser,

set the organism to human and choose a particular genome

build, then enter the search term hbb to find that gene on

chromosome 11. Then display annotation tracks related to non-

coding RNAs, and set the view to 10 million base pairs surround-

ing the HBB gene.

[8-4] Telomerase is a ribonucleoprotein polymerase that in humans

maintains active telomere ends by adding many copies of the

repetitive sequence TTAGGG. The enzyme (which is a protein)

includes an RNA component that serves as a template for the tel-

omere repeat. To what chromosome is this noncoding RNA gene

assigned? As one approach, find the entry in Entrez Nucleotide

at NCBI. As another approach, search Rfam with the keyword

telomerase.

[8-5] Perform digital differential display:

† Go to UniGene (Q http://www.ncbi.nlm.nih.gov/UniGene/).

† Go to Homo sapiens.

† Click library differential display.

† Click some brain libraries, then “Accept changes.”

† Choose a second pool of libraries to compare.

[8-6] Perform digital SAGE:

† Go to Q http://www.ncbi.nlm.nih.gov/ and click Serial

Analysis of Gene Expression.

† Click “Analyze by library.”

† Compare two SAGE library collections (e.g., brain and

ovary).

† Next, go to Entrez Gen and select a DNA sequence (any will

do).

† Copy the DNA to the clipboard, and return to the SAGE

page.

† Click “Virtual Northern.”

† Paste in your sequence, and submit.
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[8-6] In analyzing cDNA libraries, a pitfall is that:

(a) The libraries may be derived from different tissues.

(b) The libraries may contain thousands of sequences.

(c) The libraries may have been normalized differently.

(d) The libraries may contain many rarely expressed transcripts.

[8-7] What advantage do oligonucleotide-based microarrays have

over cDNA-based arrays?

(a) Two samples can be simultaneously and competitively

hybridized to the same chip.

(b) It is easier for the experimenter to verify the identity of each

gene that is represented on the array.

(c) It is possible to identify expression of alternatively spliced

transcripts.

(d) They are far more sensitive.

[8-8] Most microarrays consist of a solid support on which is

immobilized:

(a) DNA

(b) RNA

(c) Genes

(d) Transcripts

[8-9] The purpose of the MIAME project is to provide:

(a) A unified system for the description of microarray

manufacture

(b) A unified system for the description of microarray exper-

iments from design to hybridization to image analysis

(c) A unified system for the description of microarray probe

preparation including fluorescence- and radioactivity-

based approaches

(d) A unified system for microarray databases including stan-

dards for data storage, analysis, and presentation

[8-10] The expression of thousands of genes can be measured using

cDNA libraries, SAGE, and DNA microarrays. A unique

advantage of using DNA microarrays is that:

(a) The expression levels can be described quantitatively.

(b) It is possible to measure the expression levels of thousands

of genes in two particular conditions of interest.

(c) It is more practical than the other experimental approaches

to compare the expression levels of thousands of genes in

two particular conditions of interest.

(d) It can be used to survey the expression levels of essentially

all genes in a genome.
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The main idea behind microarrays is that one nucleic acid (DNA) is immobilized on a solid support on a solid surface in a predefined
location, and then another nucleic acid (RNA or a derivative such as fluorescently labeled complementary DNA) is hybridized to the
surface. Microarrays were first developed in the 1990s by the laboratories of Patrick Brown at Stanford University and Jeffrey Trent,
then at the National Institutes of Health (NIH). Beginning in the 1950s, Sol Spiegelman (1914–1983) pioneered the study of RNA
hybridization to DNA (see Q http://profiles.nlm.nih.gov/PX/). By the early 1960s several groups had immobilized DNA on a solid
support then hybridized purified RNA molecules under a variety of conditions. This figure shows electron micrographic images of cir-
cular DNA-RNA hybrids by Spiegelman and colleagues (Bassel et al., 1964). The bacteriophage fX174 was shown to transcribe RNA,
which bound to DNA in a ribonuclease resistant complex. Studies such as these established the mechanisms by which DNA is transcribed
to RNA, and ultimately led to the development of hybridization-based assays, including microarrays. The scale bar is 0.1 mm.
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Gene Expression: Microarray
Data Analysis

INTRODUCTION

DNA microarray experiments have emerged as one of the most popular tools for the

large-scale analyisis of gene expression (i.e., mRNA transcript levels). When a micro-

array experiment is completed and the data arrive, the first question most investi-

gators ask is: Which genes were most dramatically up- or downregulated in my

experiment? This can be answered using inferential statistics, a branch of data analy-

sis in which probabilities are assigned to the likelihood that a gene is significantly

regulated:

† A spreadsheet listing all the genes represented on the array and all the

expression values can be sorted to show the most differentially regulated

genes.

† A scatter plot (see below) can help to quickly profile the behavior of the most

regulated genes.

† A t-test can be used to describe the probability that a gene is regulated.
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Another fundamental question that may be asked is: What signatures (or patterns

or profiles) of gene expression can be found in all the gene expression values obtained

in this experiment? This type of question is addressed using descriptive statistics or

exploratory analysis. Clustering trees can show the relationships between samples

(such as normal vs. diseased cells), between genes, or both. Other tools for the analysis

of gene expression include principal components analysis, multidimensional scaling,

and self-organizing maps. We will consider all these tools for the analysis of array data.

Microarray experiments typically involve the measurement of the expression

levels of many thousands of genes in only a few biological samples. Often, there

are few technical replicates (i.e., measuring gene expression with the same starting

material on independent arrays), usually because of the relatively high cost of per-

forming microarray experiments. There are also few biological replicates (e.g.,

measuring gene expression from multiple cell lines, each of which has been given

an experimental treatment or a control treatment) relative to the large number of

genes represented on the microarray. The challenge to the biologist is to apply appro-

priate statistical techniques to determine which changes are relevant. There is unli-

kely to be a single best approach to microarray data analysis, and the tools applied

to microarray data analysis are evolving rapidly.

Regardless of the microarray platform that is used, we may begin data analysis by

creating a matrix of genes (along rows) and samples (arranged in columns) (Fig. 9.1,

top). The values in the matrix consist of intensity measurements that are assumed to

be directly proportional to the abundance of mRNA that has been transcribed from

each gene. We can consider two-channel and one-channel platforms. For two-

channel microarray technologies that rely on competitive hybridization of two

samples on an array, the gene expression values are usually presented as ratios (or

relative intensities). Typically, these are ratios of intensity values for the Cy3

(green) dye and the Cy5 (red) dye, and the raw data consist of separate intensity

values for each channel (dye). In the case of single-channel technologies, a single

sample is hybridized to a microarray. This is the case (1) for platforms using oligo-

nucleotides immobilized on a microarray (e.g., the Affymetrix platform), (2) for

platforms using beads immobilized on a microarray (e.g., the Illumina platform),

or, less commonly, (3) for platforms using radioactivity-labeled cDNA. Absolute

values are obtained for two (or more) experimental conditions.

We will describe microarray data analysis in three areas (Fig. 9.1). First, data are

“preprocessed.” This is essential to allow data sets from two (or more) samples to be

compared to each other. Second, inferential statistics are applied. This is also called

hypothesis testing, and it allows us to make statements about the likelihood that

particular genes are significantly regulated according to statistical criteria. Third,

exploratory statistics (also called descriptive statistics) are applied. This set of

approaches includes clustering and principal components analysis and is used to

inspect the complex data set for biologically meaningful patterns. In some microarray

studies classification is applied in order to diagnose physiological states (e.g., cancer-

ous vs. control cells) based on gene expression profiles. It is appropriate to begin data

analysis with preprocessing, but inferential statistics and exploratory techniques are

commonly applied in parallel during the weeks (or months) that one analyzes a

microarray data set.

Excellent reviews of microarray data analysis include Quackenbush (2001,

2006), Sherlock (2001), Dopazo et al. (2001), Brazma and Vilo (2000), Ayroles

and Gibson (2006), Olson (2006), Lee and Saeed (2007), as well as a succinct

book by Causton et al. (2003).

The Microarray Gene Expression

Data (MGED) Society has been

formed to establish standards for

the analysis, annotation,

exchange, and reporting of

microarray data. Its website

(Q http://www.mged.org) and

publications by the MGED group

include important information

relevant to standardization of

microarray experiments (Brazma,

2001; Ball et al., 2002a, 2002b),

the Miniumum Information

About a Microarray Experiment

(MIAME) standards (Brazma

et al., 2001), the design of a

microarray gene expression

markup language (MAGE-ML)

for standardizing the storage and

exchange of microarray data

(Spellman et al., 2002), and the

need for public microarray data

repositories (Brazma et al., 2000).
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Biological question

Experimental design

Image analysis

Normalization

Exploratory statisticsHypothesis testing Classification

preprocessing

Biological confirmation

Biological insight Diagnostics Therapeutics

Inferential statistics:
assign confidence to the
discovery of regulated genes
(e.g., t-test, ANOVA)

Define distances between
genes (and/or samples).
Perform unsupervised
analyses (clustering, PCA).

Perform supervised analyses
(e.g., linear discriminants,
support vector machines)

Isolate RNA, label, hybridize,
wash, scan

FIGURE 9.1. Overview of microarray data analysis. First, a biological question is formulated
and then experimental design is created (preferably with the collaboration of biostatisticians).
After RNA is isolated and microarray data are generated, there are three main stages of micro-
array data analysis. First, preprocessing is performed in which raw image data are analyzed,
normalized, and a matrix of genes and samples is created. For Affymetrix arrays, an additional
preprocessing step is summarization in which the expression value of a given gene (mRNA
transcript) is estimated based on the results from a series of hybridizations to olignonucleotides
corresponding to that gene. Second, hypothesis testing is performed in which t-tests, ANOVA, or
other statistical tests are applied to determine which transcripts were significantly up- or down-
regulated in the experiment. Third, exploratory (descriptive) statistics may be applied. The simi-
larities of the data points are compared with a metric such as a correlation coefficient. This
pattern of gene expression may be visualized using unsupervised approaches in which patterns
are sought in the representation of genes (or samples). For supervised approaches, samples (or
genes) are associated with labels from a preexisting classification (such as normal vs. diseased
tissue) and gene expression measurements are used to predict which unknown samples are dis-
eased. Finally, after microarray data analysis is performed, biological confirmation experiments
may be performed. This may lead to insight about biological processes, or to outcomes relevant to
disease such as identifying diagnostic markers or strategies for therapeutic intervention. Adapted
in part from Brazma and Vilo (2000).
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Microarray Data Analysis Software and Data Sets
There are three main types of software available for microarray data analysis. These

are (1) commercial software packages associated with microarray manufacturers. For

example, Affymetrix currently offers MAS 5.0 software for its arrays. (2) Other com-

mercial software packages include BioDiscovery, GeneSifter, MATLABw, Partek

Genomics Suite, and Spotfire, as well as spreadsheet programs such as Microsoft

Excel and S-PLUS. Statistics packages include STATA and SAS. (3) There is

great enthusiasm in the bioinformatics community for open source software. In

this chapter we will introduce the BioConductor project that offers a variety of

freely available packages. These are implemented in the freely available R software

environment for statistical computing and graphics. Many of the figures in this chap-

ter were generated in R, and we provide step-by-step instructions for installing R and

getting started with Bioconductor (Box 9.3 below).

Many dozens of other software resources are available, such as BioArray Software

Environment (BASE; Troein et al., 2006), the TM4 suite (Saeed et al., 2006), and

MARS (Maurer et al., 2005). Simple analysis tools are also incorporated in the Gene

Expression Omnibus (GEO) at the National Center for Biotechnology Information

(Barrett and Edgar, 2006; Barrett et al., 2007), as well as ArrayExpress at the

European Bioinformatics Institute (Brazma et al., 2006) and CIBEX at the DNA

Database of Japan (Ikeo et al., 2003).

We will illustrate data analysis approaches in this chapter using several data sets

(all available as web documents). (1) We will examine data from seven trisomy 21

(Down syndrome) brain samples and seven controls from a larger study by Mao

et al. (2005); they are available from GEO (Box 9.1) and as a series of web documents

introduced below. (2) To illustrate principles of exploratory data analysis we will

BOX 9.1
Obtaining Microarray Data from GEO and ArrayExpress

We provide 14 .cel files of Affymetrix microarray data (n ¼ 7 brain samples from

individuals with trisomy 21, and n ¼ 7 samples from controls) at Q http://www.

bioinfbook.org. My lab posts various data sets on a website (see microarrays at

Q http://pevsnerlab.kennedykrieger.org). However, while it can be useful to post

data on an individual’s website, the use of a centralized repository offers many

advantages, including long-term stability, common standards for data entry, and

broader accessibility to the research community.

The two main public repositories of microarray data are the Gene Expression

Omnibus at the National Center for Biotechnology Information (GEO at NCBI;

Q http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress at the European

Bioinformatics Institute (EBI; Q http://www.ebi.ac.uk/arrayexpress/). Many

journals now require that investigators submit raw (and processed) microarray

data upon publishing articles. To download a microarray dataset follow these

steps.

[1] From the home page of NCBI enter “down syndrome” including the

quotation marks; there are currently several dozen GEO DataSets. To further

focus the search enter “down syndrome TS13” as a query to find a DataSet

including expression data from the brains of individuals with trisomy 21 and

trisomy 13.

[2] This leads to the GSE1397 record. From here, you can also download .cel

files directly.

For commercial software,

BioDiscovery (Q http://www.

biodiscovery.com/) offers products

such as ImaGene and

GeneDirector. GeneSifter

(Q http://www.genesifter.net/
web/) is from VizX Labs.

MATLABw is a product of

MathWorks (Q http://www.

mathworks.com/). Partekw

Genomics SuiteTM is available

through Partek, Inc. (Q http://
www.partek.com/). S-PLUSw is

from Insightful Corp. (Q http://
www.insightful.com/). SAS is

available from Q http://www.sas.

com, and STATA from Q http://
www.stata.com/. For freely avail-

able software, BASE is at Q http://
base.thep.lu.se/ and TM4 is avail-

able at Q http://www.tm4.org/.

For the major public repositories,

ArrayExpress is at Q http://www.

ebi.ac.uk/arrayexpress/, CIBEX is

at Q http://cibex.nig.ac.jp, and

GEO is atQ http://www.ncbi.nlm.

nih.gov/geo/.
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analyze a set of just eight RNA transcripts in 14 samples from the Mao et al. (2005)

study, highlighting a small set of transcripts that are expressed at very high levels

(n ¼ 4) or that are differentially regulated transcripts from chromosome 21 genes

(n ¼ 4). (3) In the web exercises we will explore a very heavily studied data set of

expression profiles from 60 cancer cell lines from the National Cancer Institute

(NCI60) (Lee et al., 2003). These cell lines have been used to screen over 100,000

compounds, and they have been used to study gene expression as well as genomic

DNA with multiple platforms. The data we will examine are in GEO (record

GDS1761; see Box 9.1). This provides an example of data from a two-color

experiment.

Reproducibility of Microarray Experiments
Microarray experiments can generate large amounts of data, and the question has

arisen whether studies across different platforms and/or across different laboratories

are reproducible. For example, in the late 1990s when microarrays were first intro-

duced it was widely reported that the cDNA clones deposited on microarrays were

often contaminated or represented the wrong gene. More recently Tan et al.

(2003) compared gene expression measurements from three commercial platforms

(Affymetrix, Agilent, and Amersham) using the same RNA as starting material,

and included both biological and technical replicates. They reported that there was

only limited overlap in the RNA transcripts identified by the three platforms, with

an average Pearson’s correlation coefficient r for measurements between the three

platforms of only 0.53 (see Box 9.2). Other have raised concerns about microarray

data reproducibility and broader issues regarding data analysis (Draghici et al.,

BOX 9.2
Pearson Correlation Coefficient r

When two variables vary together they are said to correlate. The Pearson

correlation coefficient r has values ranging from 21 (a perfect negative correlation)

to 0 (no correlation) to 1 (perfect positive correlation). It is possible to state a null

hypothesis that two variables are not correlated, and an alternative hypothesis that

they are correlated. A probability (p) value can be derived to test the significance of

the correlation. The Pearson correlation coefficient is perhaps the most common

metric used to define similarity between gene expression data points. It is used by

tree-building programs such as Cluster (described below). For any two series of

numbers X ¼ {X1, X2, . . . , XN} and Y ¼ {Y1, Y2, . . . , YN},

r ¼

PN
i¼1

(Xi�X)
sx
� (Yi�Y )

sy

h i

N � 1

where X is the average of the values in X and sx is the standard deviation of these

values.

For a scatter plot, r describes how well a line fits the values. The Pearson

correlation coefficient always has a value between þ1 (two series are identical), 0

(completely independent sets), and 21 (two sets are perfectly uncorrelated).

The square of the correlation coefficient, r2, has a value between 0 and 1. It is

also smaller than r; r2 � jrj. For two variables having a correlation coefficient

The NCI60 Cancer Microarray

Project homepage is at Q http://
genome-www.stanford.edu/
nci60/.

The External RNA Controls

Consortium has developed

platform-independent RNA

controls to facilitate performance

assessment of microarrays (Baker

et al., 2005).
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2006; Miron and Nadon, 2006; Shields, 2006), with accompanying responses

(Quackenbush and Irizarry, 2006).

A far more optimistic assessment was provided by the MicroArray Quality

Consortium (MAQC, 2006). This project was established to evaluate the perform-

ance of a broad set of microarray platforms and data analysis techniques using iden-

tical RNA samples. Twenty microarray products and three technologies were

evaluated for 12,000 RNA transcripts expressed in human tumor cell lines or brain.

There was substantial agreement between sites and platforms for regulated tran-

scripts, with various measures of concordance ranging from 60% to over 90% and a

median rank correlation of 0.87 for comparability across platforms based on a log-

ratio measurement. Microarray data were also validated using polymerase chain

reaction-based methods, again showing a high correlation (Canales et al., 2006).

In another study Irizarry et al. (2005) reported generally good agreement

between laboratories using three platforms (Affymetrix, two-color cDNA, and

two-color oligonucleotide), although there were prominent differences between plat-

forms and between laboratories. They note three key aspects of comparison studies.

(1) An underlying reason that some laboratories report low reproduciblility is that

they compare absolute expression measurement of gene expression across platforms.

When relative expression is instead studied (comparing between samples within a

particular microarray platform), platform-dependent artifacts can be accounted

for and removed. (2) The choice of preprocessing approaches has a critical effect

on the final results. (3) There is a substantial laboratory effect; for example, if two

technicians process samples in an experiment, there may be large differences in

expression measurements.

These issues of variation in expression data can also be understood by inspection

of a statistical model that is commonly used in microarray data analysis:

Yijk ¼ ui þ fij þ 1ijk (9:1)

where Yijk represents a preprocessed probe intensity measurement k (in the log2

scale) of transcript i measured by platform j; if there are 20,000 transcripts rep-

resented on a microarray there will be that many Yijk values. ui is the absolute gene

expression value in the log2 scale, fij is a platform-specific probe effect, and 1ijk rep-

resents a term for measurement error. As noted by Irizarry et al. (2005), a large probe

effect fij (with a large associated variance) tends to inflate the large correlations that

have been reported when comparing absolute gene expression measurements within

r ¼ 0.9 (such as two microarray data sets measured in different laboratories using

the same RNA starting material), r2 is 0.81. This means that 81% of the

variability in the gene expression measurements in the two data sets can be

explained by the correspondence of the results between the two laboratories,

while just 19% can be explained by other factors such as error.

Correlation coefficients have been widely misused (Bland and Altman, 1986,

1999). r measures the strength of a relation between two variables, but it does not

measure how well those variables agree. (Picture a scatter plot showing the

correlation of two measures, as shown in Fig. 9.3; a perfect correlation occurs if

the points fall on any straight line, but perfect agreement occurs only if the points

fall on a 45º line.) See Bland and Altman (1986, 1999) for additional caveats in

interpreting r values.

Source: Motulsky (1995).

The MAQC project involved over

100 researchers at over 50 insti-

tutions. The study included 60

hybridizations on seven different

platforms. The MAQC website is

Q http://www.fda.gov/nctr/
science/centers/
toxicoinformatics/maqc/.

We discuss further Equation 9.1 in

the section on ANOVA below.
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a given platform, while yielding lower correlations between two platforms that differ

in their probe effects. A solution is to evaluate relative (rather than absolute)

expression within a platform to cancel the fij terms.

Thus, while many in the community appreciate the demonstrated ability of

microarray experiments to generate reproducible results, many factors can strongly

influence the results. These factors include appropriate experimental design (e.g.,

avoiding confounding variables), consistent approach to preparation of RNA through

the hybridization steps, appropriate image analysis (in which it is determined which

pixels are part of the transcript-associated features), and finally the topics discussed

next in this chapter: preprocessing (including global and local background signal cor-

rection), identification of differentially expressed transcripts, application of multiple

comparison correction, and other analyses such as clustering and classification.

MICROARRAY DATA ANALYSIS: PREPROCESSING

Gene expression changes that are identified could reflect selective, biologically

relevant alterations in transcription or they could reflect variations caused by many

kinds of experimental artifacts. These artifacts can include the following:

† Different labeling efficiencies of fluorescently (or radioactively) labeled

nucleotides.

† Technical artifacts associated with printing tips that deposit cDNAs onto a

solid support, such as uneven spotting of DNA onto the array surface.

† Variations in the performance of a fluorescence scanner (used to detect and

quantitate fluorescent dyes) or phosphorimager (used for radioactivity-based

arrays).

† Variations in the RNA (or mRNA) purity or quantity among the biological

samples being studied. For example, there may be heterogeneity in the cell

types that are dissected for studies of gene expression in a complex tissue

such as the brain.

† Variations in the way the RNA is purified, labeled, and hybridized to the

microarray. For example, if gene expression is measured in a cell line at two

different time points and the researcher purifies different quantities of

RNA, this could lead to experimental artifacts.

† Variations in the way the microarray is washed to remove nonspecific binding.

† Variations in the way the signal is measured.

The main idea of data preprocessing is to remove the systematic bias in the data as

completely as possible while preserving the variation in gene expression that occurs

because of biologically relevant changes in transcription (Schuchhardt et al., 2000).

Some of the key steps in preprocessing are (1) image quantification (referred to in

Chapter 8); (2) data exploration, such as scatter plots (discussed next); (3) background

adjustment, normalization, and summarization; and (4) quality assessment.

Summarization refers to the case of platforms such as Affymetrix for which information

about multiple probes is integrated to yield a single measurement for the expression level

of one transcript. In Affymetrix expression arrays, 25-meroligonucleotide probes (that is

single-stranded DNA of length 25 bases) are immobilized on an array, and each gene of

interest has about a dozen 25-mers that match different portions of the mRNA.
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Scatter Plots and MA Plots
One of the most common visualization methods for microarray data is the scatter

plot. This shows the comparison of gene expression values for two samples. Most

data points typically fall on a 458 line, but transcripts that are up- or downregulated

are positioned off the line. The scatter plot displays which transcripts are most dra-

matically and differentially regulated in the experiment.

We will illustrate scatter plots in more detail using a data set from Mao et al.

(2005). The raw intensity values of the mean of seven trisomy 21 (i.e., Down

syndrome) brain samples is plotted relative to seven control samples (Fig. 9.2a).

FIGURE 9.2. Scatter plots provide
a basic way of analyzing gene
expression data from microarray
experiments. Data consist of the
mean expression values for 22,284
transcripts from trisomy 21
(n ¼ 7) and control (n ¼ 7)
brain samples (see web documents
9.1 and 9.2). Plots were made
using Microsoft Excel. (a) Plot of
raw intensity values for trisomy 21
(Down syndrome) samples (x
axis) versus controls (y axis). Each
dot represents a transcript. Genes
with expression that are upregu-
lated (arrow 1) or downregu-
lated (arrow 2) are indicated.
Transcripts expressed at low levels
or at background are at the lower
left (arrow 3), while transcripts
expressed at high levels are at top
right (arrow 4). Most data points
lie along a 458 line that bisects the
data. Note that the scale of the plot
is in linear rather than logarithmic
units. (b) Transformation of the
scale to logarithmic has the effect
of distributing the data points
more evenly, rather than clumping
most values in the lower left
corner, as in (a). (c) A plot of the
mean logarithmic intensity (x
axis) versus the log of the gene
expression value ratios (y axis)
results in this plot, which is tilted
458 relative to (b). Here, the x axis
reflects levels of gene expression,
and the y axis reflects up- or down-
regulation of gene expression. This
is referred to as an MA plot.
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The main feature of this scatter plot (and most such plots of microarray data) is the

substantial correlation between the expression values in the two conditions being

compared. Transcripts that are upregulated and downregulated fall off the 458 line

(arrows 1 and 2). Another feature of this plot is the preponderance of low-intensity

values (Fig. 9.2a, lower left). This means that the majority of genes are expressed

at only a low level, and relatively few transcripts (arrow 4 at the top right of the scatter

plot) are expressed at a high level.

We can log2 transform the data, producing a plot in which the data points are

spread out more evenly (Fig. 9.2b). This creates a more centered distribution in

which the properties of the data set are easy to analyze. Also, it is far easier to describe

the fold regulation of genes (e.g., twofold upregulated or 1.5-fold downregulated)

using a logarithmic scale.

We can review some of the basic values and properties of logarithms in Table 9-1.

Consider an example in which expression ratios are measured in a microarray exper-

iment (Table 9-2). Gene expression values are obtained at times t ¼ 0, 1, 2, 3. At

t ¼ 1 the relative value may be unchanged, while at time point t ¼ 2 the gene is upre-

gulated twofold and at t ¼ 3 the gene is downregulated twofold. The raw ratio values

are 1.0, 2.0, and 0.5. Twofold upregulation and twofold downregulation have the

same magnitude of change, but in an opposite direction. In raw ratio space, the differ-

ence between 1 and 2 is þ1.0, while the difference between 1 and 0.5 (i.e., time

points 1 and 3) is 20.5. In log space (e.g., log base 2 space), the data points are

conveniently symmetric about zero. Another key feature of logarithmic transform-

ations is that, in addition to providing symmetry in expression ratios, they stabilize

the variance across a wide range of intensity measurements.

A further adjustment is to create an MA plot, which essentially tilts a scatter plot

on its side (Fig. 9.2c). The x axis represents the mean of the log intensity values, so

that transcripts expressed from low to high levels vary from left to right (arrows 3

and 4). The y axis represents the ratio of the signal intensities in two samples.

Here, transcripts that are more upregulated in trisomy 21 have higher y axis values

TABLE 9-1 Common Values of Logarithms in Base 2 and Base 10
Value Log10 Log2

1000 3.00 9.97

100 2.00 6.64

50 1.70 5.64

10 1.00 3.32

5 0.70 2.32

2 0.30 1.00

1 0.00 0.00

0.5 20.30 21.00

0.2 20.70 22.32

0.1 21.00 23.32

0.01 22.00 26.64

0.001 23.00 29.97

Recall that for any positive number b (where b = 1), logb y ¼ x when
y ¼ bx. Thus, log2 8 ¼ 3 and 23 ¼ 8. Note also that logb b ¼ 1;
logb1 ¼ 0; logbxy ¼ logb x þ logb y; and logb (x/y) ¼ logb x 2 logb y.

The plots in Fig. 9.2 were made in

Microsoft Excel. Web document

9.1 at Q http://www.bioinfbook.

org/chapter9 consists of a

spreadsheet with 22,284 raw

intensity values from trisomy 21

(n ¼ 7) and control (n ¼ 7) brain

samples. Web document 9.2

includes log2 intensity values for

these same samples and genes, as

well as the mean log intensity

values of the trisomic (n ¼ 7) and

control (n ¼ 7) groups, and the log

ratios. The 14 Affymetrix.cel files

containing data from trisomy 21

and control brain samples are

posted at Q http://www.

bioinfbook.org/chapter9; these

.cel files can also be downloaded

from the GEO website (accession

GSE1397). If you make the plots

shown in Fig. 9.2 in S-PLUS

(Q http://www.insightful.com) or

R (Q http://www-r-project.org),

then you can display all three plots

simultaneously. In constrast to

Excel, when highlighting a single

point or set of data points you can

view them in all three plots

simultaneously.

To create the plot shown in Fig.

9.2c, you can use the data in

columns K and L of the Excel

spreadsheet in web document 9.2

(Q http://www.bioinfbook.org/
chapter9). To recreate Fig. 9.3, see

computer lab problem 9.1 for

instructions on how to load .cel

files in R and create these plots.
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TABLE 9-2 Ratios from Microarray Experiments
Time (t) Behavior of Gene Raw Ratio Value Log2 Ratio Value

0 Basal level of expression 1.0 0.0

1 No change 1.0 0.0

2 Twofold upregulation 2.0 1.0

3 Twofold downregulation 0.5 21.0

Log ratios of gene expression values are often easier to interpret than raw ratios.
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FIGURE 9.3. MA plots using Bioconductor. (a) Using the R language command . MAplot
(abatch.raw,plot.method=“smoothScatter”,which=c(14)) an MA
plot of array sample 14 relative to a control was generated. The x axis corresponds to the
mean log intensity values. The y axis corresponds to the log ratios of the expression values in
sample 14 to a reference. Up-regulated (arrows 1, 2) and down-regulated (arrow 3) transcripts
are indicated. (b) Following normalization using RMA, the median value is close to 0, and
skewing of the data (evident in (a)) has been improved.
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(arrow 1) while downregulated transcripts have lower y axis values (arrow 2). Such

plots help to highlight regulated transcripts, and they also help to visualize aberrant

structures in the data such as “smiling” or “frowning” in which there is curvature to

the data. This is shown in Fig. 9.3a in which we create an MA plot for a comparison of

two data sets in Bioconductor using the R language. The data do not fall along

a straight line at the y axis value M ¼ 0, but instead are skewed, with a median

value of 20.5.

In the R language you can create a variety of plots that complement the scatter

plot. Histograms of raw intensity values for 14 .cel files shows that microarray has

a distinct profile of intensity values (this further motivates us to next normalize

these data) (Fig. 9.4). Boxplots also show the range of raw log intensity values

(Fig. 9.5a).

BOX 9.3
The Bioconductor Project and R

R is a freely available computer language and environment for statistical

computing and graphics. It is related to the language S which is implemented in

the commercial package S-Plus (Insightful Corp.). The R environment allows you

to perform calculations (e.g., on matrices), to analyze and graph data, and to

implement a series of packages that facilitate data analysis in a wide variety of

bioinformatics applications, including microarray data analysis. To get started

with R visit its website (Q http://www.r-project.org) and link to the

Comprehensive R Archive Network (CRAN). There you can download R locally

onto the Linux, MacOS/X or Windows platforms.

Bioconductor (Q http:// bioconductor.org) is an open source software

project for the analysis of genomic data. While we will describe Bioconductor

methods for microarray data analysis in this chapter, it has a wide range of

applications, including genomics and proteomics. You can install BioConductor

by opening an R session then typing the following:

prompt>source("http://bioconductor.org/biocLite.R".

prompt>biocLite()
This will invoke biocLite, resulting in the local installation of a group of

packages, including the following: affy, affydata, affyPLM, annaffy, annotate,

Biobase, Biostrings, DynDoc, gcrma, genefilter, geneplotter, hgu95av2, limma,

marray, matchprobes, multtest, ROC, vsn, xtable, affyQCReport. You can further

use the command

biocLite(c(“pkg1”, “pkg2”))
where pkg1 and pkg2 refer to specific packages you would like to install.

You should create a directory where you will perform your R analyses. Place

14 .cel files in it (seven Down syndrome and seven control samples), obtained

from Q http://www.bioinfbook.org/chapter9. You will then be able to recreate

the figures in this chapter using R.

There are many excellent books and online guides to using R and

BioConductor packages, including Gentleman et al. (2005). Sean and Meltzer

(2007) describe GEOquery, an R tool that facilitates the import and analysis of

data files from GEO.
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FIGURE 9.4. Histograms of 14
.cel files. A histogram of unpro-
cessed intensities was created in
R using the command .hist
(abatch.raw). The x axis
plots the log intensities, while the y
axis plots the density. Differences
in intensity values across microar-
ray data sets from different samples
highlight the need for normalization
steps. Normalization then allows
analyses across samples such as the
identification of regulated genes in
various treatments.
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FIGURE 9.5. Boxplots in R. (a)
Analysis of raw data. First, the com-
mand .library(affyPLM)
was used to load the necessary
libraries. Then, 14 .cel files were
read into an object called
AffyBatchwith the R language
command .abatch.raw
,-ReadAffy(). Next, using
the command .boxplot
(abatch.raw) unprocessed
intensities were plotted. The y axis
displays the log intensity values,
while the x axis corresponds to the
14 data sets (.cel files) that were
analyzed. In a boxplot, for each
entry the minimum value, lower
quartile, median, upper quartile,
and maximum values are indi-
cated. (b) Boxplots of data after
normalization using RMA.
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Global and Local Normalization
The term “normalization” as applied to microarray data does not refer to the normal

(Gaussian) distribution, but instead it refers to the process of correcting two or more

data sets prior to comparing their gene expression values.

As an example of why it is necessary to normalize microarray data, the Cy3 and

Cy5 dyes are incorporated into cDNA with different efficiencies. Without normaliza-

tion, it would not be possible to accurately assess the relative expression of samples

that are labeled with those dyes; genes that are actually expressed at comparable

levels would have a ratio different than one (when considering unlogged data) or

zero (for logged data; see below). Normalization is also essential to allow the com-

parison of gene expression across multiple microarray experiments. Thus, normaliza-

tion is required for both one- and two-channel microarray experiments.

As a first step, the background intensity signal is measured and subtracted from

the signal for each gene (Beissbarth et al., 2000). Empty spots on the array may

be used to estimate the background. This background may be constant across the

surface of an array or it may vary locally. (We will discuss local background correction

below.)

Most investigators apply a global normalization to raw array element intensities

so that the average ratio for gene expression is one. The main assumption of micro-

array data normalization is that the average gene does not change in its expression

level in the biological samples being tested. The procedure for global normalization

can be applied to two-channel data sets (e.g., Cy3- and Cy5-labeled samples) or

one-channel data sets (e.g., Affymetrix chip data). Two-channel data are treated

as two individual one-channel data sets such that each element signal intensity is

divided by a correction factor specific to the channel from which it was derived.

For the two or more data sets being normalized, the intensity for all the gene

expression measurements in one channel (Cy5) are multiplied by a constant factor

so that the total red and green intensity measurements are equal. As an example,

if the mean expression value for samples in the green channel is 10,000 arbitrary

units and the mean value for samples in the red channel is 5000, then the expression

value for each gene in the red channel would be multiplied by 2. If the data are not

log transformed, the mean ratio is then 1. Once the data are log transformed, the

mean ratio is zero. Computer lab problem 9-2 at the end of this chapter provides

a detailed example of how to perform global normalization of two-channel data

from the NCI60 data set.

Other approaches to global normalization are possible. Some investigators nor-

malize all expression values to a set of “housekeeping genes” that are represented

on the array. This approach is also used by Affymetrix software. Housekeeping

genes might include b-actin and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) and dozens of others. Then each gene expression value in a single array

experiment is divided by the mean expression value of these housekeeping genes.

A major assumption of this approach is that such genes do not change in their

expression values between two conditions. In some cases, this assumption fails.

One way to define good candidates for housekeeping genes is to analyze gene

expression across a broad range of tissues and conditions. In one project, researchers

measured the expression of about 7000 genes in 19 human tissues and deposited the

values in a public repository, the Human Gene Expression (HuGE) Index database

(Haverty et al., 2002). This database includes a list of 451 housekeeping genes that

are commonly expressed across all these tissues.

You can access HuGE at Q http://
www.biotechnologycenter.org/
hio/.
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Quantile normalization is an approach that produces the same overall distri-

bution for all the arrays within an experiment (Bolstad et al., 2003). It is a nonpara-

metric method. Parametric tests are applied to data sets that are sampled from a

normal (Gaussian) distribution. Common parametric tests include the t-test and

ANOVA (discussed below). Nonparametric tests do not make assumptions about

the population distribution. They rank the outcome variable (here, gene expression

measurements) from high to low and analyze the ranks. In quantile normalization,

for each array each signal intensity value is assigned to a quantile. We then consider

a pooled distribution of each probe across all chips: for each probe, the average inten-

sity is calculated across all the samples. Normalization is performed for each chip by

converting an original probe set value to that quantile’s value. Figure 9.5b shows a

result of using quantile normalization on the trisomy 21 data set. Quantile normal-

ization is incorporated into Robust Multiarray Analysis (RMA) (see below).

Sometimes variance present in gene expression data is not constant across the

range of element signal intensities, as shown in Fig. 9.3a. This variation represents

an artifact that can be addressed by global and also local normalization processes,

which correct bias and variance that are nonuniformly distributed across absolute

signal intensity. Many software packages can correct for such variance. One of

these, Standardization and Normalization of Microarray Data (SNOMAD), was

written by Carlo Colantuoni when he was a graduate student in my laboratory.

Accuracy and Precision
Preprocessing steps are designed to improve accuracy (that is, to lower bias) of gene

expression measurements, and to improve precision (that is, to lower the variance).

Accuracy (bias) is estimated two ways: by using spike-in samples of known concen-

trations of RNA, or by diluting known concentrations of RNA. These methods

allow an objective assessment of the true positive measurements. The precision

(variance) is estimated by using replicate measures of the same sample. We can

think of accuracy and precision in terms of a series of arrows hitting a target: accuracy

refers to how close the arrows are to the bull’s-eye, while precision refers to how

reliably the arrows hit the same spot (Fig. 9.6) (Cope et al., 2004). Irizarry et al.

(a) Good precision,
  low accuracy

(b) Good accuracy,
  low precision

(c) Good accuracy
   and precision

FIGURE 9.6. Accuracy and precision. (a) Good precision is characterized by reproducible
results. It is assessed by repeated measurements of samples (technical replicates). (b) Good accu-
racy is characterized by measurements that correspond to an independently known result. It can
be assessed by measurement of known (“spiked in”) concentrations of RNA to an experiment, or
by measuring dilutions of known concentrations of RNA. (c) A goal of preprocessing algorithms
is to achieve both accuracy and precision.

SNOMAD is a web-based tool

written in R and available at

Q http://www.snomad.org; see

Colantuoni et al. (2002a, 2002b).

Skewing sometimes reflects

experimental artifacts, such as the

contamination of one RNA source

with genomic DNA or rRNA.

(Such contaminating nucleic acid

could bind to elements on the

microarray.) Another source of

artifact is the use of unequal

amounts of fluorescent probes on

the microarray.

A website offering a benchmark

for Affymetrix GeneChip

expression algorithms is available

at Q http://affycomp.biostat.

jhsph.edu/. You can select algor-

ithms and generate a series of

analytic plots at this site, in order

to directly compare the perform-

ance of dozens of algorithms.
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(2006) performed a benchmarking study using 31 algorithms for the analysis of

Affymetrix probe sets. They concluded that background correction has a large

effect on performance, and tends to improve accuracy but worsen precision. The

RMA and GCRMA algorithms, introduced below, have consistently performed

well in terms of both accuracy and precision and have emerged as leading approaches

for the preprocessing of Affymetrix gene expression data.

Robust Multiarray Analysis (RMA)
RMA is a method of performing background subtraction, normalization, and aver-

aging of probe-level feature intensities extracted from .cel files using the Affymetrix
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FIGURE 9.7. Improvements in accuracy and precision using RMA (relative to MAS 5.0 soft-
ware from Affymetrix). (a) Accuracy is measured by plotting known concentrations of RNA
(x axis) versus observed concentrations (y axis). The two methods are comparable. RMA per-
forms slightly worse at low concentrations, a situation that is improved by the GCRMA algor-
ithm. (b) Precision is measured by plotting the average log expression value (x axis) versus
the log expression standard deviation (y axis). MAS 5.0 software yields a high standard devi-
ation, particularly for transcripts expressed at low levels, while RMA has a dramatically
improved measurement across a broad range of signal intensities.

RMA was introduced by Terry

Speed, Rafael Irizarry, and

colleagues. Early versions of

Affymetrix arrays included both

perfect match oligonucleotide

probes and mismatch probes

containing a single base mismatch

that are used to estimate back-

ground. RMA considers only

perfect match values, because

mismatch values contribute noise

and can have values greater than

perfect match probes across as

much as one third of a microarray.
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platform. It includes steps for background correction, quantile normalization across

arrays, a probe-level model fit to each probe set across multiple arrays, and quality

assessment. RMA has accuracy comparable to MAS 5.0 software (Affymetrix)

(Fig. 9.7a), while its precision is far greater (Fig. 9.7b).

The RMA background correction step includes a convolution model in which

the observed signal for each probeset is broken into components of true signal and

noise. GCRMA further introduces an adjustment for the presence of nonspecific

hybridization that improves accuracy (relative to RMA) while maintaining large

gains in precision (relative to other preprocessing techniques). In computer lab

problem 9.1 at the end of this chapter, you can use RMA and GCRMA on a trisomy

21 data set, and also invoke a series of quality control plots that demonstrate the effec-

tiveness of these algorithms.

MICROARRAY DATA ANALYSIS: INFERENTIAL STATISTICS

Expression Ratios
How can you decide which genes are significantly regulated in a microarray exper-

iment? One approach is to calculate the expression ratio in control and experimental

cases and to rank order the genes. You might apply an arbitrary cutoff such as a

threshold of at least twofold up- or downregulation and define those as genes of inter-

est. Figure 9.8a presents data from a small subset of a Down syndrome experiment

with just eight genes and 14 samples; the average value of the Down syndrome

samples and the controls is shown (columns C and D) as well as their ratio

(column F). In this experiment one might be interested in focusing on the question

of whether transcripts derived from chromosome 21 are present at 1.5-fold elevated

levels relative to controls, since chromosome 21 is present in a 3:2 ratio.

One problem with a cutoff is that it is usually an arbitrary threshold. In some

experiments, no genes (or few) will meet a particular criterion such as twofold; in

other experiments, there may be thousands of genes regulated more than twofold

in either direction. Also, if the background signal level of a microarray experiment

is 50 (in arbitrary units), a gene may be expressed at levels of 150 and 100 in two con-

ditions. After background subtraction, those levels are 100 and 50, and the gene has

been regulated twofold. This could have biological significance, but because the

absolute values of the expression levels are so close to background, the differences

could also represent noise. It is more credible that a gene that is regulated twofold

with levels and 4000 versus 2000 units is regulated in a meaningful way.

Expression ratios are important to consider, and they can reveal which genes are

most dramatically regulated. But these ratios cannot be converted into probability

values to test the hypothesis that particular genes are significantly regulated. Many

groups use expression ratios as one of several criteria to apply to microarray data

analysis. For example, Iyer et al. (1999) studied the transcriptional response of

human fibroblasts to serum and selected genes with expression ratios �2.2 for sub-

sequent cluster analysis (described below).

Another possible approach to defining which genes are significantly regulated

might be to choose the 5% of genes that have the largest expression ratios. For an

experiment with 20,000 gene expression values this would represent 1000 genes. A

problem with this approach is that it applies no measure of the extent to which a

gene has a different mean expression level in the control and experimental groups.

RMA is freely available through

the affy package of BioConductor,

and it has also been incorporated

into a variety of commercial

microarray data analysis packages.

GCRMA was developed by Zhijin

Wu and Rafael Irizarry.

The spreadsheet in Fig. 9.8 is

available as web document 9.3 at

Q http://www.bioinfbook.org/
chapter9. The transposed spread-

sheet (with 14 samples arranged in

rows) is in web document 9.4.
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It is possible that no genes in an experiment have statistically significantly different

gene expression. And yet it will always be possible to rank the genes by expression

ratios and to find the group consisting of the most extreme expression ratios. Thus

this approach has limited usefulness.

Hypothesis Testing
The goal of inferential statistical analysis of microarray data is to test the hypothesis

that some genes are differentially expressed in an experimental comparison of two or

more conditions. We formulate the null hypothesis H0 that there is no difference in

signal intensity across the conditions being tested. The alternative hypothesis H1 is

that there are differences in gene expression levels. We define and calculate a test stat-

istic which is a value that characterizes the observed gene expression data. We will

accept or reject the null hypothesis based on the results of the test statistic. The prob-

ability of rejecting the null hypothesis when it is true is the significance level a, which

(a) 

(b)      [,1]  [,2]  [,3]  [,4] [,5] [,6] [,7] [,8] 
DS1  9110  9575 10864 12785 1347  480  816  574 
DS2  9578 10104 10133 12785 1189  428  634  484 
DS3  8931  9733 10864 13000 1340  510  750  465 
DS4  9385 11106 12807 11876 1579  498  705  602 
DS5  9606 10718 10191 12761 1496  441  668  548 
DS6  8708 10641 11966 12209 1552  473  791  535 
DS7  9787 10325 10780 10890 1555  555 1016  701 
C1   8945  8879  9766 13675  793  306  427  365 
C2  10178  9097  9934 12999  925  371  476  365 
C3  10327  8892 10040 13716  850  362  450  336 
C4   8431 13289 11165 14894  992  283  492  388 
C5   9077 10239  9648 15221  911  258  318  368 
C6   9315  9795 11800 12312  799  319  399  375 
C7   8922 10308 11315 11895  914  306  368  417 

FIGURE 9.8. Small data set used to demonstrate statistical approaches to microarray data
analysis. (a) Intensity values for eight genes (i.e. mRNA transcripts; see rows) were selected.
The columns include gene names (column A), chromosomal assignment (column B), and the
intensity values for seven Down syndrome samples (DS1 to DS7; columns G to M) and seven
control samples (C1 to C7; columns N to T). The first four genes were selected for having
high expression levels. The next four genes, all assigned to chromosome 21, were selected because
they are differentially regulated: they are present in elevated amounts in Down syndrome
samples relative to controls because Down syndrome is associated with three copies of chromo-
some 21 rather than the normal two copies. The data were imported into Microsoft Excel,
and additional columns of information include the average Down syndrome expression value
(column C), average control value (D), the p value resulting from a t-test (column E), and
the Down syndrome to control ratio (column F, derived from C/D). Note that the cursor is
on cell E11 showing the t-test formula in the function box at top. (b) The data matrix is imported
into R and transposed, yielding 14 rows (samples) and 8 columns (genes). Problem 9-3 in this
chapter describes how to transpose matrices in R.
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in science is typically set at p , 0.05. Under the null hypothesis, for a set of gene

expression intensity values in two conditions, the data are normally distributed

with mean 0 and standard deviation s equal to 1. The standard deviation s can be

estimated using the sample standard deviation s.

The test statistic that you apply to a microarray study depends on the experimen-

tal design. Consider the basic paradigm of measuring gene expression in 14 brain

samples, seven from trisomy 21 cases (experimental condition, x1 with observations

x1, . . . , xM) and seven from apparently normal individuals (control condition, x2 with

observations x2, . . . , xN) (Fig. 9.8a). You can calculate the mean and standard devi-

ation for the expression of each gene represented on the microarray. A t-test is per-

formed to test the null hypothesis that there is no difference in gene expression

levels, considered one gene at a time, between the two populations. Compute the

mean expression value for each gene from control (x1) and experimental (x2) con-

ditions, estimate the variance, and divide them. The average for each sample (e.g.,

x1) is given by:

x1 ¼
1

M

XM
i¼1

xi (9:2)

The variance (or square of the standard deviation, s2) for x1 is given by:

s2
x1 ¼

1

M � 1

XM
i¼1

xi � xð Þ2 (9:3)

The t-test essentially measures the signal-to-noise ratio in your experiment by divid-

ing the signal (difference between the means) by the noise (variability estimated in the

two groups).

t-statistic ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x1

M
þ s2

x2

N

� �s (9:4)

From the t-statistic we can calculate a p value. This allows us to either reject or accept

the null hypothesis that the control and experimental conditions have equal gene

expression values (i.e., the null hypothesis is that there is no differential expression).

For a t-test that provides a p value of 0.01, this means that one time in 100 the

observed difference between the control and experimental groups will occur

by chance, and we can safely reject the null hypothesis. Figure 9.8a presents the

results of t-tests performed on eight genes. Four genes assigned to chromosome 21

have very low p values (about 1025 to 1026), one has a p value of 0.05, and three

have nonsignificant p values (0.97, 0.70, 0.28).

We can think about the usefulness of the t-test by considering four genes (i.e.,

RNA transcripts) (Fig. 9.9) for which we have gene expression measurements from

seven samples. Genes 1 and 2 are expressed at low levels, but there is considerable

“noise” (variability) in the measurement of gene 2. In a comparison of genes 1

and 2, both the mean values (which may differ) and the variability in the measure-

ment (which shows overlap) are accounted for in a t-test. For genes expressed at

high levels, the variance may also be small (gene 3) or large (gene 4). If we measure

gene 4 in seven controls and also in seven diseased cases (indicated by gene 4� in

The results of a series of t-tests on

these 14 samples are presented in

column G of web document 9.2

(Q http://www.bioinfbook.org/
chapter9). Also a t-test is

implemented in GEO data sets;

see problem 9.3 in this chapter.
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Fig. 9.8), a relatively large sample size will be necessary to achieve sufficient statistical

power to reject the null hypothesis. The power of a statistical test is defined as 1 2 b,

where b is the probability of concluding there is no significant difference between two

means, when in fact the alternative hypothesis is true. (b is the same as the probability

of making a type II error.) The larger the sample size, the larger the power. Page et al.

(2006) introduced PowerAtlas, a web-based resource to help calculate power esti-

mates for microarray experiments.

An assumption of the t-test approach is that gene expression values are normally

distributed. If so, the t-statistic follows a distribution that allows us to calculate a set of

p values. (An alternate assumption is that for very large numbers of replicates the

t-statistic is normally distributed with mean 0 and standard deviation of 1, and

again we can compute p values. In practice, very large numbers of replicates are

rarely available for microarray studies.)

Parametric tests such as the t-test assume a normal distribution. In contrast non-

parametric tests rank the outcome variables and do not assume a normal distribution.

Nonparametric tests, such as the Mann–Whitney and Wilcoxon tests, are less influ-

enced by data points that are extreme outliers. Such tests are not commonly applied

to microarray data. Many other approaches have been implemented, such as Bayesian

analysis of variance (Ishwaran et al., 2006).

The test that is used depends on the experimental paradigm. Some examples of

experimental designs are shown in Fig. 9.10. For a between-subject design (Fig.

9.10a) there are two groups. Golub et al. (1999) measured gene expression in
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FIGURE 9.9. Gene-specific variance is addressed by a t-test. For four hypothetical genes the log
expression values are plotted ( y axis). Gene 1 has a low absolute expression level and low var-
iance upon repeated measurements in biological replicate samples, while gene 2 has a low
expression level and relatively high variance. Genes 3 and 4 are expressed at high levels, with
gene 3 having low variance and gene 4 having high variance. Each RNA transcript has a charac-
teristic property of its expression level (although this may vary dramatically across body regions
and across developmental stages). When we compare gene 4 in two conditions (indicated by gene
4 and 4�, such as beta globin levels in normal red blood cells and sickle cells), a t-test accounts for
the difference in mean between the two measurements, and it also provides an analysis of the
variation in expression measurements within each of the two samples.

You can access PowerAtlas at

Q http://www.poweratlas.org/.

Many commercial microarray soft-

ware packages perform hypothesis

testing on microarray data, and

most include the option to apply

conservative corrections. These

packages also include a variety of

data visualization tools: GeneSight

and Genedirector (Q http://www.

biodiscovery.com), GeneSpring

(Q http://www.chem.agilent.

com/), GeneTraffic (Q http://
www.iobion.com/), Partek Pro

(Q http://www.partek.com),

SAS (Q http://www.sas.com),

S-PLUS (Q http://www.

insightful.com), Spotfire

(Q http://spotfire.com), and

SPSS (Q http://www.spss.com).
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samples from patients with acute leukemias that occur in two subtypes. In this exper-

imental design it is necessary to control for confounding factors such as differences in

age, gender, or weight between individuals in the two groups. For a within-subject

design (Fig. 9.10b) a paired t-test would be used to test for the differences in mean

values between two sets of measurements on paired samples. An example of this is

a study by Perou et al. (2000) measuring gene expression in surgical biopsy samples

before and after drug treatment of breast tumors. Here the covariates (sometimes

called “nuisance variables”) such as age and gender are internally controlled.

How can we be sure that the probability value we derive from a test statistic is not

just obtained by chance, that is, because of random changes in gene expression?

A permutation test can be performed in which the labels associated with each

sample (e.g., diseased vs. control) are randomized. The same test statistic is applied

to each gene, and p values are measured. A large set of permuted tests (e.g., 100 to

1000) is run, and the null hypothesis is rejected if the observed p value is smaller

than any p value from the permutation test.

FIGURE 9.10. Examples of exper-
imental design for microarray exp-
eriments involving gene expression
profiling. Most such microarray
experiments are designed to test the
hypothesis that there are significant
biological gene expression differences
between samples as a function of
factors such as tissue type (normal
vs. diseased or brain vs. liver), time,
or drug treatment. (a) A between-
subject design must control for
confounding factors such as age,
gender, or weight. (b) A within-sub-
ject design removes genetic variabil-
ity and can be used to measure
gene expression before and after
some treatment. (c) A two-way
between-subject design allows the
measurement of differences between
both treatment and control con-
ditions, and another factor such as
gender. (d) Awithin-subject factorial
design might be used to study two
treatments over time. (e) In a
mixed factorial design there is
both a between-subject design (e.g.,
normal vs. diseased tissue) and a
within-subject design (e.g., gene
expression measurements over
time).

(a) Between-subject design

Control group (A)

 Subject A1
 Subject A2

 ···
 Subject AN

Treatment group (B)

Subject B1
Subject B2

···
Subject BN

(b) Within-subject design

Control condition (A)

Subject 1 (before)
···

Subject AN (before)

Treatment condition (B)

Subject 1 (after)
···

Subject BN (after)

(c) Factorial design: between-subject

(d) Factorial design: within-subject

(e) Mixed factorial design

Male Female

control treatment control treatment

Treatment A Treatment B

Subject A1: time 1 time 2 ... time n
    ···

Subject AN: time 1 time 2 ... time n

Subject B1: time 1 time 2 ... time n
    ···

Subject BN: time 1 time 2 ... time n

Normal Diseased

Subject A1: time 1 time 2 ... time n
    ···

Subject AN: time 1 time 2 ... time n

Subject B1: time 1 time 2 ... time n
    ···

Subject BN: time 1 time 2 ... time n
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Corrections for Multiple Comparisons
What p value cutoff is appropriate to establish statistical significance? If you measure

the expression values for 10,000 transcripts, you can expect to find differences in 5%

of them (500 transcripts) purely by chance that are nominally significant at the p ,

0.05 level. If you hypothesized that one specific gene was significantly regulated, then

this a level would be appropriate. However, for 10,000 measurements it is necessary

to apply some conservative correction to account for the thousands of repeated, inde-

pendent measurements you are making. There are two problems we want to avoid.

Type I errors (false positive results) involve concluding that a transcript is differen-

tially expressed when it is not; the null hypothesis is true but is inappropriately

rejected. Type II errors (false negative results) involve failing to identify a truly regu-

lated transcript; the null hypothesis that is actually false is not rejected as it should be.

A p value is defined as the minimum false positive rate at which an observed statistic is

categorized as significant.

There are several approaches to accounting for the problem of multiple compari-

sons. At one extreme, some researchers apply a conservative Bonferroni correction in

which the a level for statistical significance is divided by the number of measurements

taken (e.g., p , 0.05/10,000 is set as the criterion for significance). This correction is

considered too severe. A more commonly used approach to the multiple comparisons

correction problem is to adjust the false discovery rate (FDR). This is defined

as follows:

FDR ¼ #false positives

#called significant
(9:5)

The FDR represents the rate at which genes identified as significantly regulated are

not. For an FDR of 0.05, 5% of the transcripts that are called significant are false

positives. For 100 significantly regulated genes and an FDR of 8%, 8 genes out of

100 are expected to represent false positive results. We can contrast the FDR with

the false positive rate (FPR) which is:

FPR ¼ #false positives

#truly null
(9:6)

The FPR measures the rate at which genes that are truly not regulated are called

significant.

Significance Analysis of Microarrays (SAM)
Significance analysis of microarrays (SAM) is a modified t-test that finds significantly

regulated genes in microarray experiments (Tusher et al., 2001). SAM assigns a score

to each gene in a microarray experiment based on its change in gene expression.

Statistical significance is assessed using a permutation test in which observed

scores are compared to the results of repeated measurements from a shuffled data set.

SAM offers several useful features. The program is convenient to use as a

Microsoft Excel plug-in. It accepts microarray data from experiments using a variety

of experimental designs such as those outlined in Fig. 9.10. Prior to operating SAM,

the user must normalize and scale expression data. (This can be accomplished within

Microsoft Excel.) The SAM input data can be in a raw or log-transformed format.

Each row of the data matrix contains expression values for one gene, and the columns

correspond to samples. SAM uses a modified t-statistic (Equation 9.4) to test the null

hypothesis (see Tusher et al., 2001).

If you have just 100 gene

expression measurements in a

comparison of two groups and

there is no difference in gene

expression, you would expect to

observe (100)(0.05) ¼ 5 signifi-

cantly regulated genes by chance.

But assuming that these tests are

statistically independent, the

probability of obtaining at least

one apparently significant result is

1 – 0.95100 ¼ 0.994 (see Olshen

and Jain, 2002). It is for this

reason that a correction needs to

be applied.
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A key feature of SAM is its ability to provide information on the false discovery

rate (the percent of genes that are expected to be identified by chance). The user can

adjust a parameter called delta to adjust the false positive rate: for example, in a typi-

cal experiment, for every 100 genes declared significantly regulated according to the

test statistic, 10 might be false positives (thus the false discovery rate would be 10%).

This false positive rate can be decreased by the user (at the cost of missing true posi-

tives) or increased (at the cost of obtaining more false negatives). The SAM algorithm

calculates a “q value,” which is the lowest false discovery rate at which a gene is

described as significantly regulated.

An example of a SAM output is shown in Fig. 9.11a. The genes are ranked

according to the test statistic and plotted to show the number of observed genes

versus the expected number (Fig. 9.11b). This graph (called a q–q plot) effectively

FIGURE 9.11. SAM is a Microsoft
Excel plug-in that reports signifi-
cantly regulated genes using a
modified t-statistic. The input to
SAM is a matrix of gene expression
values and a response variable
(e.g., control, experimental). The
user selects a parameter delta to
determine the cutoff for signifi-
cance based on the false positive
rate. The user can also choose an
appropriate fold-change measure-
ment. (a) The output includes a
list of significantly regulated
genes. The score d is the t-statistic
value for each gene; the numerator
and denominator in the spread-
sheet refer to the difference between
the means of the gene expression
values being compared and the esti-
mate of the standard deviation of
the numerator, respectively. The q
value is the false discovery rate.
(b) The output includes a plot of
expected versus observed expression
values; significantly upregulated
(arrow 1) and downregulated
(arrow 2) genes are color coded
as well as listed in the output of (a).
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(b)
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You can obtain SAM at Q http://
www-stat.stanford.edu/�tibs/
SAM/. Note that effective

permutation tests require a large

number of permutations (�100)

and a reasonably large number of

samples (e.g., �5 in each group).

With too few samples, the test is

not robust.
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visualizes the outlier genes that are most dramatically regulated. In SAM, a permu-

tation test is used to assess the significance of expressed genes; the test statistic is

measured 100 or more times for each gene with the sample labels (e.g., control vs.

experimental conditions) randomized.

You can perform similar FDR analyses using the R language or software such

as Partek.

From t-Test to ANOVA
A variety of test statistics may be applied to microarray data (e.g., Olshen and Jain,

2002). Some of these are listed in Table 9-3. These tests are all used to derive

p values that help assess the likelihood that particular genes are regulated. For

more than two conditions (e.g., analyzing multiple time points or measuring the

effects of several drugs on gene expression), the analysis of variance (ANOVA)

method is appropriate rather than a t-test. The ANOVA identifies differentially

expressed genes while accounting for variance that occurs both within groups and

between groups (Ayroles and Gibson, 2006; Zolman, 1993). ANOVA is particularly

appropriate when a microarray experiment has multiple classes of treatment (e.g.,

control samples are compared to two different disease states or to five different

time points) or multiple factors for each treatment (e.g., gender, age, date of RNA

isolation, hybridization batch).

ANOVA is a statistical model called a general linear model such as the one shown

in Equation 9.1. A general form of the linear model takes the form:

Y ¼ mþ b1x1 þ b2x2 þ � � � þ bjxj þ 1 (9:7)

Y is a linear function of X with slope b and intercept m, and x1, x2, . . . , xj is a series of

independent variables. The terms f and u in Equation 9.1 are examples of indepen-

dent variables associated with expression measurement and probe effects. 1 is an

error term corresponding to residual, unexplained variance. Both fixed and

random factors are independent variables accounted for in the linear model. Fixed

factors involve treatment effects systematically selected by the experimenter (such

as gender or age) that would remain the same if the experiment were replicated.

Fixed factors account for the main conditions that an investigator is interested in,

such as the change in signal intensity due to a sample coming from Down syndrome

rather than control individuals. Random factors provide a model of independent vari-

ables that are selected randomly or unsystematically from a population. Examples are

TABLE 9-3 Test Statistics for Microarray Data
Paradigm Parametric Test Nonparametric Test

Compare one group to a
hypothetical value

One-sample t-test Wilcoxon test

Compare two unpaired
groups

Unpaired t-test Mann–Whitney test

Compare two paired groups Paired t-test Wilcoxon test

Compare three or more
unmatched groups

One-way ANOVA Kruskal–Wallis test

Compare three or more
matched groups

Repeated-measures ANOVA Friedman test

Source: Adapted from Motulsky (1995) and Zolman (1993).
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biological replicates, because when we select a group of seven Down syndrome

samples we are drawing them in an unbiased manner from the overall population

of individuals with Down syndrome. Similarly array effects are random factors

because each microarray is randomly selected from the group of all available arrays.

The idea of ANOVA is that differences in gene expression may be due to main

effects (e.g., normal versus diseased sample), while other sources of variation (e.g.,

gender or age) can be identified and accounted for. Analagous to the t-statistic of a

t-test, the F statistic of an ANOVA consists of a ratio of signal to noise (Fig. 9.12).

However, the ANOVA includes a more detailed estimate of the sources of variation.

By partitioning the signal to account for fixed and random effects in the data, the

ANOVA boosts the signal-to-noise ratio, often allowing you to more effectively ident-

ify regulated transcripts.

MICROARRAY DATA ANALYSIS: DESCRIPTIVE STATISTICS

One of the most fundamental features of microarray experiments is that they generate

large amounts of data. There are far more measurements (gene expression values)

than samples. How can we evaluate the results of an experiment in which 20,000

gene expression values are obtained in 10 cell lines? Each gene expression value

can be conceptualized as a point in 20,000-dimensional space. The human brain

is not equipped to visualize highly dimensional space, and so we need to apply math-

ematical techniques that reduce the dimensionality of the data.

Mathematicians refer to the problems associated with the study of very large

numbers of variables as the “curse of dimensionality.” In highly dimensional space,

the distances between any two points are very large and approximately equal.

Descriptive statistics are useful to explore such data. These mathematical approaches

(a) (b)

signal

noise

genderRNA
isolation

date
batch

signal

noise

age

FIGURE 9.12. Signal-to-noise ratios in t-test and ANOVA. (a) In a t-test, the values from a
microarray experiment can be thought of as having components of signal (i.e., intensity measure-
ments that reflect a difference between the means of the two groups being compared) and noise
(variations in signal intensity that are not attributable to differences in the means of the two
groups). If the RNA from control samples is purified on a Monday, and the RNA from exper-
imental samples is purified on a Tuesday, then there is a perfect confound between date and con-
dition, and some or even all of the observed difference between control and experimental samples
could be due to date rather than to treatment. (b) In an ANOVA, fixed and/or random effects
can be accounted for. The variable due to factors such as date and gender can be analyzed, as
well as the main effect of interest (control versus experimental conditions). By partitioning the
data into multiple components, ANOVA improves the signal-to-noise ratio.
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typically do not yield statistically significant results because they are not used for

hypothesis testing. Rather, they are used to explore the data set and to try to find

biologically meaningful patterns. A clustering tree, for example, can show how

genes (or samples) form groups. Particular genes can subsequently be used for

hypothesis testing.

Several main descriptive techniques are available for the visualization of micro-

array data, including two that we will focus on, clustering and principal components

analysis. Each of these approaches involves the reduction of highly dimensional data

to allow conclusions to be reached about the behavior of genes and/or samples in

either individual microarray experiments or multiple experiments. In each case, we

begin with a matrix of genes (typically arranged in rows) and samples (typically

arranged in columns). Appropriate global and/or local normalizations are applied

to the data. Then some metric is defined to describe the similarity (or alternatively

to describe the distance) between all the data points.

The approaches we will describe first are unsupervised. Here, prior assumptions

about the genes and/or samples are not made, and the data are explored to identify

groups with similar gene expression behaviors. We will then examine supervised

clustering approaches in which the number of clusters are prespecified.

Hierarchical Cluster Analysis of Microarray Data
Clustering is a commonly used tool to find patterns of gene expression in microarray

experiments (reviewed in Gollub and Sherlock, 2006). Genes, samples, or both may

be clustered in trees. Clustering is the representation of distance measurements

between objects. Clusters are commonly represented in scatter plots or in dendro-

grams, such as those used for phylogenetic analysis (Chapter 7) or for microarray

data. The main goal of clustering is to use similarity (or distance) measurements

between objects to represent them. Data points within a cluster are more similar,

and those in separate clusters are less similar. It is common to use a distance

matrix for clustering based on Euclidean distances.

There are several kinds of clustering techniques. The most common form for

microarray analysis is hierarchical clustering, in which a sequence of nested partitions

is identified resulting in a dendrogram (tree). (We will describe a nonhierarchical

clustering technique, k-means clustering, below.) Hierarchical clustering can be per-

formed using agglomerative or divisive approaches (Fig. 9.13). In each case, the

result is a tree that depicts the relationships between the objects (genes, samples,

or both). In divisive clustering, the algorithm begins at step 1 with all the data in

one cluster (k ¼ 1). In each subsequent step a cluster is split off, until there are n clus-

ters. In agglomerative clustering, all the objects start apart. Thus, there are n clusters

at step 0; each object forms a separate cluster. In each subsequent step two clusters

are merged, until only one cluster is left.

Agglomerative and divisive clustering techniques generally produce similar

results, although large differences can occur. Let us return to a small portion of

the Mao et al. (2003) data set: 14 samples (seven with trisomy 21, seven controls)

and just eight genes (four that are expressed at very high levels but are not differen-

tially regulated, and four that are assigned to chromosome 21 and are present at elev-

ated levels in the trisomy 21 samples). We obtain a matrix of 8 genes (rows) by 14

samples (columns) containing raw intensity values (Fig. 9.8a). This matrix may be

transposed (Fig. 9.8b).

Agglomerative clustering is some-

times called “bottom up” while

divisive clustering is “top down.”

MICROARRAY DATA ANALYSIS: DESCRIPTIVE STATISTICS 355



Using the data matrix in Fig. 9.8b and importing it into S-PLUS software, we

can produce three clustering trees (Fig. 9.14). For each tree, the y axis (height) rep-

resents dissimilarity. On clustering trees such as these the samples (or genes if the

transposed matrix is used) are represented across the x axis so as to be evenly

spaced, and the significance of their position depends on the cluster to which they

belong. Note that while the overall topologies are similar, several of the samples

have distinctly different placements on the tree in agglomerative (Fig. 9.14a)

versus divisive clustering (Fig. 9.14b). For example, note that samples C1 and C2

(dashed arrows) cluster close to DS6 and DS7 (solid arrows) in the first tree, but

are distantly related to DS6 and DS7 in the second tree.

In general, different exploratory techniques may give subtle or dramatic differ-

ences in their representation of the data. Agglomerative techniques tend to give

more precision at the bottom of a tree, while divisive techniques offer more precision

at the top of a tree and may be better suited for finding relatively few, large clusters.

Another feature of a clustering tree is that it may be highly sensitive to the choice

of which genes (or samples) to include or exclude. When we remove four

0 1 2 3 4

01234

Agglomerative hierarchical clustering

Divisive hierarchical clustering

a

b

c

d

e

ab

de

cde

ab
cde

steps

steps

FIGURE 9.13. There are two main kinds of hierarchical clustering: agglomerative and divisive.
In agglomerative clustering, the data points (genes or samples, represented as the letters a to e)
are considered individually (step 0). The two most related data points are joined (circle ab, step
1). The relationship between all the data points is defined by a metric such as Euclidean distance.
The next two closest data points are identified (step 2, de). This process continues (steps 3 and 4)
until all data points have been combined (agglomerated). The path taken to achieve this structure
defines a clustering tree. Divisive hierarchical clustering involves the same process in reverse. The
data points are considered as a combined group (step 0, abcde). The most dissimilar object is
removed from the cluster. This process is continued until all the objects have been separated.
Again, a tree is defined. In practice, agglomerative and divisive clustering strategies often
result in similar trees. Adapted from Kaufman and Rousseeuw (1990). Used with permission.
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non-chromosome 21 genes from the analysis, and include only a set of four

chromosome 21-derived transcripts, we can now completely separate the Down

syndrome from the control samples (Fig. 9.14c). In some cases the inclusion (or

exclusion) of particular data points will reveal fundamental information about the

underlying biological phenomena.

Clustering requires two basic operations. One is the creation of a distance matrix

(or in some cases a similarity matrix). The two most commonly used metrics used to

define the distance between gene expression data points are Euclidean distance

(Box 9.4) and the Pearson coefficient of correlation (Box 9.2). Many software

packages that perform microarray data analysis allow you to choose between these

and other distance measures (such as Manhattan, Canberra, binary, or

Minkowski) that describe the relatedness between gene expression values.
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FIGURE 9.14. (a) Agglomerative
hierarchical clustering of microar-
ray data and (b) divisive hierarch-
ical clustering. The data set of 14
samples and eight transcripts (Fig.
9.8b) was clustered using the S-
PLUS program. The y axis reflects
dissimilarity, and the 14 samples
are spaced evenly across the x
axis. Note that while most of the
groupings are similar between the
agglomerative and divisive algor-
ithms, there are notable differences
in the placement of samples C1 and
C2 (dashed arrows) relative to
samples DS6 and DS7 (solid
arrows). Discrepancies commonly
occur between agglomerative and
divisive strategies. (c) The removal
of four transcripts derived from
non-chromosome 21 genes, leaving
only transcripts derived from
chromosome 21 genes, now results
in a tree that separates Down syn-
drome from control samples. This
illustrates the influence that can
be exerted by inclusion or exclusion
of selected data points. Some
studies identify significantly regu-
lated genes and then perform clus-
tering. Hierarchical clustering is
an unsupervised technique, and
the preselection of regulated genes
in a set of samples guarantees
that those samples will be separated
in a tree; thus, the tree should not
be used as evidence of successful
classification.

The Canberra distance metric is

calculated in R by

X jxi � yi j
jxi þ yi j

� �
:

Terms with zero numerator and

denominator are omitted from the

sum and treated as if the values

were missing.
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Figure 9.15a shows the clustering of eight genes (from 14 samples) in the R statistical

package using the hclust command. This procedure is described in detail in

problem 9-3 later in this chapter. The distance metric is the default choice of

Euclidean distance. Figure 9.15b shows the result in which the distance metric is

changed to Canberra, dramatically altering the tree topology.

Given a distance metric, a second operation is the construction of a tree. In

addition to selecting agglomerative or divisive approaches as outlined above, we

can select a variety of ways of defining clusters. In the hclust package of R the default

approach is complete linkage (as is used in Fig. 9.15a and b). The distance between

clusters is also commonly defined using the average distance between all the points in

one cluster and all the points in another cluster. This is called average-linkage clus-

tering, and it is used in the unweighted pair-group method average (UPGMA). We

described the UPGMA procedure in Chapter 7 in the context of phylogenetic

trees. However, many additional options are available, such as single linkage (Fig.

9.15c) and Wards’s method (Fig. 9.15d).

What is the significance of these different approaches to making a clustering tree?

We can consider the general problem involved in defining a cluster. Objects that are

clustered form groups that have homogeneity (internal cohesion) and separation

(external isolation) (Sneath and Sokal, 1973; Everitt et al., 2001). The relationships

between objects being studied, whether intensity measurements from microarray

data or operational taxonomic units (OTUs) in phylogeny, are assessed by similarity

or dissimilarity measures. Intuitively, the objects in Fig. 9.16a form two distinct

clusters. However, after shifting just two of the data points to create Fig. 9.16b it is

not clear whether there are two clusters. Other challenges to identifying the nature

of clusters are depicted in Figs. 9.16c and d. Each figure shows two apparent clusters

that demonstrate both homogeneity and separation. However, if we identify a central

point in each cluster (the centroid) and calculate the distance to the farthest points

within a cluster, that distance will also result in overlap with the adjacent cluster.

There are several methods available to calculate the proximity between a single

object and a group containing several objects (or to calculate the proximity between

two groups). In single linkage clustering, an object that is a candidate to be placed

into a cluster has a similarity that is defined as its similarity to the closest member

BOX 9.4
Euclidean Distance

Euclidean distance is defined as the distance d12 between two points in three-

dimensional space (with coordinates x1, x2, x3 and y1, y2, y3) as follows:

d12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 � y1)2 þ (x2 � y2)2 þ (x3 � y3)2

q

Euclidean distance thus is the square root of the sum of the squared differences

between two features. For n-dimensional expression data, the Euclidean distance

is given by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

(xi � yi)
2

s

Ward’s minimum variance

method optimizes finding com-

pact, spherical clusters.
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within that cluster. This method has also been called the minimum method or the

nearest neighbor method. It is subject to an artifact called chaining in which “long

straggly clusters” form (Sneath and Sokal, 1973, p. 218) as shown in Fig. 9.16f.

This can obscure the production of discrete clusters. In complete linkage clustering

the most distant OTUs in two groups are joined (Fig. 9.16g); the effect is to tend to

form tight, discrete clusters that join other clusters relatively rarely. Many alternative

strategies exist (see Sneath and Sokal, 1973). In centroid clustering the central or

median object is selected (Fig. 9.16h). These methods often produce different

clustering patterns.

(a) Complete linkage (Euclidean distance)

(c) Single linkage (Euclidean distance) (d) Ward’s method (Euclidean distance)
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(b) Complete linkage (Canberra distance)
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FIGURE 9.15. Hierarchical clustering of eight genes (in 14 samples) using different methods for
creating a distance matrix and for converting the distance matrix as a dendrogram (tree). Data
(see Fig. 9.8) were imported into R. A distance matrix was computed using the default distance
matrix method (Euclidean distance; panels a, c, and d) or the Canberra method (panel b). The
distance matrix was converted into a clustering dendrogram (tree) by performing hierarchical
clustering on the set of dissimiliarities from the distance matrix. The methods employed were
the default “complete” method (panels a and b), the single linkage method, and Ward’s mini-
mum variance method. These four dendrograms provide examples of the many methods avail-
able for making distance matrices and converting them into trees; note the differences in the y
axis values, and the differences in how the objects (genes) are displayed. All four trees effectively
separate the four genes expressed at high levels from those expressed at low levels. You can repro-
duce these figures by following problem 9-3 at the end of this chapter.
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(e) Single linkage clustering

(g) Complete-linkage clustering

(h) Centroid linkage 

(f) Chaining in single linkage

(a) (b) (c) (d)

j

k

m

n

FIGURE 9.16. Examples of the nature of clusters and clustering approaches. (a) Two clusters
are intuitively apparent in a group of 14 data points (circles). Good clusters are characterized
by internal cohesion and by separation. (b) Two data points are shifted relative to (a),
making the assignment of two clusters more questionable. (c) Two clusters are clearly present,
by inspection (“c” shapes). However, the separation between each cluster is not robust. For
example, point j in the lower cluster may be closer to the center of the upper cluster than
point k, even though j is not a member of the upper cluster. (d) Two clusters are again intuitively
apparent. The great distance from the long cluster (e.g., points m to n) presents a challenge to
finding a rule that distinguishes that cluster from the small one to its left. Such challenges motiv-
ate the development of algorithms to define distances between objects and clusters. (e) Single link-
age clustering identifies the nearest neighboring objects between clusters. (f) The single linkage
approach is sometimes subject to the artifact of chaining in which clusters that might reasonably
be expected to remain separate are instead connected and merged. (g) Complete linkage cluster-
ing identifies the farthest members of each cluster. This approach tends to generate tight, well sep-
arated clusters that exclude objects from clusters. (h) Centroid linkage or average linkage
represents a compromise approach to placing objects in clusters. Source: (a)–(d) adapted
from Gordon (1980).
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Dozens of programs perform cluster analysis. The data in Fig. 9.14 were gener-

ated using S-PLUS (Insightful). A popular clustering programs for microarray data is

Cluster and its associated tree visualization program, TreeView (Eisen et al., 1998).

The input for this software (and other similar programs) is a spreadsheet of

expression values for genes and samples (Fig. 9.17). As described above, data can

be adjusted by log transformation. Data may also be normalized to set the magnitude

(sum of the squares of the values) of a row and/or column vector to 1.0. Data filtering

allows genes to be removed, typically because the maximum or minimum values

exceed some threshold. The distance metric used by Cluster is the Pearson corre-

lation coefficient r, and the algorithm performs agglomerative hierarchical clustering.

Gene expression values are color coded from bright red (most upregulated) to bright

green (most downregulated). This allows one to visualize trends or patterns in large

data sets.

Two-way clustering of both genes and samples is used to define patterns of genes

that are expressed across a variety of samples. A dramatic example is provided by

Alizadeh et al. (2000), who defined subtypes of malignant lymphocytes based on

gene expression profiling (Fig. 9.18).

FIGURE 9.17. Two popular pro-
grams for the analysis of micro-
array data are Cluster and
Treeview. Data are entered into
Cluster as tab-delimited text files.
Rows represent genes, and columns
represent samples or observations.
The program allows a variety of
analyses, including hierarchical
clustering, k-means clustering, self-
organizing maps, and principal
components analysis. As shown in
this image, options include six
different similarity metrics and
the choice of average, complete, or
single linkage clustering.

Cluster was developed by Michael

Eisen and is available through his

website, Q http://rana.lbl.gov/.
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We can draw several conclusions about hierarchical clustering.

† While hierarchical clustering is commonly used in microarray data analysis,

the same underlying data set can produce vastly different results. Data sets

with a relatively small number of samples (typically about 4 to 20) and a

large number of transcripts (typically 5000 to 30,000) occupy high-

dimensional space. Different methods summarize the relationships of

genes and/or samples as influenced by the distance metric that is chosen

as well as the strategy for producing a tree.

† Clustering is an exploratory tool, and is used to identify associations between

genes and/or between samples. However, clustering is not used inferentially.

FIGURE 9.18. Example of two-
way hierarchical clustering.
Alizadeh et al. (2000) made 1.8
million measurements of gene
expression in 96 samples of
normal and malignant lympho-
cytes. The cell lines are clustered
in columns across the top (arrow
1), and for clarity they are also
shown rotated sidewise at left
(arrow 2). The genes are arranged
in rows. The investigators used a
custom-made microarray with
17,856 cDNA clones. This study
revealed that tumors from patients
with diffuse large B-cell lymphoma
can be classified according to their
gene expression profiles. Patients
with particular tumors have vary-
ing severity of phenotype, and
such heterogeneity is reflected at
the molecular level. These data
were generated using Cluster and
Treeview. Used with permission.
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† Clustering is not a classification method (see below). It is unsupervised in

that information about classes (e.g., Down syndrome versus control) is not

used to generate the clustering tree.

† The concept of a cluster is not defined well mathematically (see Fig. 9.16).

Nonetheless, Thalamuthu et al. (2006) proposed a metric to score the accu-

racy of clustering algorithms, using both simulated and real data. They found

that hierarchical clustering performed poorly relative to other techniques

such as k-means clustering and model-based clustering. We will next con-

sider some of these other clustering techniques.

Partitioning Methods for Clustering: k-Means Clustering
Sometimes we know into how many clusters our data should fit. For example, we may

have treatment conditions we are evaluating, or a set number of time points. An

alternative type of unsupervised clustering algorithm is a partitioning method that

constructs k clusters (Tavazoie et al., 1999). The steps are as follows: (1) Choose

samples and/or genes to be analyzed. (2) Choose a distance metric such as

Euclidean. (3) Choose k; data are classified into k groups as specified by the user.

Each group must contain at least one object n (e.g., gene expression value), and

each object must belong to exactly one group. (In all cases, k � n.) Two different clus-

ters cannot have any objects in common, and the k groups together constitute the full

data set. (4) Perform clustering. (5) Assess cluster fit.

How is the value of k selected? If you perform a microarray experiment with two

different kinds of diseased samples and one control sample type, you might choose a

value for k ¼ 3. Also, k may be selected by a computer program that assesses many

possible values of k. The output of k-means clustering does not include a dendrogram

because the data are partitioned into groups, but without a hierarchical structure.

The k-means clustering algorithm is iterative. It begins by randomly assigning

each object (e.g., gene) to a cluster. The center (“centroid”) of each cluster is calcu-

lated (defined using a distance metric). Other cluster centers are identified by finding

the data point farthest from the center(s) already chosen. Each data point is assigned

to its nearest cluster. In successive iterations, the objects are reassigned to clusters in a

process that minimizes the within-cluster sum of squared distances from the cluster

mean. After a large number of iterations, each cluster contains genes with similar

expression profiles. Tavazoie et al. (1999) described the use of k-means clustering

to discover transcriptional regulatory networks in yeast.

A concern with using k-means clustering is that the cluster structure is not

necessarily stable in that it can be sensitive to outliers. Cluster fit has been assessed

using a variety of strategies such as the addition of random noise to a data set.

Clustering Strategies: Self-Organizing Maps
The self-organizing map (SOM) algorithm resembles k-means clustering in that it

partitions data into a two-dimensional matrix. For SOMs and other structured clus-

tering techniques, you can estimate the number of clusters you expect (e.g., based on

the number of experimental conditions) in order to decide on the initial number of

clusters to use.

Unlike k-means clustering, which is unstructured, SOMs impose a partial struc-

ture on the clusters (Tamayo et al., 1999) (Fig. 9.19). Also in contrast to k-means clus-

tering, adjacent partitions in SOMs can influence each other’s structure. The principle

Several types of k-means cluster-

ing are performed by programs

such as S-PLUS, Partek, and

Cluster/TreeView.

The SOM approach to microarray

data analysis has been cham-

pioned by Todd Golub, Eric

Lander, and colleagues from the

Whitehead Institute.
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of SOMs is as follows. One chooses a number of “nodes” (similar to a value k) and

also an initial geometry of nodes such as a 3 � 2 rectangular grid (indicated by solid

lines in the figure connecting the nodes). Clusters are calculated in an iterative process,

as in k-means clustering, with additional information from the profiles in adjacent

clusters. Nodes migrate to fit the data during successive iterations. The result is a clus-

tering tree with an appearance similar to those produced by hierarchical clustering.

Principal Components Analysis: Visualizing Microarray Data
Principal components analysis (PCA) is an exploratory technique used to find

patterns in gene expression data from microarray experiments. It is both easy to

use and powerful in its ability to represent complex data sets succinctly. PCA is

used to reduce the dimensionality of data sets in order to create a two- or three-

dimensional plot that reflects the relatedness of the objects that it clusters—that is,

the genes and/or samples in your experiment. PCA has been used to analyze

expression data in yeast and mammalian systems (Landgrebe et al., 2002; Misra

et al., 2002; Alter et al., 2000; Wall et al., 2001; Bouton et al., 2001).

The central idea behind PCA is to transform a number of variables into a smaller

number of uncorrelated variables called principal components. The variables that are

operated on by PCA may be the expression of many genes (e.g., 20,000 gene expression

values), or the results of gene expression across various samples, or even both gene

expression values and samples. In a typical microarray experiment, PCA detects and

removes redundancies in the data (such as genes whose expression values do not

change and thus are not informative about differences in how the samples behave).

We will consider the small matrix of eight gene expression values in 14 samples

from Fig. 9.8a. We can convert this matrix into a series of PCA plots of samples

(Fig. 9.20a to c) or genes (Fig. 9.20d). The results are comparable to those obtained

by hierarchical clustering in terms of how the relationships of genes and/or samples

are described. For the visualization of samples, the trisomic cases are clearly distin-

guished from the control cases (Fig. 9.20a) based on inspection of the first principal

component axis (x axis). This separation is even more dramatic when we focus the

analysis on the relationships of the 14 samples using only four differentially regulated

chromosome 21-derived transcripts (Fig. 9.20b), and the separation vanishes when

we analyze the relationships of the samples based on four nonregulated transcripts

(Fig. 9.20c).

FIGURE 9.19. Self-organizing
maps allow partial structuring to
be imposed on clusters. This con-
trasts with k-means clustering,
which imposes a fixed number of
clusters. An initial set of nodes
(numbered one to six) forms a rec-
tangular grid. During iterations of
the self-organizing map algorithm,
the nodes migrate to new positions
(arrows) to better fit the data.
Red dots represent data points.
Redrawn from Tamayo et al.
(1999). Used with permission.
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PCA is also called singular-value

decomposition (Alter et al., 2000).

It is a linear projection method;

this means that the data matrix you

start with is “projected” or

mapped onto lower dimensional

space. Projection methods related

to PCA include independent

components analysis, factor

analysis, multidimensional scal-

ing, and correspondence analysis.
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(a) PCA of samples (b) PCA of samples (with four chromosome 21 genes)

(c) PCA of samples (with four non-chromosome
      21 genes)

(d) PCA of genes
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FIGURE 9.20. Principal components analysis (PCA) reduces the dimensionality of microarray
data to visualize the relationship between genes or samples. (a) A PCA plot of 14 samples shows
that the trisomy 21 samples (black spheres) can be distinguished from the matched control
samples (gray spheres) along the first principal component axis, that is, along the x axis;
55.7% of the variance in the data set is explained along this axis. This is a substantial
amount. Along the second principal component axis, 23.8% of the variance is explained, and
there is no separation of trisomic and control samples. Note that in PCA space two points
that are close together have similar, related properties in the original data matrix. (b) When
PCA is performed using data only from four chromosome 21 genes (which are expressed at
higher levels in the trisomic samples), the PCA clustering shows a more dramatic separation
of controls (gray spheres) and trisomic samples (black spheres). Since the first principal com-
ponent axis now explains 92.6% of the variance, the separation of control and trisomic samples
across the x axis is extremely convincing. (c) When PCA is performed using data from four highly
expressed genes (but genes that are not differentially regulated), there is no separation of control
and trisomic samples. (d) When the data matrix is transposed (as in Fig. 9.8b), the PCA plot
shows the relation of the eight genes based on their expression values across 14 samples. Note
that the four highly expressed genes (EEF1A1, RPL41, RPL37A, TUBA6) are extremely well
separated along the first principal component axis from the four transcripts assigned to chromo-
some 21 that are expressed at low levels (C21orf33, HRMTL1, WRB, ATP5O). The separation
of the four highly expressed genes on the y axis may occur because of the variability in their
expression levels. Note that in PCA the principal component axes may have a straightforward
biological interpretation (such as representing gene expression intensity levels or diseased
versus normal samples) but the data points are placed on the plot without any supervision or
prior assumptions.
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In performing PCA, by default the first principal component accounts for as

much as the variability in the data as possible. The second principal component

will account for less of the variability than the first. Thus, in Fig. 9.20 the y axis in

each plot is associated with a smaller percentage of variance explained than the

x axis. The mathematical operations that produce each principal component axis

require that they be orthogonal variables; this means that they are uncorrelated to

each other (see below). It is typical to display PCA as a two-dimensional plot with

the first principal component on the x axis and the second principal component on

the y axis. However, a three-dimensional plot is also commonly used (as shown in

Fig. 9.20). Additional principal component axes usually account for only a very

small amount of variability in the data matrix and are sometimes tabulated.

The starting point for PCA is any matrix of m observations (gene expression

values) and n variables (experimental conditions). The goal is to reduce the dimen-

sionality of the data matrix by finding r new variables (where r , n). These r vari-

ables account for as much of the variance in the original data matrix as possible.

The first step of PCA algorithms is to create a new matrix of dimensions n � n.

This may be a covariance matrix or a correlation matrix. (In our example in Fig.

9.20a, there is a 14 � 14 covariance matrix.) The principal components (called

eigenvectors) are selected for the biggest variances (called eigenvalues). What this

means practically for our example data set is that if a gene’s expression values do

not vary across the samples, it will not contribute to the formation of the principal

components.

How is the first principal component axis related to our raw data? Take the three-

dimensional plot of the raw data and redraw the x, y, z coordinate axes so that the

origin (“centroid”) is at the center of all the data points (Fig. 9.21). Find the line

that best fits the data; this corresponds to the first principal component axis. By rotat-

ing this axis, it becomes the x axis of the plots in Fig. 9.20. The second principal

component axis must also pass through the origin of the graph in Fig. 9.21, and it

must be orthogonal to the first axis. In this way, it is uncorrelated. Each axis accounts

for successively less of the variability in the data.

x-axis

y-axisz-axis

principal 
component 
axis #1

FIGURE 9.21. Principal components analysis. The first principal component axis may be
thought of as the best-fit line that traverses the geometric origin of the data set, accounting for
most of the variability in the data. The second principal component (not shown) also passes
through the origin and is orthogonal to the first component. Cumulatively, all the principal com-
ponent axis account for 100% of the variance, with each axis accounting for a successively smal-
ler percentage. A large percentage accounted for by the first and/or second principal component
axes indicates that the importance of this axis should be given when inspecting the PCA plot.

This description of PCA is highly

simplified. For a description of the

vector algebra underlying PCA,

see Kuruvilla et al. (2002), Misra

et al. (2002), or Landgrebe et al.

(2002).
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The final product of PCA is usually a two- or three-dimensional plot consisting of

points in space that correspond to either genes or samples. If we use PCA to represent

samples, a close distance between any two points implies that their overall pattern of

gene expression is similar. Conversely, two points that are separated in a PCA plot

have different overall profiles. The initial data set is highly dimensional; for 20,000

gene expression measurements the points could theoretically be described in

20,000-dimensional space. PCA reduces the dimensionality of the data to just two

or three dimensions. In reducing the dimensionality, the goal of PCA is to provide

as much information as possible about the original data set.

Raychaudhuri and colleagues (2000) used PCA to analyze the full Chu et al.

(1998) data set, consisting of 6118 gene expression measurements across seven

time points. Their PCA analysis showed that just two principal components

accounted for over 90% of the total variability. They further suggested that these

components correspond to (1) overall induction of genes and (2) the change in

induction level over time. In general, the principal component axes may or may

not correspond to variables that have an obvious biological interpretation. This is

because the components capture as much information in the data set as possible

based strictly on the criterion of variance.

We encountered PCA in an entirely different context, as an application in the

protein family database Pfam (Fig. 6.9). There, it is used to describe the relationships

between proteins based on a matrix of pairwise sequence alignments. PCA is also

used to express the relationships between entire sequenced genomes in the

Clusters of Orthologous Genes (COG) database (Chapter 15).

Multidimensional scaling (MDS) is another dimensional reduction technique.

MDS plots represent the relationships between objects from a similarity (or dissim-

ilarity) matrix in a manner comparable to principal components analysis, although

the axes do not report the percent variance that is captured. The application of

MDS to microarray data is discussed by Chen and Meltzer (2005).

Supervised Data Analysis for Classification of
Genes or Samples
The distances and similarities among gene expression values can be described using

two types of analysis: supervised or unsupervised. The unsupervised approaches we

have described so far are especially useful for finding patterns in large data sets. In

supervised analyses, the approach is different because the experimenter assumes

some prior knowledge of the genes and/or samples in the experiment. For example,

transcriptional profiling has been performed on cell lines or biopsy samples that are

either normal or cancerous (e.g., Alizadeh et al., 2000; Shipp et al., 2002; Khan et al.,

1998; Perou et al., 1999; West et al., 2001). (In some cases, the cancerous samples are

further subdivided into those that are relatively malignant or relatively benign.) Some

of these studies apply unsupervised approaches.

The goal of supervised microarray data analysis algorithms is to define a rule that

can be used to assign genes (or conditions) into groups. In each case, we begin with

gene expression values from known groups (e.g., normal vs. cancerous) and “train”

an algorithm to learn a rule. Positive and negative examples are used to train the

algorithm. The algorithm is then applied to unknown samples, and its accuracy as

a predictor or classifier is assessed. It is critical that the data used for building a clas-

sifier are entirely separate from the data used to assess its predictive accuracy.

The total number of dimensions in

PCA can be as large as the sample

size in the original data matrix, but

most of the information content in

PCA is found in the first two or

three principal components.

Chen and Meltzer (2005) describe

an implementation of multidi-

mensional scaling using

MATLABw software. Visit

Q http://research.nhgri.nih.gov/
microarray/MDS_Supplement/
for scripts and data sets.

Additional software for MDS is

available from BRB ArrayTools

(Q http://linus.nci.nih.gov/
BRB-ArrayTools.html), ggobi

(Q http://www.ggobi.org/),

Partek (Q http://www.partek.

com), R (via the cmdscale

function; Q http://www.r-project.

org), and S-PLUS (Q http://
www.insightful.com).
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Some of the most commonly applied supervised data analysis algorithms are

k-nearest neighbors, support vector machines, supervised machine learning, neural

networks, and linear discriminant analysis. As an example of a supervised approach,

Brown et al. (2000) used support vector machines to classify six functional classes of

yeast genes: tricarboxylic acid cycle, respiration, cytoplasmic ribosomes, proteasome,

histones, and helix–turn–helix proteins. They used a threefold cross-validation

method: the data set is divided into thirds (sets 1, 2, and 3). Sets 1 and 2 are used

to train the support vector machine; then the algorithm is tested on set 3 as the

“unknowns.” Next, sets 1 and 3 are used for training and set 2 is tested as the

unknowns. Finally, sets 2 and 3 are used for training, and set 1 is tested. They

measured the false positive rate and found that support vector machines outperform

both unsupervised clustering and alternative supervised clustering approaches.

Dupuy and Simon (2007) described many strategies for properly performing

supervised analyses, and also listed many of the common data analysis errors. For

example, improperly performing cross-validation leads to overly optimistic predic-

tion accuracy. It is also essential to have an adequate sample size for both the training

and the test sets.

FUNCTIONAL ANNOTATION OF MICROARRAY DATA

A major task confronting the user of microarrays is to learn the biological significance of

the observed gene expression patterns. Often researchers rely on manual literature

searches and expert knowledge to interpret microarray results. Several software tools

accept lists of accession numbers (corresponding to genes that are represented on

microarrays) and provide annotation. Christopher Bouton, when hewas a graduate stu-

dent in my laboratory, developed the Database Referencing of Array Genes Online

(DRAGON) database. This includes a website that allows microarray data to be anno-

tated with data from publicly available databases such as UniGene, Pfam, SwissProt,

and KEGG (Bouton and Pevsner, 2000; Bouton et al., 2003). DRAGON offers a

suite of visualization tools allowing the user to identify gene expression changes that

occur in gene or protein families (Bouton and Pevsner, 2002). The goal of annotation

tools such as DRAGON is to provide insight into the biological significance of gene

expression findings. We use DRAGON to annotate the chromosomal assignment of

genes represented on microarrays. A variety of related annotation tools (many with

more features than DRAGON) have been developed, including Database for

Annotation, Visualization and Integrated Discovery (DAVID; Dennis et al., 2003),

GenMAPP, SOURCE, and Resourcerer (Tsai et al., 2001). Microarray Literature-

based Annotation (MILANO; Rubinstein and Simon, 2005) is an example of software

that annotates expression data with relevant literature citations. For example, you can

input a list of RefSeq entries to retrieve relevant PubMed matches, including the

option of guiding the output with secondary search terms.

An active area of research is the annotation of microarray data based on func-

tional groups such as Gene Ontology categories (we will introduce Gene Ontology

in Chapter 10). The premise is that in addition to considering individual transcripts

that are significantly regulated, one can identify groups that are functionally related

(such as transcripts that encode kinases or that function in mitochondrial biogen-

esis). Tools to analyze data sets based on annotation groups include GOMiner

(Zeeberg et al., 2005) and are reviewed by Osborne et al. (2007). Gene Set

Enrichment Analysis (GSEA) represents one increasingly popular approach to

DRAGON is available at

Q http://pevsnerlab.

kennedykrieger.org. Other web-

sites are for DAVID (Q http://
david.abcc.ncifcrf.gov/),

GenMAPP (Q http://www.

genmapp.org/), Resourcerer (at

the Dana Farber Cancer Institute

and Harvard University; Q http://
compbio.dfci.harvard.edu/tgi/),

the Stanford Online Universal

Resource for Clones and ESTs

(SOURCE; Q http://source.

stanford.edu), and MILANO

(Q http://milano.md.huji.ac.il).

GSEA software is available from

the Broad Institute at Q http://
www.broad.mit.edu/gsea/.
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identifying regulated sets of genes (Subramanian et al., 2005). That procedure

includes over 1000 defined gene sets in which members of each set share common

features (such as biological pathways). With all these annotation procedures it is

important to keep in mind that the product of mRNAs is protein. Identification of

a set of mRNAs encoding proteins in a particular cellular pathway does not mean

that the proteins themselves are present in altered levels, nor does it mean that the

function of that pathway has been perturbed. Such conclusions can only be drawn

from experiments on proteins and pathways performed at the cellular level.

PERSPECTIVE

DNA microarray technology allows the experimenter to rapidly and quantitatively

measure the expression levels of thousands of genes in a biological sample. This tech-

nology emerged in the late 1990s as a tool to study diverse biological questions.

Thousands to millions of data points are generated in microarray experiments.

Thus, microarray data analysis employs mathematical tools that have been estab-

lished in other data-rich branches of science. These tools include cluster analysis,

principal components analysis, and other approaches to reduce highly dimensional

data to a useful form. The main questions that microarray data analysis seeks to

answer are as follows:

† For a comparison of two conditions (e.g., cell lines treated with and without a

drug), which genes are dramatically and significantly regulated?

† For comparisons across multiple conditions (e.g., analyzing gene expression

in 100 cell lines from normal and diseased individuals), which genes are con-

sistently and significantly regulated?

† Is it possible to cluster data as a function of sample and/or as a function of

genes?

A further challenge is to translate the discoveries from microarray experiments into

further insight about biological mechanisms.

Dupuy and Simon (2007) reviewed 90 publications in which gene expression

profiles were related to cancer outcome. Half of the studies they reviewed in detail

had at least one of three flaws: (1) Controls for multiple testing were not properly

described or performed. (2) In class discovery a correlation was claimed between

clusters and clinical outcomes. However, such correlation is spurious because differ-

entially expressed genes were identified then used to define clusters. (3) Supervised

predictions included estimates of accuracy that were biased because of incorrect

cross-validation procedures. Dupuy and Simon (2007) offer a useful and practical

list of 40 guidelines for the statistical analysis of microarray experiments, spanning

topics from data acquisition to identifying differentially regulated genes, class discov-

ery, and class prediction.

Finally, while DNA microarrays have been used to measure gene expression in bio-

logical samples, they have also been used in a variety of alternative applications.

Microarrays have been used as a tool to detect genomic DNA (e.g., to identify

polymorphisms, to obtain DNA sequence, to identify regulatory DNA sequence, to

identify deletions and duplications, and to determine the methylation status of DNA;

see Chapter 16). Such diverse applications are likely to expand in the near future.

PERSPECTIVE 369



PITFALLS

Errors occur in a variety of stages of microarray experiments:

† Experimental design is a critical but often overlooked stage of a microarray

experiment. It is essential to study an adequate number of experimental

and control samples. The appropriate number of replicates must also be

employed. While there is no consensus on what this number is for every

experiment, there must be adequate statistical power and using one to

three biological replicates is often insufficient.

† It is difficult to relate intensity values from gene expression experiments

to actual copies of mRNA transcripts in a cell. This situation arises because

each step of the experiment occurs with some level of efficiency, from

total RNA extraction to conversion to a probe labeled with fluorescence

and from hybridization efficiency to variability in image analysis. Some

groups have introduced universal standards for analysis of a uniform set of

RNA molecules, but these have not yet been widely adopted.

† Data analysis requires appropriate attention to global and local background

correction. Benchmark studies suggest that while excellent approaches

have been developed (such as GCRMA), applying different normalization

procedures will lead to different outcomes (such as differing lists of regulated

transcripts).

† For exploratory analyses, the choice of distance metric, such as Pearson’s cor-

relation coefficient, can have a tremendous influence on outcomes such as

clustering of samples.

† Each data analysis approach has advantages and limitations. For example,

popular unsupervised methods (such as cluster analysis) sacrifice infor-

mation about the classes of samples that are studied (such as cell lines derived

from patients with different subtypes of cancer). Supervised methods make

assumptions about classes that could be false.

† Many experimental artifacts can be revealed through careful data analysis.

Skewing of scatter plots may occur because of contamination of the biological

sample being studied. Cluster analysis may reveal consistent differences, not

between control and experimental conditions, but between samples analyzed

as a function of day or operator.

DISCUSSION QUESTIONS

[9-1] A microarray data set can be clustered using multiple

approaches, yielding different results. How can you decide

which clustering results are “correct” (most biologically rel-

evant)? For microarray data normalization we described the

concepts of precision and accuracy; do these apply to clus-

tering as well?

[9-2] What are the best criteria to use to decide if a gene is signifi-

cantly regulated? If you apply fold change as a criterion, will

there be situations in which a fold change is statistically

significant but not likely to be significant in a biological

sense? If you apply a conservative correction and find that

no genes change significantly in their expression levels in a

microarray experiment, is this a biologically plausible

outcome?
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PROBLEMS/COMPUTER LAB

[9-1] Using R and BioConductor:

(a) Install R and Bioconductor packages as described in

Box 9.3.

(b) In R, use the command library(affyPLM) to load

various packages such as affy, Biobase, and gcrma.

(c) Type abatch.raw <- ReadAffy() to read all the .cel

files in the current directory into an object called

AffyBatch. Additional cel definition files (CDF) are auto-

matically downloaded to provide annotation of your data.

(d) Create the plots shown in Figs. 9.3 to 9.5 using the com-

mands MAplot(abatch.raw), hist(abatch.raw),

and boxplot(abatch.raw).

(e) Invoke robust multiarray analysis (RMA) by typing

eset.rma <- rma(abatch.raw). This function

rma() returns an expression set exprSet that stores

expression values. Optionally, use the gcrma() command.

(f) Create boxplots and MAplots as described above.

(g) Create additional plots using the commands Pset <-

fitPLM(abatch.raw) as well as RLE(Pset) and

NUSE(Pset) for various quality control assessments.

Information on any of these commands is available in R by

typing queries such as ?NUSE. NUSE is normalized

unscaled standard errors. Try the commands

boxplot(eset.rma), Mbox(abatch.raw), and

NUSE(Pset).

[9-2] In this problem we will obtain ratios as well as raw, two-channel

intensity values from the NCI60 data of the National Cancer

Institute (NCI).

(a) Data acquisition. The data are available from GEO at NCBI

(data set GDS1761) in the form of intensity ratios. These

data are also posted as web document 9.5 at Q http://www.

bioinfbook.org/chapter9 in the form of an Excel document

as downloaded in the SOFT format from GEO. In web docu-

ment 9.6, these same data are presented in an Excel spread-

sheet that has been edited to simplify its format. Column A of

web document 9.6 contains a list of genes from 1 to 9,706;

column B contains names for each of the genes on the micro-

arrays. Most of the remaining columns correspond to the 60

samples that comprise the NCI60 experiment, grouped into

samples such as breast cancer and brain cancer. We also

include the mean value for the breast cancer set (column

L) and the brain set (column S) as well as t-tests comparing

these groups (column T). Insert a new column and perform

t-tests yourself to compare two groups.

(b) In this problem we will obtain and plot raw, two-channel

intensity values from the NCI60 data of the National

Cancer Institute (NCI).You can access the NCI60 data in

a variety of formats (both raw and processed) at Q http://

discover.nci.nih.gov/cellminer/ by selecting the raw data

option for “RNA: cDNA Array” data. Web document 9.7

presents a Microsoft Excel spreadsheet with the data from

one breast cancer sample (BT549) relative to a reference

pool. Column A contains names for each of the genes on

the microarrays; column B contains IMAGE consortium

identifiers (see Chapter 8); columns C and D list the acces-

sion numbers of clones at the 50 and 30 ends of each gene.

Column E lists the Cy5 channel background intensity for

the breast cancer cell line, while F shows the total intensity

minus the background intensity; columns G and H show

similar information for the Cy3 channel, corresponding to

a reference pool of RNA from control cell lines. Column I

lists flags (visually identified artifacts, of which there are 19

in this data set out of 9,707 total elements on the microar-

ray). Columns J and K show the Cy5 and Cy3 intensity

values after normalization, and column L shows their ratio.

(c) Making scatter plots. Select columns F and H (with headers

CH1D and CH2D). Create a scatter plot. What are the

mean values in columns F and H? To check, go to the

bottom of column F, and in an empty cell use the function

command ¼AVERAGE(F2:F9707). Similarly, calculate

the mean of column H. Note that data in columns F and

H have not been normalized. After normalization (columns

L and M), are the means now the same?

(d) Create logarithmic scatter plots and MA plots. Label four

columns (MNOP) as follows: log_CH1_FL; log_CH2_FL;

ratio; mean_logs. In column M, create the logarithms

(base 2) of CH1_FL; next, create the logarithms of

CH2_FL; next add a column of their ratios, and finally a

column of the mean log intensity values. Plot the ratios

versus the mean log intensities (columns O versus P) in a

scatter plot. Web document 9.8 shows the result.

[9-3] Perform t-tests using the NCBI GEO website.

(a) From the home page of NCBI, enter NCI60. Select the

“GEO DataSets” link. One of the entries, GDS1761

(NCI60 cancer cell lines), includes an icon of a clustering

tree. Click that tree to access the GEO DataSet record

(the URL is Q http://www.ncbi.nlm.nih.gov/geo/gds/

gds_browse.cgi?gds ¼ 1761).

(b) This page includes a table “Find genes differentially

expressed between groups.” Select a two-tailed t-test at the

0.05 significance level, and choose two groups to compare

(e.g. breast tumor in group A versus CNS tumor in group

B). Click the button to query A versus B. The result is a

set of transcripts (Entrez GEO Profiles) that are differentially

regulated according to a t-test ( p , 0.05).

[9-4] Perform hierarchical clustering using R. Obtain a matrix of genes

(n ¼ 8) and samples (n ¼ 14) from web document 9.3 at Q

http://www.bioinfbook.org/chapter9. Copy this as a text file

into an R working directory. Then use the following commands

(# indicates a comment line). You should be able to reproduce

the clustering trees shown in Figs. 9.13 and 9.14.

dir()

#view the contents of your directory; this should include the file

#myarraydata.txt

z=read.delim(“#myarraydata.txt”)

#read.delim is a principal way of reading a table of data into R.

#This creates a new file called z

#with 8 rows (genes) and columns including gene name,

#chromosomal locus, and 14 samples.
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SELF-TEST QUIZ

[9-1] It is necessary to normalize microarray data because:

(a) Gene expression values are not normally distributed.

(b) Some experiments use cDNA labeled with fluorescence

while others employ cDNA labeled with radioactivity.

(c) The efficiency of dye incorporation (or radioactivity incor-

poration) may vary for different samples.

(d) Housekeeping genes (such as action) may be expressed as

varying levels between samples.

[9-2] Microarray data analysis can be performed with scatter plots.

The information you get from a scatter plot includes all of the

following EXCEPT:

(a) You can tell whether a gene is expressed at a relatively high

level or a low level.

(b) You can tell whether a gene has been upregulated or

downregulated.

(c) You can tell whether a gene forms a cluster with other genes

on the microarray.

(d) You can tell whether a gene is among the 5% most regulated

genes in that experiment.

[9-3] Log ratios of gene expression values are often used rather than

raw ratios because:

(a) Twofold upregulation or twofold downregulation log ratios

each have the same absolute value.

(b) Twofold upregulation or twofold downregulation log ratios

each have the same relative value.

(c) The scale of log ratios is compressed relative to the scale of

raw ratios.

(d) A plot of log ratios compresses the expression values.

[9-4] Inferential statistics can be applied to microarray data sets to

perform hypothesis testing:

(a) In which the probability is assessed that any individual

transcript is significantly regulated in a comparison of two

samples

(b) In which the probability is assessed that any individual

transcript is significantly regulated in a comparison of two

or more samples

(c) By clustering of array data

(d) By either supervised or unsupervised analyses

[9-5] Which one of the following statements is FALSE?

(a) Clustering of microarray data produces a tree that can

resemble a phylogenetic tree.

(b) Clustering of microarray data can be performed on genes

and/or samples.

(c) Clustering of microarray data can be performed with parti-

tioning methods (such as k-means) or hierarchical methods

(such as agglomerative or divisive clustering).

(d) Clustering of microarray data is always performed using

principal components analysis.

[9-6] Clustering techniques rely on distance metrics to:

(a) Describe whether a clustering tree is agglomerative or divisive

z

#view the data matrix z consisting of 8 genes and 14 samples

row.names(z)=z[,1]

clust=hclust(dist(z[,3:16]),method

=“complete”)

#create a distance matrix using columns 3 to 16; perform hier

#archical clustering using the complete linkage agglomeration

#method

plot(clust)

#generate a plot of the clustering tree, such as a figure shown in

#this chapter

#Note that you can repeat this using a variety of different

#methods (e.g. method=“single” or method=“median”.

#Type ?hclust for more options.

z.back=z[,-c(1,2)]

#create a version of matrix z called z.back in which two columns

#containing the gene names and chromosomal loci are removed.

z.back

#view this matrix

w=t(z.back)

#create a new file called w by transposing z.back.

w

#view matrix w. There are now 4 rows (samples) and 8 columns

#(genes).

clust=hclust(dist(w[,1:8]),method=“complete”)

plot(clust)

#perform clustering. The cluster dendrogram now shows 14

#samples (rather than 8 genes).

clust ¼ hclust(dist(z[,3:16],method ¼ “euclidean”),method ¼

“complete”)

plot(clust)

clust ¼ hclust(dist(z[,3:16],method ¼

“manhattan”),method ¼ “complete”)

plot(clust)

clust ¼ hclust(dist(z[,3:16],method ¼

“minkowski”),method ¼ “complete”)

plot(clust)

clust ¼ hclust(dist(z[,3:16],method ¼ “binary”),method ¼

“complete”)

plot(clust)

clust ¼ hclust(dist(z[,3:16],method ¼ “maximum”),method ¼

“complete”)

plot(clust)

clust ¼ hclust(dist(z[,3:16],method ¼ “canberra”),method ¼

“complete”)

plot(clust)

#You can vary the metric by which you create a distance matrix

#(e.g. Euclidean, Manhattan, Minkowski, binary, maximum,

#Canberra) as well as varying the clustering method (“ward”,

#“single”, “complete”, “average”, “mcquitty”,

#“median” or “centroid”).
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(b) Reduce the dimensionality of a highly dimensional data set

(c) Identify the absolute values of gene expression measure-

ments in a matrix of gene expression values versus samples

(d) Define the relatedness of gene expression values from a

matrix of gene expression values versus samples

[9-7] A self-organizing map:

(a) Imposes some structure on the formation of clusters

(b) Is unstructured, like k-means clustering

(c) Has neighboring nodes that represent dissimilar clusters

(d) Cannot be represented as a clustering tree

[9-8] Principal components analysis (PCA):

(a) Minimizes entropy to visualize the relationships among

genes and proteins

(b) Can be applied to gene expression data from microarrays

but not to protein analyses

(c) Can be performed by agglomerative or divisive strategies

(d) Reduces highly dimensional data to show the relationships

among genes or among samples

[9-9] The main difference between supervised and unsupervised

analyses of microarray data is:

(a) Supervised approaches assign some prior knowledge about

function to the genes and/or samples, while unsupervised

analyses do not.

(b) Supervised approaches assign a fixed number of clusters,

while unsupervised analyses do not.

(c) Supervised approaches cluster genes and/or samples, while

unsupervised approaches cluster only genes.

(d) Supervised approaches include algorithms such as support

vector machines and decision trees, while unsupervised

approaches use clustering algorithms.
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While it is obvious to us that most proteins are composed of 20 amino acids, chemists in the late nineteenth century struggled to

understand protein composition. At the turn of the century only several dozen proteins were known, including so-called albumins

(including serum albumins, lactoglobulins, fibrinogen, myosin, and histones), proteids (e.g., hemoglobin and mucins), and albu-

minoids (e.g., collagen, keratin, elastin, and amyloid). Of these proteins only a very small group were available in pure form as

crystals (e.g., hemoglobin and serum albumin from horse, ovalbumin, and ichthulin [salmon albumin]). Gustav Mann (1906,

p. 70–75) described the dissociation products of 51 assorted proteins into their fundamental units. The results are shown for seven

proteins (see columns). The rows indicate various compounds found upon dissolving the proteins. Most of these are amino acids;

for example, glycocoll is a name formerly given to glycine. This table shows that from the earliest times that proteins could be

analyzed, scientists made an effort to understand both the nature of individual protein molecules and the relationships of related

proteins from different species.
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Protein Analysis and Proteomics

INTRODUCTION

A living organism consists primarily of five substances: proteins, nucleic acids, lipids,

water, and carbohydrates. Of these essential ingredients, it is the proteins that most

define the character of each cell. DNA has often been described as a substance

that corresponds to the blueprints of a house, specifying the materials used to

build the house. These materials are the proteins, and they perform an astonishing

range of biological functions. This includes structural roles (e.g., actin contributes

to the cytoskeleton), roles as enzymes (proteins that catalyze biochemical reactions,

typically increasing a reaction rate by several orders of magnitude), and roles in

transport of materials within and between cells. If DNA is the blueprint of the

house, proteins form primary components not just of the walls and floors of the

house but also of the plumbing system, the system for generating and transmitting

electricity, and the trash removal system.

Proteins are polypeptide polymers consisting of a linear arrangement of amino

acids. There is a rich history of attempts to purify proteins and identify their constituent

amino acids (Box 10.1). By 1850 a series of proteins had been identified (albumin,

hemoglobin, casein, pepsin, fibrin, crystalline) and partially purified. It was not

until the 1950s that the complete amino acid sequences of several small proteins were

determined. Today, we have access to over 10 million protein sequences.
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Earlier in this book we learned how to access proteins from databases (Chapter 2),

we aligned them and searched them against databases (Chapters 3 to 6), and we visu-

alized multiple sequence alignments as phylogenetic trees (Chapter 7). In this chapter,

we discuss techniques to identify proteins (direct sequencing, gel electrophoresis, and

mass spectrometry). We then present four perspectives on individual proteins: domains

and motifs, physical properties, localization, and function. In Chapter 11, we will

consider the structure of proteins. Then in Chapter 12 we will address functional

genomics,which is the genome-wideassessment of gene function.Functional genomics

encompasses large-scale studies of protein function both in normal conditions and

following genetic or environmental perturbations.

Protein Databases
Protein sequences were initially obtained directly from purified proteins, but the vast

majority of newly identified proteins are predicted from genomic DNA sequence.

GenBank (Chapter 2) currently includes �100 billion base pairs of sequence,

and the separate whole genome shotgun (WGS) division is even larger. The

nonredundant database of proteins at NCBI is the largest publicly available source

of protein data (Table 4.1). Another major resource is the UniProt database

(Chapter 2) which currently includes over 5 million proteins, of which about

300,000 are manually curated as part of the UniProtKB/Swiss-Prot database. The

International Protein Index (IPI) at the European Bioinformatics Institute cross

references a series of major databases (including RefSeq, UniProt, Ensembl, and

the Vertebrate Genome Annotation [VEGA] database) (Kersey et al., 2004). It

includes stable identifiers as well as a minimally redundant, maximally complete

set of proteins (with one sequence per transcript).

In 2007 Craig Venter and colleagues assembled 7.7 million genomic DNA

sequence reads as part of the Global Ocean Sampling (GOS) project as well as an

earlier Sargasso Sea project (Venter et al., 2004; Yooseph et al., 2007). They

used shotgun sequencing (described in Chapter 13) to randomly sample the DNA

BOX 10.1
Brief History of Protein Studies

Protein products have been used for centuries; for example, when Leonardo da

Vinci (1452–1519) invented plastics c.1509, his recipe included egg whites (a

source of ovalbumin) (Reti, 1952). The word albumin derives from the Latin

albus (white) and first appeared in English in 1599. In 1720, Beccari became

the first person to fractionate proteins, separating the gluten fraction from

wheat (see frontis to Chapter 2). The word protein was coined in 1828 by the

Swedish chemist Jöns Jacob Berzelius (1779–1848); the Greek word proteios

means “of first rank.” Protein purification began in the first half of the

nineteenth century upon the discovery of the first proteins: albumin,

hemoglobin, casein, pepsin, fibrin, and crystalline (Mulder, 1849).

The modern era of protein purification was ushered in by James Sumner

and John Northrup, who purified the first enzymes to homogeneity. The Nobel

Prize in Chemistry 1946 was awarded to Sumner “for his discovery that

enzymes can be crystallized,” and to Northrop and Wendell Stanley “for their

preparation of enzymes and virus proteins in a pure form” (see Q http://
nobelprize.org/nobel_prizes/chemistry/laureates/1946/).

UniProtKB is available at

Q http://www.uniprot.org;

release 12.4 consists of 5,275,429

entries. IPI is at Q http://www.

ebi.ac.uk/IPI.

To learn more about the GOS

project, visit the homepage of

NCBI and enter the term “global

ocean sampling” then
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of microorganisms, including bacteria, archaea, and viruses, in seawater. They pre-

dicted the existence of 6.12 million proteins, and thus a single publication doubled

the number of known proteins. In Chapters 13 to 15 we will discuss other metage-

nomics projects in which microorganisms are sequenced from environmental

samples. Such projects are intended to explore the relationship between communities

of microorganisms and their ecosystems, and will continue to greatly expand the

number of known proteins.

Community Standards for Proteomics Research
In all areas of bioinformatics, efforts are underway to standardize the way biological

models are formulated and experimental data are generated and described. The

Human Proteome Organisation (HUPO) supports a Proteomics Standards Initiative

(PSI) with the goals of defining standards for proteomic data representation to facilitate

the comparison, exchange, and verification of data (Martens et al., 2007). HUPO-PSI

currently has working groups in the areas of gel electrophoresis, mass spectrometry,

molecular interactions, protein modifications, proteomics informatics, and sample

processing. These groups have proposed a series of guidelines for reporting data, as

well as data exchange formats and controlled vocabularies. One example is the mini-

mum information about a proteomics experiment (MIAPE) guidelines (Taylor et al.,

2007). MIAPE provides a formal list of items that a researcher should provide

when reporting a proteomics experiment, including sufficient information about an

experiment to allow others to critically evaluate the conclusions.

TECHNIQUES TO IDENTIFY PROTEINS

In this section we introduce three fundamental approaches to protein identification:

direct protein sequencing, gel electrophoresis, and mass spectrometry.

Direct Protein Sequencing
Per Edman devised the method of systematically degrading proteins, beginning with

the amino-terminal residue and proceeding toward the carboxy terminus. Fredrick

Sanger was among the first to exploit this technology to determine the primary

amino acid sequence of insulin.

The Edman degradation procedure requires purification of a protein to relative

homogeneity. This can be achieved by conventional biochemical means such as

purification on ion exchange, size exclusion, or other columns, or by electrophoresis.

One obtains a portion of the amino acid sequence of a protein by transferring it to a

specialized polyvinylidene fluoride (or PVDF) membrane, then performing microse-

quencing by sequential Edman degradations (Fig. 10.1). About 60% to 85% of

the time, the amino terminus of yeast and other eukaryotic proteins is blocked

(e.g., acetylated and unavailable for Edman degradations). A standard procedure is

to proteolyze (e.g., trypsinize) the protein, purify the proteolytic fragments by

reverse-phase high performance liquid chromatography (HPLC), confirm the

purity of the fragments, and then perform Edman degradations.

The Edman degradation method has been reviewed by Shively (2000). It

remains a fundamental method of protein identification, and is useful to identify

sequences of one to 10 picomoles of a protein. It is also well suited to identifying

the amino terminus of an intact protein (when unblocked), in contrast to mass

follow the link to Genome

Projects. The project accession

number is AACY000000000. The

GOS data are also available at the

Community Cyberinfrastructure

for Advanced Marine Microbial

Ecology Research and Analysis

(CAMERA) website (Q http://
camera.calit2.net/). Note that

many of the GOS project pre-

dicted proteins were not full-

length, that is, they were not

derived from a DNA segment that

included both a start and a stop

codon.

The HUPO Protomics Standards

Initiative website is Q http://www.

psidev.info/.

Consider a 10 kilodalton protein;

given a molecular weight of �115

daltons per residue, such a protein

consists of about 87 amino acids.

To obtain 1 pmol, just 10 nano-

grams or 1028 g of protein is

required.
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spectrometry techniques that only analyze peptide fragments. However, the Edman

technique has several limitations.

† It is laborious and not amenable to high throughput analyses.

† While it is sensitive, mass spectrometry techniques can be 10 to 100 times

more sensitive.

† Direct sequence is not useful for the analysis of posttranslational modifications,

in contrast to two-dimensional gel electrophoresis and mass spectrometry.

Gel Electrophoresis
Polyacrylamide gel electrophoresis (PAGE) is a premier tool for the analysis of

protein molecular weight. Proteins (like nucleic acids) possess a charge and thus

migrate when introduced into an electric field. Proteins are denatured and electro-

phoresed through a matrix of acrylamide that is inert (so it does not interact with

the protein) and porous (so that proteins can move through it). The velocity of a

protein as it migrates through an acrylamide gel is inversely proportional to its size,

and thus a complex mixture of proteins can be separated in a single experiment.

Proteins are almost always electrophoresed through acrylamide under denaturing

FIGURE 10.1. Protein sequencing
by Edman degradation. The
Edman process is illustrated for a
protein fragment of six amino
acids. The first amino acid reacts
through its amino terminus with
phenylisothiocyanate (PITC).
Under acidic conditions this
amino acid residue, derivitized
with phenylthiohydantoin (PTH),
is cleaved and can be identified in
an amino acid analyzer. The pep-
tide now has five amino acid resi-
dues, and the cycle is repeated
with successive amino-terminal
amino acids. The structure of
PTH-alanine is shown as an
example. The typical result is a
readout of 10 to 20 amino acids.
The corresponding protein and
gene can be evaluated by perform-
ing BLAST searches (Chapter 4).
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conditions in the presence of the detergent sodium dodecyl sulfate (SDS), so this

technique is commonly abbreviated SDS–PAGE.

O’Farrell (1975) greatly extended the capabilities of this technology by

combining it with an initial separation of proteins based on their charge. In the

first step, proteins are separated by isoelectric focusing. A gel matrix (or strip) is

produced that contains ampholytes spanning a continuous range of pH values,

usually between pH 3 and 11. Each protein is zwitterionic (having both positive

and negative ions), and when electrophoresed, it migrates to the position at which

its total net charge is zero. This is the isoelectric point (abbreviated pI) at which

the protein stops migrating. A complex mixture of proteins may thus be separated

based on charge, and this corresponds to the first dimension of two-dimensional

gel electrophoresis. In the second dimension, proteins are separated by SDS–PAGE.

The technique of two-dimensional gel electrophoresis has matured into an import-

ant technology used to analyze proteomes (Dunn, 2000; Görg et al., 2004; Carrette

et al., 2006). An example of a two-dimensional gel profile is shown in Fig. 10.2.
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FIGURE 10.2. Example of a two-dimensional protein gel result. The ExPASy two-dimensional gel
resource was searched for beta globin. This profile is of several hundred proteins from human liver.
The x axis corresponds to pH; proteins migrate to their isoelectric point (pI) where the net charges are
zero. The y axis corresponds to molecular weight; on this particular gel, relatively low molecular
weight proteins (10 to 50 kilodaltons) are well resolved, while other gels resolve larger proteins.
The highly abundant proteins include alpha and beta globins at molecular weights of about 12 kilo-
daltons (arrow 1) and 25 kilodaltons. Symbols on the image correspond to identified proteins. By
mousing over each identified spot, a dialog box appears with information on the protein (here,
HBB with accession P68871) as well as an identifier, a statement of the molecular weight and pI,
and a link to further information at ExPASy. Other identified proteins include beta actin (arrow
2), acetylcholinesterase (P22303 in three spots; arrow 3), and a large group of spectrin beta chain
variants (arrow 4).
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Several hundred micrograms of protein from human red blood cells were separated by

pH (on the x axis) by isoelectric focusing, then by molecular mass (on the y axis) by

SDS–PAGE. Thousands of proteins may be visualized with a protein-binding dye

such as silver nitrate or Coomassie blue. Note that several proteins are especially abun-

dant, includingalphaandbetaglobin, aswell as the structuralproteins actinandspectrin.

Many proteins have acharacteristic pattern of spots that spread along the first dimension.

This is a “charge train” that usually represents a series of variants of a protein with differ-

ing amounts of charged groups such as phosphates that are covalently attached.

A key property of two-dimensional protein gels is that the individual

proteins may be identified by direct protein microsequencing or by sensitive mass

spectroscopy techniques (see below) (Farmer and Caprioli, 1998). Applications of

two-dimensional SDS–PAGE include a description of hundreds of proteins in

human and rat brain (Langen et al., 1999; Fountoulakis et al., 1999) and an analysis

of aberrant protein expression profiles in bladder tumors (Østergaard et al., 1997).

Grünenfelder et al. (2001) analyzed protein synthesis during the cell cycle of the

bacterium Caulobacter crescentus and detected about 25% (979) of all the predicted

gene products. Many of these were degraded during a single cell cycle.

One of the most important websites for proteomics is the Expert Protein Analysis

System (ExPASy) (Fig. 10.3). ExPASy includes the main public database for infor-

mation on two-dimensional gel electrophoresis (Hoogland et al., 1999; Sanchez

et al., 2001). Information is available for gels from a variety of organisms and exper-

imental conditions, including the experiment shown in Fig. 10.2. These profiles may

be queried by choosing a two-dimensional gel map by other criteria such as keyword.

There have been many improvements to two-dimensional gel technology. Jonathan

Minden and colleagues introduced difference gel electrophoresis (DIGE), a technique

in which two (or sometimes three) samples are labeled with amine-reactive, fluorescent

dyes (Viswanathan et al., 2006). These samples are mixed, electrophoresed, and

then the relative abundance of many proteins is determined based on fluorescence

imaging. In some cases, DIGE has been used to detect 0.5 femtomoles of protein

(for a 10 kilodalton protein this corresponds to just five picograms).

We may summarize the strengths of two-dimensional gel electrophoresis

as follows:

† It offers the ability to describe both isolectric point and molecular mass of intact

proteins; this contrasts with mass spectrometry methods that identify molecular

mass based on peptide fragments, and that further lose information on pI.

FIGURE 10.3. ExPASy offers the
premier web server for protein ana-
lysis (Q http://www.expasy.ch/).
You can input a query (such as
HBB human for beta globin) at
top (arrow 1). The site also pro-
vides a gateway to the sequence
retrieveal system (arrow 2), to a
two-dimensional gel database
(arrow 3), and to a large, well-
organized list of links to databases
(arrow 4). A variety of tools for
protein analysis are provided
(arrow 5).

ExPASy is located at Q http://
www.expasy.ch/. Many of the

tools we will explore in this chapter

are available at ExPASy, which is

part of the Swiss Institute of

Bioinformatics.
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† Several thousand proteins can be resolved and visualized with an appropriate

stain

† It is possible to detect and quantitate less than 1 nanogram per spot on the gel.

A variety of sensitive stains (dyes) are available to detect proteins.

† Mass spectrometry is commonly used in conjunction with two-dimensional

gels for protein identification, as discussed below.

The two-dimensional gel approach has several limitations.

† It is not amenable to high throughput processing of many samples in parallel.

† Sample preparation is a critical step and often requires a great deal of optim-

ization. However, this is true of essentially all proteomics methods.

† Only the most abundant proteins in a sample are usually detected.

Hydrophobic proteins, including proteins with transmembrane domains,

are underrepresented on two-dimensional gels. Similarly, highly basic or

acidic proteins are often excluded.

† It requires considerable expertise to reliably generate consistent results. In

comparing two gel profiles, if the polyacrylamide gels vary even slightly in

composition or if the samples are electrophoresed under differing conditions,

it can be difficult to accurately align the protein spots. An important technical

advance in the reproducibility of two-dimensional gel electrophoresis was the

introduction of immobilized pH gradients, preformed on dry strips, that

replaced an older system of pH gradient formation with ampholytes.

Mass Spectrometry
Mass spectrometry techniques have revolutionized the field of proteomics by

allowing proteins to be identified with extraordinary sensitivity (Mann et al., 2001;

Cox and Mann, 2007). Mass spectrometry is useful (1) for the identification of

proteins (e.g., for identifying protein spots from two-dimensional gels, or from com-

plex mixtures such as extracts of cells, or from other biochemical purification

approaches), (2) for the characterization of known proteins (e.g., recombinant

proteins), and (3) to characterize posttranslational modifications of proteins. The

ability of mass spectrometry to measure the mass of a protein with extremely high

accuracy and precision allows it to distinguish even subtle changes in proteins such

as the addition of a single phosphate group.

Mass spectrometers analyze charged protein or peptide molecules in the gaseous

state. A key step is to transfer proteins into the gas phase and ionize them. This is

accomplished using either electrospray or matrix-assisted laser desorption ionization

(MALDI). In MALDI-TOF (MALDI with time-of-flight spectroscopy), the analyte

molecules (i.e., the material to be analyzed) are dried on a metal substrate, irradiated

with a laser, and fragmented (Fig. 10.4). The resulting ions are accelerated in a

field that imparts a fixed kinetic energy. The ions traverse a path, are reflected in

an ion mirror, and then are detected by a channeltron electron multiplier. The

mass-to-charge ratio of an ion determines the time it takes to reach the detector;

lighter ions (smaller analytes) have a higher velocity and are detected first. A time-

of-flight spectrum is recorded from which the amino acid composition of even one

femtomole of peptide can be deduced.

John Fenn and Koichi Tanaka

shared half the Nobel Prize in

Chemistry 2002 “for their devel-

opment of soft desorption ionis-

ation methods for mass

spectrometric analyses of biologi-

cal macromolecules.” See

Q http://nobelprize.org/nobel_

prizes/chemistry/laureates/
2002/.
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We can consider two common applications of mass spectrometry. (1) Peptide

fingerprinting is often used to identify a relatively pure sample such as a spot from

a two-dimensional gel (which may contain a few proteins of varying abundance).

In one scenario, the protein spot is excised with a razor blade, proteolyzed with

trypsin (which cleaves at basic amino acid residues), then subjected to MALDI-

TOF (Fig. 10.5a). The application of a laser beam to the sample creates a series of

peptide fragments, breaking the peptide bonds of amino acids. One then searches

the mass of the observed fragments against a protein database in which all theoretical

tryptic peptides are preassembled. The databases that are searched for matches tomass

spectrometry spectra typically include RefSeq and dbESTat NCBI, Swiss-Prot, and the

Mass Spectrometry protein sequence DataBase (MSDB). The resolution of MALDI-

TOF is excellent (about 0.1 to 0.2 daltons), allowing identification of the protein,

especially when multiple peptides correspond to the same protein. (2) Liquid chrom-

atography with tandem mass spectrometry (LC-MS/MS) is commonly used to analyze

complex mixtures of proteins such as hundreds of proteins, in a purified organelle or

thousands of proteins in a cell lysate (Fig. 10.5b). By injecting the sample onto a

column (such as a reverse phase column), the complexity of the sample is reduced. A

typical column is narrow (with an inner diameter of 75mm) and has a slow flow rate

(such as 300 nanoliters per minute). This affords good resolution of peptide peaks.

Peptides from these peaks are fragmented, for example by electrospray, and analyzed

twice by mass spectrometry: first to screen the mass of the peptides, and second to

obtain fragmentation spectra that can be searched against a database. Typically, one

analyzes a series of fractions from the liquid chromatography column.

A key step in mass spectrometry experiments is the identification of proteins

by matching of observed mass spectra to the theoretical spectral profiles of peptide

detector

drift region

Ds

+ + + + + + + 

ultraviolet 
laser

readout

FIGURE 10.4. Matrix-assisted laser desorption/ionization time-of-flight spectroscopy (MALDI-
TOF). Spectroscopy is a technique to measure the mass of protein samples and other macromol-
ecules. A sample is placed in a matrix of material that absorbs ultraviolet light. A laser is fired
at the sample in the source region (s), and in the context of the matrix the sample becomes
ionized. Some of the protein samples evaporate (i.e., desorption occurs). The ionization occurs
in the presence of an electric field that accelerates the ions into a long drift region (D). The accel-
eration of each protein fragment is proportional to the mass of the ion. A detector records a time-
of-flight spectrum that can be analyzed to determine the mass of each fragment. Peptide
fragments are then searched against a protein database to determine the identity of the
analyte (protein).

MSDB is available from Imperial

College (London) at Q http://
csc-fserve.hh.med.ic.ac.uk/msdb.

html.
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fragments obtained from protein databases (Marcotte, 2007). A variety of software

tools are available to do this. An example is the OMSSA tool at the NCBI website.

A sample output from a tandem mass spectrometry experiment is shown in

Fig. 10.5c. This shows the pattern of peptides following fragmentation of equine

myoglobin. Perhaps the most commonly used software is MASCOTw (Perkins

et al., 1999). Like other tools it provides a scoring algorithm to evaluate the false posi-

tive rate, and an E value similar to that used in BLAST (Chapter 4). The main

strength of MASCOTw is its integration of three different search methods: peptide

mass fingerprinting (in which peptide mass values are obtained), sequence queries

(in which peptide mass data are combined with amino acid sequence data and

(a) peptide fingerprinting 

identify protein spot (e.g., from 2D gel)

(c)

(b) LC-MS/MS for complex samples

peptide fingerprinting using MALDI-TOF

determine mass of peptides from the spot
(resolution ~0.1 to 0.2 daltons)

search masses against a database
(e.g., all theoretical tryptic peptides)

trypsinize

complex mixture of proteins
(e.g., from a cell lysate or purified organelle)

trypsinize

liquid chromatography
(e.g., reverse phase high 
pressure liquid chromatography)
to separate the peptides

collect fractions containing peptides

fragment (by collision gas),
obtain fragmentation spectra by MS/MS.
First dimension: screen mass of peptides
(see panel c)

isolate a peptide, fragment it, obtain spectra,
search spectra against a protein database

FIGURE 10.5. Mass spectrometry
applications. (a) For relatively
pure samples, such as a protein
band excised from a two-dimen-
sional protein band, peptide finger-
printing is often performed. The
sample is proteolyzed with trypsin
then MALDI-TOF (or another
mass spectrometry technique) is
performed to identify the mass of
the fragments. These mass values
are searched against a protein
database. (b) Liquid chromato-
graphy-tandem mass spectrometry
(LC-MS/MS) is often used to ana-
lyze complex protein mixtures such
as a cell lysate. A reverse-phase
column separates peptides based
on hydrophobicity, reducing the
complexity of the original sample.
Multiple fractions are collected
and subjected to two cycles of
mass spectrometry, often including
electrospray. (c) Sample MS/MS
output from an ion trap mass spec-
trometer. This example shows a
fragmentation peptide from
equine myoglobin using the Open
Mass Spectrometry Search
Algorithm (OMSSA) software at
NCBI. The figure shows peaks
across a range of mass to charge
(m/z) ratios. Typically several of
these peaks would be collected, frag-
mented, and the fragmentation
spectra are searched against a data-
base to identify the protein(s).

OMSSA is available at Q http://
pubchem.ncbi.nlm.nih.gov/
omssa/. MASCOTw software is

available from Matrix Science

(Q http://www.matrixscience.

com/). ProteinPilot is from

Applied Biosystems (Q http://
www.appliedbiosystems.com/)

and Sequest is from Thermoquest.
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compositional information), and MS/MS data obtained from peptides. Other pro-

minent software includes ProteinPilot and Sequest.

How can we assess the accuracy of protein identification by mass spectrometry?

The Association of Biomolecular Resource Facilities (ABRF) has conducted several

studies to address this question (Arnott et al., 2002). They prepared five purified pro-

teins at quantities of either 2 picomoles or 200 femtomoles (bovine protein disulfide

isomerase [PDI], serum albumin [BSA], and superoxide dismutase; Escherichia coli

GroEL; and Schistosoma japonicum glutathione-S-transferase [GST]). They digested

the samples with trypsin, mixed them, and sent them “blind” to 41 participating lab-

oratories that performed a total of 55 mass spectrometric analyses. The laboratories

tended to use MALDI-TOF or microliquid chromatography with nanospray ioniz-

ation (mLC-NSI). At the 2 picomole level, 96% (53/55) of the analyses correctly

identified PDI, while 80% correctly identified GST. At the 200 femtomole level,

44% identified GroEL, 27% identified BSA, and 11% identified SOD. From one

perspective, this is an enormous improvement over earlier mass spectrometry per-

formance; from another perspective, this indicates that it is challenging for many

laboratories to detect quantities below one or two picomoles.

There are dozens of important applications of mass spectrometry. We discuss

some in this chapter, and also in Chapter 12 when we describe functional genomics

as applied to protein–protein interactions.

FOUR PERSPECTIVES ON PROTEINS

We will next describe four different perspectives on proteins (summarized in

Fig. 10.6):

1. Protein families (domains and motifs)

2. Physical properties of proteins

3. Protein localization

4. Protein function

The first perspective we will consider is the protein family. We will define terms

such as family, domain, and motif. Next, we will consider the physical properties of

proteins and how we can assess them. These properties include molecular weight,

isoelectric point, and posttranslational modifications (of which several hundred

have been described).

The next ways to consider proteins correspond in part to a conceptual framework

provided by the Gene Ontology (GO) Consortium. In the past few years 200 billion

base pairs of DNA (2 � 1011 bp) have been sequenced, including the complete

genomes of thousands of organisms (Chapters 13 to 20). A major challenge to the

field of bioinformatics is to identify protein-coding genes (see Chapters 13 and

16). Another great challenge is to annotate them, that is, to provide a description

of their nature and function. The GO Consortium (Ashburner et al., 2000) provides

a flexible, controlled vocabulary to describe three aspects of proteins: cellular com-

ponent, biological process, and molecular function. We will provide an overview of

the GO project. We will then provide a general description of the protein localization

and protein function, corresponding to the GO categories of cellular component and

molecular function.

The ABRF website is Q http://
www.abrf.org/. A PubMed search

with the term abrf provides access

to many studies by this organiz-

ation in which DNA, RNA, and

protein technologies are critically

assessed. We will describe the

critical assessment of protein

structures (CASP) in Chapter 11.
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PERSPECTIVE 1. PROTEIN DOMAINS AND MOTIFS:
MODULAR NATURE OF PROTEINS

Let us begin our discussion of protein domains by considering several types of proteins.

In the simplest case, a protein (or gene) has no matches to any other sequences in the

available databases. This situation occurs less frequently as increasing numbers of

genomes are sequenced, and yet it is still not unusual to find that substantial numbers

of predicted proteins have no identifiable homologs (see e.g., Chapters 14, 15, and 18).

Even if there are no known homologs, a protein may have features such as a trans-

membrane domain, potential sites for phosphorylation, or some predicted secondary

structure (see below and Chapter 11). Such features may give clues to the structure

and/or function of the protein.

For proteins that do have orthologs and/or paralogs, there are regions of

significant amino acid identity between at least two proteins (or DNA sequences).

Such regions of proteins that share significant structural features and/or sequence

identity have a variety of names: signatures, domains, modules, modular elements,

RNA

(3) Protein localization

(4) Protein function

Gene Ontology:
--Cellular component
--Biological process
--Molecular function

(2) Physical properties
of proteins

c

b

(1) Protein families
(domains and motifs)

protein

d

a

FIGURE 10.6. Overview of proteins. A protein is composed of a series of amino acids specified by
a gene. Proteins can be classified by a variety of criteria, including family, localization, physical
properties, and function. (1) Protein families are defined by the homology of a protein to other
proteins; the proteins may be homologous over a partial region. Databases of protein families and
motifs allow hundreds of thousands of proteins to be classified in groups that may be functionally
related. (2) Proteins may be described in terms of their physical properties, such as size (molecu-
lar weight), shape (e.g., Stokes radius and frictional coefficient), charge (isoelectric point), post-
translational modifications (see text), or the existence of isoforms due to proteolytic processing or
alternative mRNA splicing. (3) The Gene Ontology (GO) Consortium classifies proteins accord-
ing to cellular component (i.e., localization), biological process (e.g., transcription or endocyto-
sis), and molecular function (e.g., enzyme or transporter). A protein can belong to multiple
categories of any of these groups. The GO system provides a dynamic, controlled vocabulary
that can be applied to all eukaryotic proteins. In this figure, a protein is depicted in several poss-
ible locations: it may be soluble in the cytosol (label a), in an intracellular organelle such as the
nucleus (b), or extracellular as a secreted protein (c). A protein may be bound to membranes on
the cell surface (d); membrane localization may be via transmembrane domains or by peripheral
attachment. (4) We will also explore the many definitions of protein function.

InterPro is accessed at Q http://
www.ebi.ac.uk/interpro/. It

includes 10 member databases:

PROSITE (described below),
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folds, motifs, patterns, or repeats. These terms have varied definitions, but all refer to

the idea that there are closely related amino acid sequences shared by multiple

proteins (Bork and Gibson, 1996). Such regions may be considered in terms of

protein structure and/or function (Copley et al., 2002). We will primarily adopt

the definitions provided by the InterPro Consortium (Mulder et al., 2002, 2007).

InterPro is an integrated documentation resource that encompasses a group of

databases of protein families, domains, and functional sites.

A signature is a broad term that denotes a protein category, such as a domain

or family or motif. When you consider a single protein sequence in isolation,

there is only a limited amount of information you can infer about its structure

or function. However, when you align related sequences, a consensus sequence

may be identified. There are two principal kinds of signatures, and each is identified

with its own methodology.

A domain is a region of a protein that can adopt a particular three-dimensional

structure (Doolittle, 1995). Domains are also called modules (Henikoff et al.,

1997; Sonnhammer and Kahn, 1994). The term fold is commonly used in the context

of three-dimensional structure (Jones, 2001). Together, a group of proteins that share

a domain is called a family. Many protein domains are further classified based on the

subcellular localization of the domain (e.g., intracellular domains of proteins occur in

the cytoplasm; extracellular domains are oriented outside the cell) or in terms of the

structure of the domain (e.g., zinc finger domains bind the divalent cation zinc).

There are many databases of protein families, such as Pfam and SMART, that we

explored in Chapter 6. The definitions of the terms family, domain, repeat, and related

terms in the InterPro and SMART databases are given in Tables 10.1 and 10.2.

Motifs (or fingerprints) are short, conserved regions of proteins (discussed

below). A motif typically consists of a pattern of amino acids that characterizes a

protein family (Bork and Gibson, 1996). The size of a defined motif is often 10 to

TABLE 10-1 Definitions from InterPro Database of Protein Families and Related Terms
Term Definition

Family An InterPro family is a group of evolutionarily related proteins
that share one or more domains/repeats in common. An
InterPro entry of “type ¼ family” may contain a signature for a
small conserved region that is representative of the family and
therefore need not necessarily cover the whole protein.

Domain A domain is defined as an independent structural unit which can
be found alone or in conjunction with other domains or
repeats. Domains are evolutionarily related. Even though the
structure of a domain is not always known it is still possible to
define the boundaries in many cases from sequence alone.
Therefore, sequence criteria can be used to define domain
boundaries.

Repeat An InterPro repeat is a region that is not expected to fold into a
globular domain on its own. For example, six to eight copies of
the WD40 repeat are needed to form a single globular domain.
There also many other short repeat motifs that probably do not
form a globular fold that have “type ¼ repeat.”

Posttranslational
modification

A posttranslational modification includes, for example, an
N-glycosylation site. The sequence motif is defined by the
molecular recognition of this region in a cell. This may group
together proteins that need not be evolutionarily related.

Source: Adapted from Q http://www.ebi.ac.uk/interpro/user_manual.html.

PRINTS (which uses position-

specific scoring matrices),

ProDom (which uses automatic

sequence clustering), and seven

databases that use hidden Markov

models (Gene3D, Panther, Pfam,

PIRSF, SMART,

SUPERFAMILY, TIGRFAMs).

InterPro further links to over 20

additional resources, including

UniProt.
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20 contiguous amino acid residues, although it can be smaller or larger. Some simple

and common motifs, such as a stretch of amino acids that form a transmembrane

domain or a consensus phosphorylation site, do not imply homology when found

in a group of proteins. In other cases a small motif may provide a characteristic sig-

nature for a protein family.

To introduce specific examples of domains, Table 10.3 lists the 15 most common

domains in the proteins encoded by the human genome. Similar lists are available for

the abundant protein domains of other organisms (Chapters 14 to 16). In many

cases, two proteins that share a domain also share a common function. For example,

the immunoglobulin-like domain (InterPro accession IPR007110, with over 1000

TABLE 10-3 Fifteen Most Common Domains of Homo sapiens
InterPro Accession Proteins Matched Name

IPR007110 1,176 Immunoglobulin-like

IPR007087 1,055 Zinc finger, C2H2-type

IPR003599 977 Immunoglobulin subtype

IPR011009 883 Protein kinase-like

IPR011993 596 Pleckstrin homology-type

IPR011992 436 EF-Hand type

IPR001849 410 Pleckstrin-like

IPR012677 409 Nucleotide-binding, alpha-beta plait

IPR009057 403 Homeodomain-like

IPR001841 389 Zinc finger, RING-type

IPR013151 386 Immunoglobulin

IPR011989 380 Armadillo-like helical

IPR001452 355 Src homology-3

IPR003596 349 Immunoglobulin V-type

IPR011990 335 Tetratricopeptide-like helical

Source: From the European Bioinformatics Institute (EBI) proteome analysis site (Q http://www.ebi.ac.
uk/integr8) (August 2007), based on the InterPro database (Q http://www.ebi.ac.uk/interpro/).

TABLE 10-2 Definitions of Protein Domains and Motifs from SMART Database
Term Definition

Domain Conserved structural entities with distinctive secondary structure
content and a hydrophobic core. In small disulfide-rich and Zn2þ-
binding or Ca2þ-binding domains, the hydrophobic core may be
provided by cystines and metal ions, respectively. Homologous
domains with common functions usually show sequence similarities.

Domain
composition

Proteins with the same domain composition have at least one copy of
each domain of the query.

Domain
organization

Proteins having all the domains as the query in the same order
(additional domains are allowed).

Motif Sequence motifs are short conserved regions of polypeptides. Sets of
sequence motifs need not necessarily represent homologs.

Profile A profile is a table of position-specific scores and gap penalties,
representing an homologous family that may be used to search
sequence databases (Bork and Gibson, 1996).

Source: Adapted from Q http://smart.embl-heidelberg.de/help/smart_glossary.shtml.
SMART is a tool to allow automatic identification and annotation of domains in user-supplied protein
sequences (see Chapter 6).

Web document 10.1 at Q http://
www.bioinfbook.org/chapter10

lists the 15 most common human

protein families and protein

repeats, from the InterPro

database.
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members) is the most common domain encoded by the human genome. Many pro-

teins having this domain have roles in extracellular signaling (Fig. 10.7). As another

example, in humans there are hundreds of small guanosine triphosphate- (GTP)-

binding proteins (InterPro IPR005225). Many dozens are thought to regulate the

intracellular docking and fusion of transport vesicles through a cycle of GTP binding

and hydrolysis (Geppert et al., 1997). Other, related low molecular weight GTP-

binding proteins function in cell cycle control and cytoskeletal organization

(reviewed in Takai et al., 2001). This superfamily is organized into related subfami-

lies that are usually presumed to share common functions.

Focusing our attention on a single domain, there are many ways in which proteins

can share that domain in common. The entire protein may consist of one domain,

such as the lipocalin domain or globin domain (Fig. 10.8a). Many other small,

globular proteins also consist of a single domain.

It is even more common fora domain to form a subset of a protein. A comparison of

two proteins often indicates that the domains occupy different regions of each protein

(Fig. 10.8b). A group of six proteins contains a domain that confers the ability of

each protein to bind methylated DNA. One of these proteins, methyl-CpG-

binding protein 2 (MeCP2), is a transcriptional repressor that binds the regulatory

region of a variety of genes. (Mutations in the MECP2 gene cause Rett syndrome, a

neurological disorder that affects girls and is one of the most common causes of

mental retardation in females. See Box 20.2.) We can perform a blastp search with

the MeCP2 protein sequence to illustrate the concept of protein domains. The

BLAST formatting page shows that the methyl-CpG-binding domain (MBD) is pre-

sent in several databases of protein domains (Fig. 10.9a). The BLAST search result

FIGURE 10.7. Many proteins have
multiple copies of distinct domains.
The most common domain in
humans is the immunoglobulin
(Ig) domain, and the fibronectin
repeat also commonly occurs. These
domains are especially prevalent in
the extracellular regions of proteins.
Information about domains such
as these is summarized in the
InterPro database.

Immunoglobulin
domain

Fibronectin
repeat

Transmembrane
domain

THY-1 P
0

MAG

N-CAM

NeuroglianL1

TAG-1Contactin

Fasciclin II

extra-
cellular

cyto-
plasmic
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MeCP2

MBD4
MBD2
MBD3

MBD1

(a)

(b)

(c)

MeCP2 486 aa

MBD4 580 aa

MBD2 (testis) 302 aa

MBD2 411 aa

291 aaMBD3

MBD1 605 aaMBD

MBD

MBD

MBD

MBD

MBD

links to Smart00391, LOAD, and Pfam01429 
database entries for methyl-CpG binding domain

FIGURE 10.9. A methyl-binding
domain is found in several human
proteins. To illustrate the concept
of domains, methyl-CpG-binding
protein 2 (MeCP2; NP_004983)
was used as a query in a blastp
search restricted to human pro-
teins. (a) The formatting BLAST
web page shows that this protein
has a domain that is present in sev-
eral databases. (b) The BLAST
search reveals there are five separ-
ate MeCP2 entries that match the
query (top five alignments).
Additionally, there is a region of
about 80 amino acids in MeCP2
that matches other methyl-CpG-bind-
ing proteins: MBD1 (NP_056671),
MBD2 (NP_003918), a testis-specific
isoform of MBD2 (NP_056647),
MBD3 (NP_003917), and MBD4
(NP_003916). (c) These proteins
have different sizes. Also, the
methylated DNA-binding domain
that these proteins share occurs in
different regions of the proteins.
Further BLAST searches confirm
that together these six proteins
share no significant amino acid
identity at any region other than
the methyl-binding domain.

domain x

domain x

(a)

(b)

(c)

domain xdomain x

domain x

protein 1

protein 2

protein 1

protein 2

domain x domain xdomain x protein 1

protein 2domain x

FIGURE 10.8. Proteins can share a common domain in a number of ways. (a) A domain may
extend essentially across the length of a protein. An example of this format is the lipocalin family.
(b) Domains may contain highly related stretches of amino acids that form only a subset of each
protein’s sequence. An example of this situation is found in the family of transcriptional regula-
tors that bind methylated DNA. (c) A domain may be repeated within a single protein (some-
times with many copies). Such a domain may occur in homologous proteins any number of
times. An example is the family of proteins containing a fibronectin III– like repeat.
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shows that a portion of MeCP2 matches five other MBD proteins (Fig. 10.9b).

Furthermore, examination of the MeCP2/MBD family shows that the proteins are var-

ious different sizes, sharing in common only the MBD domain (Fig. 10.9c).

What is the definition of a family; is a group of proteins homologous if they

share only one domain in common? The MBD domains are clearly homologous

(descended from a common ancestor), defining this group of proteins as a family.

But the regions outside the MBD domain share no significant amino acid identity.

A family is a group of evolutionarily related proteins that share one (or more) regions

of homology.

A third scenario for proteins containing individual domains is that the domain

may be repeated many times (Fig. 10.8c). Two of the most common protein domains

in H. sapiens are immunoglobulin domains (Table 10.3) and fibronectin repeats. Both

of these domains are present in variable numbers in a group of proteins having extra-

cellular domains (Fig. 10.7). Notably, these and other extracellular domains are highly

abundant in humans and the multicellular nematode Caenorhabditis elegans but nearly

absent in the single-celled eukaryote Saccharomyces cerevisiae (Copley et al., 1999).

Comparison of protein families that are encoded by various genomes sheds light on

the biological processes that each organism performs (Chapters 13 to 19).

Added Complexity of Multidomain Proteins
So farwe have focused on the subjectof single domains. Multidomainproteins provide a

common, more complicated scenario. HIV-1 gag-pol is an example of such a protein

(Frankel and Young, 1998). The gag-pol gene encodes a single large polypeptide that

is cleaved into several independent proteins with distinct biochemical activities, includ-

ing an aspartyl protease, a reverse transcriptase (RNA-dependent DNA polymerase),

and an integrase. Note that other multidomain proteins, such as the immunoglobulin

domain proteins depicted in Fig. 10.7, maintain separate domains within a mature

polypeptide without cleaving them into separate proteins.

To examine the sequence of gag-pol, we will first go to Entrez Gene at NCBI.

That entry shows that the protein accession is NP_057849 (corresponding to a

protein of 1435 amino acid residues), and it shows that gag-pol encodes at least six

mature proteins, each with a RefSeq identifier (Fig. 10.10a). When we use the

Sequence Retrieval System (SRS) at ExPASy and enter a search of HIV-1 (organism)

and gag-pol, we find 75 entries. Restricting the output to those with a sequence length

of 1435 (Fig. 10.10b), we find just eight matches (Fig. 10.10c). By inspection it is diffi-

cult to know which of these is prototypical (emphasizing the benefits of a RefSeq-like

project that defines reference sequences). Select the first match (SwissProt accession

O93215).ThisSwissProt record includesavarietyof links to relateddatabases, including

InterPro, Pfam, PROSITE, and ProDom, as well as structure databases (Chapter 11).

Follow the ProDom link to a series of proteins sharing at least one domain in common

with HIV-1 pol. The ProDom result is a graphical overview of hundreds of proteins that

share regions in common with HIV-1 pol (Fig. 10.11a).

Protein Patterns: Motifs or Fingerprints
Characteristic of Proteins
Within a domain, there may be a small number of characteristic amino acid residues

that occur consistently. These are called motifs (or fingerprints). An example of a

motif is the amino acids that are reliably found at the active site of an enzyme.

In the aspartyl protease domain of HIV-1 pol, an aspartate residue is crucial for

You can access the Sequence

Retrieval System of ExPASy at

Q http://www.expasy.ch/srs/.
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(a)

(b)

(c)

FIGURE 10.10. Searches for a
multidomain protein. (a) The
Entrez Gene entry for HIV-1 gag-
pol provides RefSeq accession num-
bers for the precursor protein
(NP_057849, 1435 amino acids)
and for six predicted mature
protein products. (b) The
Sequence Retrieval System at
ExPASy includes a flexible query
form with pull-down menus. (c)
Two of the eight SRS results are
shown for gag-pol proteins of
length 1435 residues.

(a)

(b)

domain
(aspartyl protease)

domain
(reverse transcriptase)

Pattern (motif):
several amino acids within

the aspartyl protease domain

Pattern (motif):
several amino acids within
the reverse transcriptase domain

FIGURE 10.11. The UniProtKB/
Swiss-Prot entry for HIV-1 gag-
pol (O93215) includes links to
many other databases, including
ProDom. The ProDom entry
shows over 1300 proteins that
share domains in common with
pol, in almost 400 different
arrangements, several of which
are shown here. This list is obtained
by clicking the ProDom link (“List
of seq. sharing at least 1 domain”)
from the UniProtKB/Swiss-Prot
entry. It can also be accessed
directly from the ProDom database
(Q http://prodom.prabi.fr).
Domains appear as distinct mod-
ules within protein sequences. (b)
A protein may have domains (mod-
ules) which are relatively larger
and patterns (motifs) which typi-
cally consist of only a few amino
acids. Athough a pattern or motif
might not adopt a known three-
dimensional structural confor-
mation, it may nonetheless contain
an amino acid sequence that is
characteristic of a protein family.
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the proteolytic reaction. PROSITE is a dictionary of protein motifs (Sigrist et al.,

2002). Following the link from ExPASy (Fig. 10.3) or searching the site directly,

one finds an entry for aspartyl proteases (Fig. 10.12). The motif is defined by

a string of 12 amino acid residues: [LIVMFGAC]-[LIVMTADN]-[LIVFSA]-D-

[ST]-G-[STAV]-[STAPDENQ]-x-[LIVMFSTNC]-x-[LIVMFGTA]. This format

is identical to that used by PHI-BLAST (Chapter 5). A motif may be inside a

domain (as illustrated in Fig. 10.11b) or outside.

Motifs are typically subsets of protein domains. A short motif that is found in

almost all lipocalins is GXW. The consensus pattern defined in PROSITE (docu-

ment PDOC00187) incorporates several additional amino acids surrounding

GXW. That motif is [DENG]-x-[DENQGSTARK]-x(0,2)-[DENQARK]-

[LIVFY]-{CP}-G-{C}-W-[FYWLRH]-x-[LIVMTA]. The GXW sequence is

represented as G-{C}-W, where the curly brackets indicate that any amino acid

other than cysteine is accepted at that position. Some motifs are extremely short

and very common, such as the sequence surrounding a serine or threonine that is

a substrate for many kinases. Such motifs are not specific to a particular protein

family, and their occurrence in multiple proteins does not reflect homology. A

search of PROSITE for “kinase” reveals three dozen entries, including both kinase

and kinase substrate signatures. One of these entries is for the protein kinase C

(PKC) consensus phosphorylation site, [ST]-x-[RK] (S or T is the phosphorylation

site, and x is any residue) (PROSITE document PDOC00005). This simple motif

occurs in proteins many thousands of times.

An important aspect of regular expressions (or patterns) in the PROSITE data-

base is that they are qualitative (i.e., either matching or not) and not quantitative.

While patterns can accommodate complex definitions, such as having one of several

different amino acid residues in a given position, mismatches are not tolerated when a

protein sequence is compared to a pattern. In contrast to such rigid patterns, many

databases such as Pfam, ProDom, and SMART (described in Chapter 6) use pro-

files. Profiles, like patterns, are built from multiple sequence alignments, but they

FIGURE 10.12. PROSITE is a
database of patterns. The eukary-
otic and viral proteases signature
and profile (document PDCO-
000128) are shown, including a
description of the family, and the
consensus pattern.

PROSITE is accessed at Q http://
www.expasy.org/prosite/. In

PROSITE, the term profile refers

to a quantitative motif description

based on a generalized profile

syntax. The term pattern refers to a

qualitative motif description based

on a regular expression-like syntax

such as those described below.

The term motif refers to the bio-

logical object one attempts to

approximate by a pattern or a

profile. See web document 10.2 at

Q http://www.bioinfbook.org/
chapter10 for these definitions.

You can use the ScanProsite tool

to search a pattern against the

PROSITE database, and the

PRATT tool to generate a pattern

based on an input of unaligned

sequences. See computer lab

Exercise 10.1.
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employ position-specific scoring matrices. They also span larger stretches of protein

sequence than do patterns.

PERSPECTIVE 2. PHYSICAL PROPERTIES OF PROTEINS

Proteins are characterized by a variety of physical properties that derive both from

their essential nature as an amino acid polymer and from a variety of posttranslational

modifications (Table 10.4). Some of these modifications allow the covalent

attachment of a hydrophobic group to a protein to promote insertion into a lipid

bilayer. Examples include palmitoylation, farnesylation, myristylation, and inositol

glycolipid attachment (Fig. 10.13). The InterPro database also lists categories of

posttranslational domains (Table 10.5).

TABLE 10-4 Some Physical Properties of Proteins
Property Classical Method Example

Amino acid motifs — PDZ domain (e.g., nitric oxide
synthase), coiled-coil domain
(e.g., hemagglutinin, syntaxin,
SNAP-25, myosin)

Isoelectric point (pI) Derived from isoelectric
focusing

—

Molecular weight Derived from Stokes
radius and
sedimentation
coefficient

—

Posttranslational
modifications:
phosphorylation

Enzymatic analyses Synapsin

Posttranslational
modifications:
glycosylation

Enzymatic analyses Nerve growth factor, neural cell
adhesion molecule

Posttranslational
modifications:
isoprenylation

Biochemical analyses Lamin B, G protein g subunits,
rab3A

Posttranslational
modifications:
palmitoylation

Biochemical analyses b-Adrenergic receptor, GAP-43,
insulin receptor, rhodopsin,
nAChR

Posttranslational
modifications:
myristoylation

Biochemical analyses PKA, Gia-subunit, MARCKS
protein, calcineurin

Posttranslational
modifications: GPI-
anchored proteins

Enzymatic analyses Alkaline phosphatase, thy-1, prion
protein, 50-nucleotidase,
uromodulin

Sedimentation coefficient Derived from sucrose
density gradients

—

Stokes radius Derived from gel
filtration

—

Transmembrane domain Derived from subcellular
fractionation

—

Abbreviations: G protein, guanosine triphosphate-binding protein; GAP-43, growth-associated protein of
43 kDa; MARCKS, myristoylated alanine-rich C-kinase substrate; nAChR, nicotinic acetylcholine recep-
tor; PDZ domain, post-synaptic density protein PSD-95, the Drosophila tumor suppressor discs-large,
tight-junction protein ZO-1; PKA, protein kinase A; SNAP-25, synaptosomal-associated protein of
25 kDa; Rab3A, rat brain GTP-binding protein 3A; thy-1, thymocyte-1.

For websites offering protein motif

analysis tools, see Table 10.11

under Web Resources.

The COILS server is available at

Q http://www.ch.embnet.org/
software/COILS_form.html.

PERSPECTIVE 2. PHYSICAL PROPERTIES OF PROTEINS 397



FIGURE 10.13. A variety of post-
translational modifications are
added to proteins. Examples are
palmitoylation (e.g., to the trans-
ferrin receptor and SNAP-25),
farnesylation (e.g., to ankyrin),
myristoylation (e.g., to protein
kinase A), and inositol glycolipid
anchoring to a membrane (e.g.,
neural cell adhesion molecule, thy-
1, and 50-nucleotidase). While
these covalent modifications can
be studied biochemically, a variety
of websites offer predictions of poss-
ible sites of covalent modification to
proteins. Adapted from Austen and
Westwood (1991, p. 42). Used with
permission.
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TABLE 10-5 Posttranslational Modifications at InterPro
IPR000042 N-glycosylation site

IPR000134 Amidation site

IPR000152 Aspartic acid and asparagine hydroxylation site

IPR000220 Tyrosine kinase phosphorylation site

IPR000338 N-myristoylation site

IPR000430 Casein kinase II phosphorylation site

IPR000865 Microbodies C-terminal targeting signal

IPR000886 Endoplasmic reticulum targeting sequence

IPR001020 Phosphotransferase system, HPr histidine phosphorylation site

IPR001120 Prokaryotic N-terminal methylation site

IPR001230 Prenyl group, CAAX box, attachment site

IPR001495 Protein kinase C phosphorylation site

IPR001637 Glutamine synthetase class-I, adenylation site

IPR001833 cAMP/cGMP-dependent protein kinase phosphorylation site

IPR002114 Phosphotransferase system, HPr serine phosphorylation site

IPR002332 P-II protein urydylation site

IPR006141 Intein splicing site

IPR006162 Phosphopantetheine attachment site

Source: InterPro (Q http://www.ebi.ac.uk/interpro/), October 2007.
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Avarietyofweb-based services are available to evaluate the predicted physical prop-

erties of proteins. Resources are available to input an individual protein sequence and to

predict its physical properties, such as mass and isoelectric point (pI; Fig. 10.14 and

Table 10.12 under Web Resources), amino acid composition, glycosylation sites

(Table 10.13), phosphorylation sites in which kinases reversibly add a phosphate

group to individual serine, threonine, or tyrosine residues (Fig. 10.15), and tyrosine

sulfation (Table 10.14 under Web Resources). Many programs predict secondary-

structure features of proteins (see Chapter 11). One such feature is coiled-coil regions,

which are typically associated with protein–protein interaction domains (Lupas et al.,

1991; Lupas, 1997) (Fig. 10.16).

Accuracy of Prediction Programs
For each of these various prediction programs, it is important to assess the accuracy.

This is typically done by measuring sensitivity and specificity relative to a “gold

FIGURE 10.15. The ExPASy web
server offers a large group of protein
analysis tools such as the NetPhos
server for prediction of phosphoryl-
ation sites (Q http://www.cbs.dtu.
dk/services/NetPhos/). Beta globin
protein sequence was input and
the output includes two likely sites
for phosphorylation on serines,
two on threonines, and none on
tyrosines based on scores exceeding
a threshold value of 0.5. Such infor-
mation on sulfation, phosphoryl-
ation, glycosylation, or other
posttranslational modifications
may be fundamental in designing
experiments to test the function of
a protein.

Compute pl/Mw
HBB_HUMAN (P68871)

DE
DE [Contains: LVV–hemorphin–7].

Hemoglobin subunit beta (Hemoglobin beta chain) (Beta-globin)

The computation has been carried out on the complete sequence (147 amino acids).

Molecular weight (average): 15998.41

Theoretical pl: 6.74

FIGURE 10.14. The Compute pI/
Mw server at ExPASy calculates
the predicted molecular weight
and isoelectric point of input pro-
teins. Here, the values for beta
globin are calculated. Programs at
ExPASy do not accept RefSeq acces-
sion numbers as input (e.g.,
NP_000509 for beta globin), but
do accept raw sequence or Uni-
Prot accessions (e.g., P68871).
Pairwise BLAST (Chapter 3) con-
firms that these two sequences
are identical.
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standard” of a set of proteins known to have a particular modification. In recent dec-

ades, the physical properties of proteins were assessed at the laboratory bench, one

protein at a time (Cooper, 1977). The molecular mass of a protein can be estimated

by gel filtration chromatography or by polyacrylamide gel electrophoresis (PAGE). Its

shape can be estimated by calculating the frictional coefficient, obtained through a

combination of gel filtration and sucrose density gradient centrifugation. Such tech-

niques cannot be applied to large numbers of proteins. Almost all proteins that are

studied using the tools of bioinformatics have not been purified, but instead the

protein sequence is predicted from genomic DNA or cDNA sequence data.

Prediction programs vary in their accuracy. For proteins with typical amino acid

compositions, the prediction of the molecular weight and pI (Fig. 10.14) is likely

to be accurate. These protein features can also be confirmed experimentally

using techniques such as gel electrophoresis and isoelectric focusing. A prediction

algorithm may accurately specify that a protein has a consensus site for phosphoryl-

ation or sulfation, but these modifications are not necessarily made in living cells, and

their regulation is likely to be dynamic. One can ask whether a protein has a potential

site for modification, and a separate question is the conditions under which such

modification occurs.

FIGURE 10.16. The coils program
of Lupas et al. (1991) assesses the
likelihood that a protein sequence
forms a coiled-coil structure. (a)
Output of the coils program using
human SNAP-25 protein (NP_
003072) as input. The result
depicts the probability that the
protein will form a coiled-coil sec-
ondary structure motif (y axis)
across the length of the protein
(x axis). Coiled-coils often rep-
resent protein–protein interaction
domains. In this case, the coiled-
coils of SNAP-25, a peripherally
associated plasma membrane
protein, allow it to bind tightly to
two other proteins (syntaxin
and vesicle-associated membrane
protein [VAMP/synaptobrevin])
to coordinate synaptic vesicle dock-
ing and neurotransmitter release
at the presynaptic nerve terminal.
(b) According to the Conserved
Domain Database (CDD at
NCBI), SNAP-25 has two
t-SNARE domains that are known
to coordinate binding to syntaxin
and VAMP. These domains par-
tially overlap the predicted coiled-
coil domains.
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Proteomic Approaches to Phosphorylation
It has been estimated that one third of all proteins are phosphorylated, affording an

important mechanism for regulating their function. Also, there are nearly 1000

kinases encoded by the human genome. The accuracy of computational-based (“in

silico”) prediction programs can be measured. To generate the phosphorylation

site predictions used by the NetPhos program (Fig. 10.15), Blom et al. (1999) ana-

lyzed a large number of amino acid sequences surrounding known acceptor residues

on substrate proteins. They applied an artificial neural network to classify sequence

patterns in a training set, and then examined a test set. This allowed them to deter-

mine the sensitivity (proportion of positive sites correctly predicted) and specificity

(proportion of all positive classifications that are correct). A challenge they addressed

is that the sequence databases include sites incorrectly annotated as nonphosphory-

lated (i.e., the false positive rate of their program was inappropriately high). Some

methods Blom et al. (1999) tested surpassed 95% sensitivity and specificity for pre-

dictions of phosphorylation on serine, with less accuracy for predictions on threonine

or tyrosine.

Competitions that are open to the research community allow us to assess the state

of proteomics techniques under laboratory conditions. The Association of

Biomolecular Resource Facilities (ABRF), discussed above, assessed the ability of

54 laboratories to detect phosphorylation sites (Arnott et al., 2003). They prepared

a sample consisting of bovine protein disulfide isomerase (PDI; 5 picomoles), two

phosphopeptides corresponding to PDI (length 8 and 17 amino acids; 1 picomole

each), and bovine serum albumin (BSA; 200 femtomoles). After proteolytic diges-

tion with trypsin, the samples were distributed blind to the research community

and 54 laboratories reported 67 analyses; 96% of the laboratories identified PDI,

but only 10% detected BSA. There was a surprisingly low success rate for detecting

the phosphopeptides and assigning the phosphorylation site: only 3 of 54 laboratories

did so for both phosphopeptides. This study highlights the enormous challenges

of experimental protein analyses. Most of the laboratories employed MALDI-TOF

or LC-MS.

In addition to considering the phosphorylation of individual proteins, some

investigators have examined the total collection of phosphorylated sites in a biological

sample (the “phosphoproteome”) ( Kalume et al., 2003; Ptacek and Snyder, 2006).

Advances have occurred in the ability to enrich complex mixtures for phosphopro-

teins, and in mass spectrometry approaches. For example, Ptacek et al. (2005) deter-

mined the substrates recognized by 87 different yeast protein kinases (of the total of

122 annotated kinases from Saccharomyces cerevisiae). They used protein chips con-

taining �4400 proteins present in duplicate. They catalogued about 4200 phos-

phorylation events affecting 1325 proteins, and validated some of the findings in vivo.

A variety of databases provide annotation of posttranslational modifications of

proteins. The Human Protein Reference Database (HPRD) features expert curation

on thousands of proteins, including information on phosphoproteins (Mishra et al.,

2006). Phospho3D specifically focuses on three-dimensional structures of phos-

phorylation sites (Zanzoni et al., 2006).

Proteomic Approaches to Transmembrane Domains
What is the accuracy of a program that predicts transmembrane topology? It is easy to

use a search tool to find a prediction. However, this is fundamentally a cell biological

question, and it requires the tools of cell biology to obtain a clear answer. Many

Some proteins with unusual

occurrences of particular amino

acids are given in Table 10.15

under Web Resources. We pro-

vided other examples in web

documents 4.1 to 4.4 at Q http://
www.bioinfbook.org/chapter4.

These proteins may have physical

properties (such as pI) that are

difficult to predict.

The data from Ptacek et al. (2005)

are available at Q http://networks.

gersteinlab.org/phosphorylome/.

HPRD is available at Q http://
www.hprd.org. It includes a

PhosphoMotif Finder. Currently

(November 2007) HPRD

includes over 25,000 protein

entries. Phospho3D is at Q http://
cbm.bio.uniroma2.it/
phospho3d/.
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proteins have stretches of 10 to 25 hydrophobic amino acid residues that may form

transmembrane domains. The most rigorous assessment of the true number of

transmembrane domains comes from experimental approaches such as immunocyto-

chemistry. Specific antisera can be raised in rabbits, mice, or other species and used

to detect an antigen (such as a cell surface receptor) in a sample affixed to a microscope

slide. In unpermeabilized cells, the antisera can be used to visualize protein regions that

are oriented outside the cell. However, when cells are permeabilized with detergent, the

antisera can gain access to the cytosol and thus can visualize intracellular (cytoplasmic)

domains. Cell biological analyses such as these have been used to experimentally deter-

mine the number of transmembrane domains, and in many cases these results contra-

dict the predictions of hydropathy plots (e.g., Ratnam et al., 1986).

One prominent program for transmembrane domain prediction, TMHMM,

employs a hidden Markov model whose states include regions spanning the mem-

brane (the core of a transmembrane helix as well as cytoplasmic and noncytoplasmic

caps) and globular regions and loops on the cytoplasmic and noncytoplasmic sides of

the membrane (Krogh et al., 2001). The accuracy of this program in predicting the

topology of 160 proteins was about 78%. A further advance comes from incorporat-

ing information about transmembrane domains with signal peptide predictions (Käll

et al., 2007). In analyses of various eukaryotic and prokaryotic genomes about 5% to

10% of all proteins had predicted transmembrane segments that overlap predicted

signal peptides (as predicted by software such as SignalP). TMHMM improves its

accuracy by accounting for this.

INTRODUCTION TO PERSPECTIVES 3 AND 4: GENE

ONTOLOGY CONSORTIUM

An ontology is a description of concepts. The GO Consortium is a project that com-

piles a dynamic, controlled vocabulary of terms related to different aspects of genes

and gene products (proteins) (Thomas et al., 2007). A prominent use of this vocabu-

lary is to annotate and interpret the results of microarray experiments that profile

RNA transcripts, although many other kinds of high throughput assays are also anno-

tated using GO (Beissbarth, 2006; Whetzel et al., 2006). The consortium was begun

by scientists associated with three model organism databases: the Saccharomyces

Genome Database (SGD), the Drosophila genome database (FlyBase), and the

Mouse Genome Informatics databases (MGD/GXD) (Ashburner et al., 2000,

2001). Subsequently, databases associated with many other organisms have joined

the GO Consortium (Table 10.6). The GO database is not centralized per se but

instead relies on external databases (such as a mouse database) in which each gene

or gene product is annotated with GO terms. Thus, it represents an ongoing,

cooperative effort to unify the way genes and gene products are described. There

are several web browsers that serve as principal gateways to search GO terms

(Table 10.7). Additionally, Entrez Gene and Entrez Protein entries at NCBI

(Chapter 2) contain GO terms.

There are three main organizing principles of GO: (1) molecular function, (2)

biological process, and (3) cellular component. Molecular function refers to the

tasks performed by individual gene products. For example, a protein can be a tran-

scription factor or a carrier protein. Biological process refers to the broad biological

goals that a gene product (protein) is associated with, such as mitosis or purine

The Membrane Protein Data

Bank (Raman et al., 2006) sum-

marizes proteins for which three-

dimensional structural data are

available. It is online at Q http://
www.mpdb.ul.ie/.

The TMHMM server is available

at Q http://www.cbs.dtu.dk/
services/TMHMM/. The

Phobius web server is at Q http://
phobius.cgb.ki.se/. SignalP

(Emanuelsson et al., 2007) has a

server at Q http://www.cbs.dtu.

dk/services/SignalP/.

The Gene Ontology Consortium

main web site is Q http://www.

geneontology.org/.
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metabolism. Cellular component refers to the subcellular localization of a protein.

Examples include nucleus and lysosome. Any protein may participate in more than

one molecular function, biological process, and/or cellular component.

Genes and gene products are assigned to GO categories through a process of

annotation. The author of each GO annotation supplies an evidence code that indi-

cates the basis for that annotation (Table 10.8). As an example of a GO-annotated

protein look at the Entrez Gene entry for human beta globin (HBB; Fig. 10.17).

Entrez Gene entries include a section on function that includes information

from OMIM (Chapter 20), Enzyme Commission nomenclature (see below), and

GO terms. For HBB, the GO terms include heme binding, oxygen binding, and

oxygen transporter activity (molecular functions); oxygen transport (a biological pro-

cess); and hemoglobin complex (a cellular component).

You can also access gene ontology information by entering a query term such as

“HBB” or “lipocalin” into a GO web browser. In some cases the output includes a

graphical tree view. This displays the relationships between the different levels of

TABLE 10-6 Participating Organizations and Databases in Gene Ontology Consortium

Database or Organization Organism
Common

Name URL

Berkeley Drosophila Genome
Project

Drosophila
melanogaster

Fly Q http://www.fruitfly.
org/

DictyBase Dictyostelium
discoideum

Slime
mold

Q http://dictybase.
org/

European Bioinformatics
Institute (EBI)

Various — Q http://www.ebi.ac.
uk/GOA/

FlyBase D. melanogaster Fly Q http://flybase.bio.
indiana.edu/

GeneDB (Wellcome Trust
Sanger Institute)

Protozoans, fungi — Q http://www.
genedb.org/

Gramene Oryza sativa;
other grains,
monocots

Rice Q http://www.
gramene.org/

HUGO Gene Nomenclature
Committee

Various — Q http://www.
genenames.org/

Mouse Genome Database
(MGD) and Gene
Expression Database (GXD)

Mus musculus Mouse Q http://www.
informatics.jax.org/

Rat Genome Database (RGD) Rattus Rat Q http://rgd.mcw.
edu/

Reactome — — Q http://www.
genomeknowledge.
org/

Saccharomyces Genome
Database (SGD)

Saccharomyces
cerevisiae

Baker’s
yeast

Q http://www.
yeastgenome.org/

The Arabidopsis
Information Resource
(TAIR)

Arabidopsis
thaliana

Thale cress Q http://www.
arabidopsis.org/

The J. Craig Venter Institute Various — Q http://www.jcvi.
org/

WormBase Caenorhabditis
elegans

Worm Q http://www.
wormbase.org/

Zebrafish Information Network Danio rerio Zebrafish Q http://zfin.org/

Source: Adapted from Q http://www.geneontology.org/. Updated November 2007.
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TABLE 10-7 Websites Useful to Access Gene Ontology Data
Browser Description URL

AmiGO GO browser from the Berkeley
Drosophila Genome Project

Q http://amigo.
geneontology.org/cgi-
bin/amigo/go.cgi

Mouse Genome
Informatics (MGI)
GO Browser

From Jackson Laboratories Q http://www.
informatics.jax.org/
searches/GO_form.
shtml

“QuickGO” at EBI From the EMBL and European
Bioinformatics Institute;
integrated with InterPro
(Chapter 10)

Q http://www.ebi.ac.uk/
ego/

Expression Profiler
(EP) GO Browser

GO browser and analysis tool that
is part of the EP suite at the
European Bioinformatics
Institute

Q http://ep.ebi.ac.uk/
EP/GO/

Cancer Gene Anatomy
Project (CGAP) GO
Browser

From the National Cancer Institute,
NIH

Q http://cgap.nci.nih.
gov/Genes/
AllAboutGO

TABLE 10-8 Evidence Codes for Gene Ontology Project
Abbreviation Evidence Code Example(s)

IC Inferred by curator A protein is annotated as having the function of
a “transcription factor.” A curator may then
infer that the localization is “nucleus”

IDA Inferred from direct assay An enzyme assay (for function);
immunofluorescence microscopy (for
cellular component)

IEA Inferred from electronic
annotation

Annotations based on “hits” in searches such as
BLAST (but without confirmation by a
curator; compare ISS)

IEP Inferred from expression
pattern

Transcripts levels (e.g., based on Northern
blotting or microarrays) or protein levels
(e.g., from Western blots)

IGC Inferred from Genomic
Context

Identity of the genes neighboring the gene
product in question (i.e., synteny), operon
structure, and phylogenetic or other whole
genome analysis

IGI Inferred from genetic
interaction

Suppresors; genetic lethals; complementation
assays; experiments in which one gene
provides information about the function,
process, or component of another gene

IMP Inferred from mutant
phenotype

Gene mutation; gene knockout; overexpression;
antisense assays

IPI Inferred from physical
interaction

Yeast two-hybrid assays; copurification;
co-immunoprecipitation; binding assays

ISS Inferred from sequence or
structural similarity

Sequence similarity; domains; BLAST results
that are reviewed for accuracy by a curator

NAS Nontraceable author
statement

Database entries such as a SwissProt record
that does not cite a published paper

(Continued )

404 PROTEIN ANALYSIS AND PROTEOMICS



GO terms. These have the form of a “directed acyclic graph” or network. This differs

from a hierarchy in that in a hierarchy each child term can have only one parent, while

in a directed acyclic graph it is possible for a child to have more than one parent. A

child term may be an instance of its parent term, in which case the graph is labeled

“isa,” or the child term may be component of the parent term (a “partof” relation-

ship). This complicates the structure of the terms in GO and the evaluation of

their biological and statistical significance. Some statistical tests assess the likelihood

that each GO category is under- or overrepresented more than is expected by chance.

However, a concept such as “mitochondria” occurs in all three categories (biological

process, molecular function, cellular compartment) at multiple levels.

TABLE 10-8 Continued
Abbreviation Evidence Code Example(s)

ND No biological data
available

Corresponds to “unknown” molecular
function, biological process, or cellular
compartment

RCA Inferred from Reviewed
Computational Analysis

Predictions based on large-scale experiments
(e.g., genome-wide two-hybrid, genome-
wide synthetic interactions); predictions
based on integration of large-scale datasets of
several types; text-based computation (e.g.,
text mining)

TAS Traceable author
statement

Information in a review article or dictionary

NR Not recorded Used for annotations done before curators
began tracking evidence types

Source: Adapted from Q http://www.geneontology.org/.

FIGURE 10.17. The GO Consor-
tium provides a dynamic, con-
trolled vocabulary that describes
genes and gene products from a
variety of organisms. Its three orga-
nizing principles are molecular
function, biological process, and
cellular component. GO terms
can be accessed through a variety
of browsers or through Entrez
Gene, as shown for human beta
globin. These GO terms at NCBI
are obtained from the Gene
Ontology Annotation (GOA)
Database at the European Bioin-
formatics Institute (Q http://
www.ebi.ac.uk/GOA/).
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We will next consider protein localization and protein function. These topics

loosely correspond to the GO categories “cellular component” and “molecular func-

tion.” In Chapter 12 we will discuss protein pathways, although the GO category

“biological process” does not refer specifically to pathways.

PERSPECTIVE 3: PROTEIN LOCALIZATION

The cellular localization of a protein is one of its fundamental properties. Proteins are

synthesized on ribosomes from mRNA. Some proteins are synthesized in the cytosol.

Other proteins, destined for secretion or insertion in the plasma membrane, are

inserted into the endoplasmic reticulum (in eukaryotes) or into the plasma mem-

brane (in prokaryotes). This insertion, which occurs either cotranslationally or post-

translationally, is mediated by the signal recognition particle, an RNA–multiprotein

complex (Stroud and Walter, 1999). In the endoplasmic reticulum, proteins may be

transported through the secretory pathway to the Golgi apparatus and then to further

destinations such as intracellular organelles (e.g., endosomes, lysosomes) or to the

cell surface.

Proteins may further be secreted into the extracellular milieu. The trafficking of

a protein to its appropriate destination is achieved by transport in secretory vesicles.

These vesicles are typically 50 to 100 nanometers in diameter, and they transport

soluble or membrane-bound cargo to specific compartments.

We may also distinguish two main categories of proteins based on their relation-

ships to phospholipid bilayers: (1) those that are soluble and exist in the cytoplasm, in

the lumen of an organelle, or in the extracellular environment, and (2) those that are

membrane attached, associated with a lipid bilayer. Those proteins associated with

membranes may be integral membrane proteins (having a span of 10 to 25 hydro-

phobic amino acid residues that traverse the lipid bilayer) or they may be peripherally

associated with membranes (attached via a variety of anchors such as those shown

in Fig. 10.13).

Many proteins defy categorization into one static location in the cell. For

example, the annexins and the low molecular weight GTP-binding proteins are

families of proteins that migrate between the cytosol and a membrane compartment.

This movement typically depends on the presence of dynamically regulated cellular

signals such as calcium or transient phosphorylation.

Proteins are often targeted to their appropriate cellular location because of intrin-

sic signals embedded in their primary amino acid sequence. For example, the

sequence KDEL (lysine–aspartic acid–glutamic acid–leucine) at the carboxy termi-

nus of a soluble protein specifies that it is selectively retained in the endoplasmic reti-

culum. Other targeting motifs have been identified for import into mitochondria,

lysosomes, or peroxisomes and for endocytosis. However, these motifs are typically

not as invariant as KDEL.

Several web-based programs predict the intracellular localization of any individ-

ual protein sequence (see Web Resources, Tables 10.16 and 10.17). For example,

WoLF PSORTaccurately predicts the signal sequence at the amino terminus of reti-

nol-binding protein (Fig. 10.18). This signal peptide is characteristic of proteins that

enter the secretory pathway in the endoplasmic reticulum. WoLF PSORTanalyzes a

protein query for localization features based on sorting signals, amino acid compo-

sition, and functional motifs (Horton et al., 2007). It then uses a k-nearest neighbor

classifier to predict the localization.

In eukaryotic cells, the intracellu-

lar organelles account for up to

95% of the cell’s membranes.

You can access WoLF PSORT

server at Q http://wolfpsort.org/.
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In addition to evaluating the location of individual proteins, it is possible to apply

high throughput technologies. Michael Snyder and colleagues attempted the first

proteome-scale analysis of protein localization (Kumar et al., 2002). They cloned

cDNA encoding several thousand proteins from the budding yeast S. cerevisiae,

incorporating epitope tags into the carboxy- or amino-terminals. An epitope tag is

a short protein fragment, such as the nine-amino-acid hemagglutinin (HA) peptide,

that is attached covalently to a protein of interest. An antiserum that detects the epi-

tope tag can then be used to localize the protein of interest by immunofluoresence

microscopy or to purify the protein (and its binding partners) by immunoprecipita-

tion with an anti–epitope tag antiserum. The directed cloning approach of Kumar

et al. allowed them to systematically evaluate the location of many specific proteins

of interest. As a complementary strategy, they used random transposon-mediated

tagging of genes.

Kumar et al. 2002 generated over 13,000 yeast strains and determined the sub-

cellular localization of 2744 yeast proteins by immunofluorescence microscopy using

monoclonal antibodies directed against the epitope tags. Many proteins of unknown

function were assigned to intracellular locations. For example, if a protein is localized

to the yeast peroxisome, then this suggests it may function in fatty acid metabolism.

PERSPECTIVE 4: PROTEIN FUNCTION

We have described bioinformatics tools to describe protein families, their physical

properties, and the cellular localization of proteins. A fourth aspect of proteins is

their function (Raes et al., 2007). Function is defined as the role of a protein in a

cell (Jacq, 2001). Each protein is a gene product that interacts with the cellular

FIGURE 10.18. The WoLF PSORT server provides a web-based query form to predict the sub-
cellular location of a protein. The program searches for sorting signals and other features that are
characteristic of proteins localized to particular compartments. The output of a search using reti-
nol-binding protein protein sequence (NP_006735) includes 32 nearest neighbors (of which ten
are shown here in rows along with the query). The columns include features analyzed including
site (proposing correctly that the query is extracellular), results of the iPSORT program (includ-
ing calculations of the negative charge and hydrophobicity of the initial 25 to 30 amino acid resi-
dues), and results from the PSORT program (including the presence of motifs typical of proteins
localized to various subcellular compartments). The output shows that there is strong evidence
for a signal peptide with a cleavage site between amino acid residues 16 and 17. Such a signal
peptide characterizes proteins that enter the secretory pathway where some (such as RBP) are
secreted outside the cell.

Bacterial transposons are mobile

DNA elements that can be ran-

domly inserted into genomic

DNA. The transposons can be

modified to incorporate an epitope

tag. This strategy is practically

simpler than directed cloning of

specific yeast cDNAs, although

from an experimental point of

view transposon-tagged proteins

are difficult to localize in cells.

A database with 2900 fluorescence

micrographs of the Kumar et al.

2002 data is available at Q http://
ygac.med.yale.edu.

PERSPECTIVE 4: PROTEIN FUNCTION 407



environment in some way to promote the cell’s growth and function. We can consider

the concept of function from seven perspectives (Fig. 10.19):

1. A protein has a biochemical function synonymous with its molecular func-

tion. For an enzyme, the biochemical function is to catalyze the conversion

of one or more substrates to product(s). For a structural protein such as

actin or tubulin, the biochemical function is to influence the shape of a cell.

For a transport protein, the biochemical function is to carry a ligand from

one location to another. (Such a transport role may even occur in the absence

of a requirement for an energy source such as ATP—in such a way, retinol-

binding protein transports retinol through serum, and hemoglobin transports

oxygen.) For a hypothetical protein that is predicted to be encoded by a gene,

the biochemical function is unknown but is presumed to exist. There are

thought to be no proteins that exist without a biochemical function.

2. Functional assignment is often made based on homology. Currently when a

genome is sequenced the great majority of its predicted proteins can be

FIGURE 10.19. Protein function
may be analyzed from several per-
spectives. Retinol-binding protein
(RBP) is used as an example.

biochemical function
(molecular function)

function assigned 
based on homology

RBP binds retinol, and thus could be a carrier protein

RBP is homologous to other lipocalins
such as the odorant-binding protein 
that are thought to be carrier proteins

function based
on ligand binding

specificity
retinol

RBP binds retinol (vitamin A) but not
odorants or other ligands

function based on
cellular process

RBP is an abundant,
soluble protein that is
secreted into blood
where it may serve 
as a carrier 

function based on
biological process

Vitamin A is essential for vision; mutations
in the RBP gene are associated with visual defects

function based on
"functional genomics"

or high throughput
"proteomics" studies

RBP protein levels are elevated during renal
failure and are decreased during malnutrition and
liver disease, based on 2-dimensional gel
analyses

function based
on structure

x-ray crystallography reveals that RBP forms a cup-like
structure (a calyx) lined with hydrophobic amino acid
residues that serves as a ligand binding site
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functionallyassignedbasedon orthology. If ahypothetical protein is homologous

to an enzyme, it is often provisionally assigned that enzymatic function. This is

best viewed as a hypothesis that must be tested experimentally. As an example,

many globin-like proteins occur in bacteria, protozoa, and fungi having

biochemical properties distinct from those of vertebrate globins (Poole and

Hughes, 2000).

3. Function may be assigned based on structure (Chapter 11). If a protein has a

three-dimensional fold that is related to that of a protein with a known

function, this may be the basis for functional assignment. Note, however,

that structural similarity does not necessarily imply homology, and homology

does not necessarily imply functional equivalence.

4. All proteins function in the context of other proteins and molecules. Thus, a

definition of a protein’s function may include its ligand (if the protein is a

receptor), its substrate (if the protein is an enzyme), its lipid partner (if the

protein interacts with membrane), or any other molecule with which it inter-

acts. The odorant-binding protein (OBP) is a lipocalin that binds a variety of

odorants in nasal mucus, suggesting that the binding properties of the protein

are central to its function (Pevsner et al., 1990). However, the biological

function of OBP is not known from its ligand-binding properties alone.

The protein could transport odorants toward the olfactory epithelium to

promote sensory perception, it could carry odorants from the olfactory

epithelium to facilitate odorant clearance, or it could metabolize odorants.

5. Many proteins function as part of a distinct biochemical pathway such as the

Krebs cycle, in which discrete steps allow the cell to perform a complex

task. Other examples are fatty acid oxidation in peroxisomes or proteolytic

degradation that is accomplished by the proteasome.

6. Proteins function as part of some broad cell biological process. Cells divide,

grow, and senesce; neurons have axons that display outgrowth, pathfinding,

target recognition, and synapse formation; and all cells secrete molecules

through discrete pathways. All cellular processes require proteins in order

to function, and each individual protein can be defined in the context of

TABLE 10-9 Functional Assignment of 4808 Proteins Based onTheir Enzymatic Activity: Partial List
of Enzyme Commission Classification System
EC
Number

Description of
Class

No. of
Enzymes Example of Subclass

1. -. -. - Oxidoreductases 1,317

1. 1. -. - — — Acting on the CH–OH group of
donors

1. 2. -. - — — Acting on the aldehyde or oxo group of
donors

2. -. -. - Transferases 1,297

2. 1. -. - — — Transferring one-carbon groups

3. -. -. - Hydrolases 1,437

4. -. -. - Lyases 441

5. -. -. - Isomerases 172

6. -. -. - Ligases 144

Source: From Q http://www.expasy.org/enzyme/ (November 2007).
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the broad cellular function it serves. The Gene Ontology Consortium

(Ashburner et al., 2000, p. 27) defines a biological process as “a biological

objective to which the gene or gene product contributes. A process is

accomplished via one or more ordered assemblies of molecular functions.

Processes often involve a chemical or physical transformation, in the sense

that something goes into a process and something different comes out of it.”

7. Protein function can be considered in the context of all the proteins that are

encoded by a genome—that is, in terms of the proteome. The term functional

genomics refers to the attempt to use experimental approaches and/or

TABLE 10-10 Functional Classification of Proteins in Clusters of Orthologous Groups Database

General Category Function

Clusters of
Orthologous

Groups Domains

Information storage
and processing

Translation, ribosomal structure,
and biogenesis

245 10,572

RNA processing and
modification

25 137

Transcription 231 11,271
Replication, recombination, and

repair
238 10,338

Chromatin structure and
dynamics

19 228

Cellular processes
and signaling

Cell cycle control, cell division
chromosome partitioning

72 1,678

Defense mechanisms 46 2,380
Signal transduction mechanisms 152 7,683
Cell wall/membrane/envelope

biogenesis
188 7,858

Cell motility 96 2,747
Cytoskeleton 12 128
Extracellular structures 1 25
Intracellular trafficking,

secretion, vesicular transport
159 3,743

Posttranslational modification,
protein turnover, chaperones

203 6,206

Energy production and
conversion

223 5,584

Carbohydrate transport and
metabolism

170 5,257

Metabolism Energy production and
conversion

258 9,830

Carbohydrate transport and
metabolism

230 10,816

Amino acid transport and
metabolism

270 14,939

Nucleotide transport and
metabolism

95 3,922

Coenzyme transport and
metabolism

179 6,582

Lipid transport and metabolism 94 5,201
Inorganic ion transport and

metabolism
212 9,232

Secondary metabolites
biosynthesis, transport and
catabolism

88 4,055

Poorly characterized General function prediction only 702 22,721
Function unknown 1,346 13,883

Source: From Q http://www.ncbi.nlm.nih.gov/COG/ (November 2007).
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computational tools to analyze the role of many hundreds or thousands of

genes and gene products. Since the ultimate product of transcription is often

a protein, the term functional genomics is sometimes applied to large-scale

studies of protein function. Chapter 12 addresses the topic of functional

genomics.

Thus, protein function can be defined in many ways. Many proteins are enzymes.

The Enzyme Commission (EC) system provides a standardized nomenclature for

almost 4000 enzymes (Table 10.9). When a genome is sequenced and a potential

protein-coding sequence is identified, homology of that protein to an enzyme with

a defined EC listing provides a specific, testable hypothesis about the biochemical

function of that hypothetical protein.

Another broader approach to the functional assignment of proteins is provided

by the Clusters of Orthologous Groups (COGs) database (Tatusov et al., 1997;

Chapter 15). The functional groups defined by this system are listed in Table 10.10.

While the COGs database has initially focused on prokaryotic genomes, the general

categories are relevant to basic cellular processes in all living organisms. Many other

functions that are unique to eukaryotes, such as apoptosis and complex develop-

mental processes, are now represented in the eukaryotic portion of the COGs scheme

(Tatusov et al., 2003).

PERSPECTIVE

In this chapter we have considered bioinformatics approaches to individual

proteins. In Chapter 11 we will next consider protein structure, which provides us

with deeper insight into the nature of proteins, including their domains, physical

properties, and function. Then in Chapter 12 (functional genomics) we will explore

high throughput approaches to studying sets of proteins (e.g., techniques employing

gel electrophoresis and mass spectrometry), as well as protein–protein interactions.

In the past decade, our understanding of the properties of proteins has advanced

dramatically, from the level of biochemical function to the role of proteins in cellular

processes. Advances in instrumentation have propelled mass spectrometry into a

leading role for many proteomics applications.

Many web-based tools are available to evaluate the biochemical features of individ-

ual proteins. Such programs can predict the existence of glycosylation, phosphorylation,

or other sites. These predictions can be extremely valuable in guiding the biologist to

experimentally test the possible posttranslational modifications of a protein.

High throughput approaches such as two-dimensional gel electrophoresis and

the yeast two-hybrid system have been used in an effort to define the function of

all proteins. Large numbers of proteins still have no known function because they

lack detectable homology to other characterized proteins. We will continue to

obtain a more comprehensive description of protein function as distinct high

throughput strategies are applied to model organisms, such as large-scale analyses

of protein localization and protein interactions.

PITFALLS

Many of the experimental and computational strategies used to study proteins have

limitations. Two-dimensional protein gels are most useful for studying relatively

abundant proteins, but thousands of proteins expressed at low levels are harder to

Apoptosis is programmed cell

death. It occurs in a variety of

multicellular organisms, both as a

normal process in development

and as a homeostatic mechanism

in adult tissues. Apoptosis can be

triggered by external stimuli (such

as infectious agents or toxins) or

by internal agents such as those

causing oxidative stress. You can

visit the COGs database at

Q http://www.ncbi.nlm.nih.gov/
COG/.
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characterize. Experimental approaches are extremely challenging in practice, as

shown by the ABRF critical assessments.

WEB RESOURCES

TABLE 10-12 Tools to Analyze Primary and/or Secondary Structure Features of Proteins
Program Source/Comment URL

COILS Prediction of coiled-coil regions in
proteins

Q http://www.ch.embnet.org/
software/COILS_form.htmll

Compute pI/Mw From ExPASy Q http://www.expasy.org/tools/
pi_tool.html

drawhca Hydrophobic cluster analysis plot Q http://psb00.snv.jussieu.fr/
hca/hca-seq.html

Helical Wheel Draws an helical wheel, i.e., an
axial projection of a regular
alpha helix

Q http://www.site.uottawa.
ca/ � turcotte/resources/
HelixWheel

M.M., pI,
composition,
titrage

Many tools from the Atelier Bio
Informatique de Marseille

Q http://www.up.univ-mrs.fr/
wabim/english/logligne.
html#predi

Paircoil Prediction of coiled-coil regions in
proteins

Q http://groups.csail.mit.edu/
cb/paircoil/paircoil.html

PeptideMass From ExPASy Q http://www.expasy.ch/tools/
peptide-mass.html

REP Searches a protein sequence for
repeats

Q http://www.embl-heidelberg.
de/ � andrade/papers/rep/
search.html

SAPS Statistical analysis of protein
sequences

Q http://www.isrec.isb-sib.ch/
software/SAPS_form.html

Source: From ExPASy: Q http://www.expasy.org/tools/.

TABLE 10-11 Tools to Analyze Protein Motifs
Program Comment URL

ExPASy Source of many tools Q http://www.expasy.org/tools/

InterProScan At EBI Q http://www.ebi.ac.uk/
InterProScan/

ppsearch At EBI Q http://www2.ebi.ac.uk/
ppsearch/

PRATT At EBI Q http://www2.ebi.ac.uk/pratt/

ProfileScan Server At ISREC Q http://hits.isb-sib.ch/cgi-bin/
PFSCAN

PROSCAN
(PROSITE
SCAN)

Many tools at PBIL (Pôle Bio-
Informatique Lyonnais)
(Q http://pbil.univ-lyon1.fr/)

Q http://npsa-pbil.ibcp.fr/cgi-
bin/npsa_automat.
pl?page ¼ npsa_prosite.html

ScanProsite tool At ExPASy Q http://www.expasy.ch/tools/
scanprosite/

SMART At EMBL Q http://smart.embl-heidelberg.
de/

TEIRESIAS At IBM Q http://cbcsrv.watson.ibm.
com/Tspd.html
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TABLE 10-13 Web Resources for Characterization of Glycosylation Sites on Proteins
Program Comment/Source URL

DictyOGlyc 1.1
Prediction Server

Neural network predictions for GlcNAc
O-glycosylation sites in Dictyostelium
discoideum proteins

Q http://www.cbs.dtu.
dk/services/
DictyOGlyc/

NetGlycate Prediction of glycation of 1 amino groups
of lysines in mammalian proteins

Q http://www.cbs.dtu.
dk/services/
NetGlycate/

NetOGlyc Prediction of type O-glycosylation sites
in mammalian proteins

Q http://www.cbs.dtu.
dk/services/
NetOGlyc/

YinOYang 1.2 Produces neural network predictions for
O-b-GlcNAc attachment sites in
eukaryotic protein sequences

Q http://www.cbs.dtu.
dk/services/
YinOYang/

TABLE 10-14 Tools to Analyze Posttranslational Modifications
Program Comment URL

big-PI Predictor GPI modification site prediction Q http://mendel.imp.
ac.at/gpi/gpi_server.
html

NetPhos 2.0
Prediction
Server

Produces neural network predictions for
serine, threonine, and tyrosine
phosphorylation sites in eukaryotic
proteins

Q http://www.cbs.dtu.
dk/services/
NetPhos/

Sulfinator Prediction of tyrosine sulfation sites Q http://www.expasy.
org/tools/sulfinator/

Source: From ExPASy: Q http://www.expasy.org/tools/.

TABLE 10-15 Examples of Proteins with Unusually High Occurrences of Specific Amino Acids
Amino Acid(s) Proteins

C Disulfide-rich proteins; metallothioneins; zinc finger proteins

D, E Acidic proteins

G Collagens (e.g., NP_000079)

H Hisactophilin; histidine-rich glycoprotein (e.g., XP_629852)

W, L, P, Y, L, V, M,
A

Transmembrane domains (e.g., NP_004594, NP_062098)

K, R Nuclear proteins (nuclear localization signals)

N Dictyostelium proteins

P Collagens; filaments; SH3/WW/EVHI binding sites

Q Proteins encoded by genes mutated in triplet repeat disorders
(Chapter 20)

S, R Some RNA-binding motifs

S, T Mucins; oligosaccharide attachment sites (e.g., XP_855042)

abcdefg Heptad coiled coils (a and d are hydrophobic residues), e.g., myosin
(NP_005370)

Source: Modified from Ponting (2001). The hydrophobic residues characteristic of transmembrane helices
are from Tanford (1980). Used with permission.
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DISCUSSION QUESTIONS

TABLE 10-16 Web-Based Programs for Prediction of Protein Localization
Program Comment URL

ChloroP Predicts presence of chloroplast transit peptides
(cTP) in protein sequences

Q http://www.cbs.dtu.
dk/services/ChloroP/

MITOPROT Calculates the N-terminal protein region that
can support a mitochondrial targeting
sequence and the cleavage site

Q http://ihg.gsf.de/ihg/
mitoprot.html

PSORT Prediction of protein-sorting signals and
localization sites; access to PSORT II, WoLF
PSORT

Q http://psort.nibb.ac.
jp/

SignalP Predicts presence and location of signal peptide
cleavage sites in prokaryotes and eukaryotes

Q http://www.cbs.dtu.
dk/services/SignalP/

TargetP Predicts subcellular location of eukaryotic
protein sequences

Q http://www.cbs.dtu.
dk/services/TargetP/

TABLE 10-17 Web Servers for Prediction of Transmembrane Domains in Protein Sequences
Program Comment/Source URL

DAS server Prediction of transmembrane regions Q http://www.sbc.su.
se/�miklos/DAS/

HMMTOP Prediction of transmembrane helices
and topology of proteins

Q http://www.enzim.hu/
hmmtop/

Phobius Combined transmembrane topology
and signal peptide predictor

Q http://phobius.sbc.su.se/

PredictProtein
server

Prediction of transmembrane helix
location and topology

Q http://www.predictprotein.
org/

SOSUI Classification and secondary
structure prediction of membrane
proteins

Q http://bp.nuap.nagoya-u.ac.
jp/sosui/

TMpred Prediction of membrane-spanning
regions and their orientation

Q http://www.ch.embnet.org/
software/TMPRED_form.
html

TopPred2 Topology prediction of membrane
proteins

Q http://bioweb.pasteur.fr/
seqanal/interfaces/toppred.
html

Source: ExPASy web server.

[10-1] InterPro is an important resource that coordinates infor-

mation about protein signatures from a variety of data-

bases. When these databases all describe a particular

protein family or a particular signature, what different

kinds of information can you obtain? Is the information

in InterPro redundant?

[10-2] How do you define the function of a protein? Does the

function change over time, or physiological state, or other

condition?
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PROBLEMS/COMPUTER LAB

SELF-TEST QUIZ

[10-1] Can a domain be at the amino terminus of one protein and the

carboxy terminus of another protein?

(a) Yes

(b) No

[10-2] In general, if you compare the size of a pattern (also called a

motif or fingerprint) and a domain:

(a) They are about the same size.

(b) The pattern is larger.

(c) The pattern is smaller.

(d) The comparison always depends on the particular proteins

in question.

[10-3] The amino acid sequence [ST]-X-[RK] is the consensus for

phosphorylation of a substrate by protein kinase C. This

sequence is an example of:

(a) A motif that is characteristic of proteins that are homolo-

gous to each other

(b) A motif that is characteristic of proteins that are not necess-

arily homologous to each other

(c) A domain that is characteristic of proteins that are homolo-

gous to each other

(d) A domain that is characteristic of proteins that are not

necessarily homologous to each other

[10-4] If you analyze a single, previously uncharacterized protein

using programs that predict glycosylation, sulfation, phos-

phorylation, or other posttranslational modifications:

(a) The predictions of the programs are not likely to be

accurate.

(b) The accuracy of the predictions is unknown and difficult to

assess.

(c) The predictions of the programs are likely to be accurate

concerning the possible presence of particular

modifications, but their biological revelance is unknown

until you assess the protein’s properties experimentally.

(d) The predictions of the programs are likely to be accurate

concerning the possible presence of particular modifi-

cations, but it is not feasible to assess the protein’s proper-

ties experimentally.

[10-5] An underlying assumption of the Gene Ontology Consortium is

that the description of a gene or gene product according to three

categories (molecular function, biological process, and cellular

component):

(a) Is likely to be identical across many species, from plants to

worms to human

(b) Is likely to vary greatly across many species, from plants to

worms to human

(c) May or may not be identical across many species and

thus must be assessed for each gene or gene product

individually

(d) May or may not be identical across many species and thus

must be assessed for each gene or gene product individually

by an expert curator

[10-6] Protein localization is described primarily in which Gene

Ontology category?

(a) Molecular function

(b) Cellular component

(c) Cellular localization

(d) Biological process

[10-7] Which of the following is a means of assessing protein function?

(a) Finding structural homologs

(b) Studying bait–prey interactions

(c) Determining the isoelectric point

(d) All of the above

[10-1] Select a group of unaligned, divergent globins (web document

6.3 at Q http://www.bioinfbook.org/chapter6). Use them as

input to the PRATT program at Prosite (Q http://www.

expasy.ch/prosite/) in order to find a representative pattern.

Scan this pattern against the PROSITE database using the

ScanPROSITE tool. Do you identify globin proteins? Are

there non-globin proteins as well?

[10-2] Salmon has a pinkish color, and some lobsters are blue (but

turn red when boiled) because a chromophore called astax-

anthin binds to a carrier protein called crustacyanin. Examine

the protein sequence of crustacyanin from the European lobster

Homarus gammarus. What are some of its physical properties

(e.g., molecular weight, isoelectric point)? Does it have any

known domains or motifs that might explain how or why it

binds to the chromophore? Use the tools at the ExPASy site.

(For more information about this protein, read the article at

ExPASy: Q http://www.expasy.org/spotlight/back_issues/

sptlt026.shtml.)

[10-3] Evaluate human syntaxin at the ExPASy site. Does it have

coiled-coil regions? How many predicted transmembrane

domains does it have? What is its function? Use the ExPASy

sequence retrieval system first.

[10-4] Olfactory receptors are related to the rhodopsin-like G-protein

coupled receptor (GPCR) superfamily. Use the Integr8 pro-

teome tools at EBI (Q http://www.ebi.ac.uk/integr8) to

decide about what percent of the mouse proteome is comprised

of these receptors. About what percent of the human proteome

is comprised of these receptors?

[10-5] Again use the proteome tools at Q http://www.ebi.ac.uk/

integr8/. Are any of the 15 most common protein domains in

E. coli K12 also present in human?
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[10-8] A major advantage of two-dimensional protein gels as a high-

throughput technology for protein analysis is that:

(a) Sample preparation and the process or running two-dimen-

sional gels is straightforward and can be automated.

(b) The result of two-dimensional gels includes data on both

the size and the charge of thousands of proteins.

(c) The technique is well suited to the detection of low--

abundance proteins.

(d) The technique is well suited to the detection of hydro-

phobic proteins.
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Beginning in the 1940s, Max Perutz and John Kendrew realized the goal of determining the structure of globular proteins by solving the
structure of hemoglobin and myoglobin. In recognition of this work, they shared the Nobel Prize in Chemistry in 1962. (top) X-ray
precession photograph of a myoglobin crystal (from Q http://www.nobel.se/chemistry/laureates/1962/kendrew-lecture.pdf ).
Kendrew studied myoglobin from the sperm whale (Physeter catodon), and incorporated a heavy metal by the method of isomorphous
replacement. He could then bombard the crystals with x-rays in order to obtain an x-ray diffraction pattern (such as that shown here)
with which to deduce the electron density throughout the crystal. This required the analysis of 25,000 reflections. (middle) Perutz and
Kendrew used the EDSAC I computer (introduced in 1949 and shown here (from Q http://www.cl.cam.ac.uk/Relics/jpegs/edsac99.
36.jpg). This computer was essential to interpret the diffraction patterns. For a simulator that shows the capacity of the EDSAC
machine, see Q http://www.dcs.warwick.ac.uk/� edsac/. (bottom) Photograph by Max Perutz of John Kendrew with his model of
myoglobin in 1959. Source: Q http://img.cryst.bbk.ac.uk/BCA/obits/jck.html.



11

Protein Structure

Avisitor to the Accademia in Florence can see magnificent images that emerged from blocks of

marble at the hands of Michelangelo. By analogy, the noncrystallographer can capture the

vision that a crystallographer has when admiring a rigorously shaped crystal before exploring

the marvelous structure hidden within. So the Protein Data Bank is our museum, with

models of molecules reflecting the wonders of nature and complex shapes that may be as old

as life itself. With the aid of interactive graphics and networking, the PDB makes these

images readily available. What wonders still remain hidden as we build, compare, and

extend our database?

—Edgar F. Meyer (1997)

OVERVIEW OF PROTEIN STRUCTURE

Proteins adopt a spectacular range of conformations and interact with their cellular

milieu in diverse ways. There are three major classes of proteins: structural proteins

(such as tubulin and actin), membrane proteins (such as photoreceptors and ion

channels), and globular proteins (such as globins).

The three-dimensional structure of a protein determines its capacity to function.

This structure is determined from its primary (linear) amino acid sequence. In the

1950s Christian Anfinsen and others performed a remarkable set of experiments.

They purified the enzyme ribonuclease from bovine pancreas, and denatured it

with urea. This enzyme includes eight sulfhydryl groups that form four disulfide
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bonds. After removing the urea, the ribonculease refolded and adopted a confor-

mation that was indistinguishable from native ribonuclease. Anfinsen stated the ther-

modynamic hypothesis that the three-dimensional structure of a native protein under

physiological conditions is the one in which the Gibbs free energy of the system is

lowest (Anfinsen, 1973). Thus we can picture an energy landscape in which many con-

formations are possible, and proteins tend to adopt the structure(s) that minimize the

free energy. Anfinsen’s work helped to solidify the concept that the three-dimensional

structure of a protein is inherently specified by the linear amino acid sequence.

In the 1950s researchers applying the techniques of x-ray crystallography to pro-

teins focused on the structures of hemoglobin, myoglobin, ribonuclease, and insulin.

By 1957 John Kendrew and colleagues reported the three-dimensional structure of

myoglobin to 6 Å resolution, sufficient to reconstruct the main outline of the protein.

Soon after the resolution was improved to 2 Å. For the first time, all the atoms com-

prising a protein could be spatially described and the structural basis of the function

of a protein—here, myoglobin as an oxygen carrier—was elucidated. Today the cen-

tral repository of protein structures, the Protein Data Bank, contains 50,000 struc-

tures (see below).

In this chapter we will consider the structure of individual proteins from the prin-

ciples of primary, secondary, tertiary, and quaternary structure. We will also consider

structural genomics initiatives in which a very broad range of high resolution tertiary

structures are determined for proteins, spanning organisms across the tree of life and

also spanning the set of all possible conformations that protein structures can adopt.

We will introduce the main repository of protein structures, the Protein Data Bank

(PDB), as well as three software tools to visualize structures: WebMol at PDB,

Cn3D at NCBI, and DeepView at ExPASy. Many databases provide analyses of

structural data and we will describe three prominent ones: CATH, SCOP, and the

Dali Domain Dictionary. Finally, we will discuss protein structure prediction

which underlies the newly emerging field of structural genomics.

Protein Sequence and Structure
As described in Chapter 10, one of the most fundamental questions about a protein is

its function. Function is often assigned based on homology to another protein whose

function is perhaps already known or inferred (Holm, 1998; Domingues et al.,

2000). Two proteins that share a similar structure are usually assumed to also

share a similar function. For example, two receptor proteins may share a very similar

structure, and even if they differ in their ability to bind ligands or transduce signals,

nonetheless they still share the same basic function.

Various types of BLAST searching are employed to identify such relationships of

homology (Chapters 4 and 5). However, for many proteins sequence identity is extre-

mely limited. We may take retinol-binding protein and odorant-binding protein as

examples: these are both lipocalins of about 20 kDa and are abundant, secreted

carrier proteins. They share a GXW motif that is characteristic of lipocalins.

However, it is difficult to detect homology based on analysis of the primary amino

acid sequences. By pairwise alignment the two proteins share less than 20% identity.

Both structure and function are preserved over evolutionary time more than is

sequence identity. Thus, the three-dimensional structures of these proteins are extra-

ordinarily similar. We have seen similar relationships for myoglobin relative to alpha

globin and beta globin (Fig. 3.1).

Christian Anfinsen won part of the

1972 Nobel Prize in Chemistry

“for his work on ribonuclease,

especially concerning the connec-

tion between the amino acid

sequence and the biologically

active conformation” (Q http://
nobelprize.org/nobel_prizes/
chemistry/laureates/1972/).

An angstrom (abbreviated Å) is

0.1 nanometers or 10210 meters; a

carbon-carbon bond has a dis-

tance of about 1.5 Å. John

Kendrew and Max Perutz shared

the 1962 Nobel Prize in

Chemistry “for their studies of the

structures of globular proteins.”

See Q http://nobelprize.org/
nobel_prizes/chemistry/
laureates/1962/.

It is difficult to make a pairwise

alignment of rat retinol-binding

protein (P04916) and rat odorant-

binding protein (NP_620258). If

you use BLAST 2 Sequences, no

significant match is found, even

using a large expect value and a

scoring matrix appropriate for

distantly related proteins

(PAM250). If you do a PSI-

BLAST search with rat OBP as a

query, you will eventually detect

retinol-binding protein after many

iterations. We will compare the

three-dimensional structures of

these two proteins in computer lab

problem in this chapter using the

DaliLite server and see evidence

that they are homologous.
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Can we generalize about the relationship between amino acid sequence identity

and protein structures? It is clear that even a single amino acid substitution can in

some instances cause a dramatic change in protein structure, as exemplified by

disease-causing mutations (discussed at the end of this chapter). Many other

substitutions have no observable effects on protein structure (discussed in

Anfinsen, 1973). It is common for amino acid sequence to change more rapidly

than three-dimensional structure, as in the case of lipocalins. Wood and Pearson

(1999) examined 36 protein families, each having five or more members with

known three-dimensional structures. They found a very high correlation between

sequence similarity and structural similarity for three-quarters of the protein families.

Wood and Pearson concluded that most amino acid sequence changes cause detect-

able structural changes. Also, the amount of structural change is relatively constant

within a protein family.

Biological Questions Addressed by Structural Biology: Globins
We can use the globins to illustrate some of the key questions in structural biology:

† What ligand does each protein transport? For many the answer is unknown.

Can structural studies reveal the binding domain to suggest the identity of

the ligand? How much structural information is required in order to predict

the ligand from sequence information?

† Mutations in globin genes result in a variety of human diseases, including tha-

lassemias and sickle cell anemia (Chapter 20). Can we predict the structural

and functional consequences of a specific mutation?

† Globins have been divided into subgroups based on phylogenetic analyses and

their localization. To what extent do those groupings reflect structural and

functional similarities?

† When a genome is sequenced and a gene encoding a putative novel globin is

discovered, can we use information about other globins of known structure

in order to predict a new structure?

PRINCIPLES OF PROTEIN STRUCTURE

Protein structure is defined at several levels. Primary structure refers to the linear

sequence of amino acid residues in a polypeptide chain, such as human beta

globin (Fig. 11.1a). Secondary structure refers to the arrangements of the primary

amino acid sequence into motifs such as a helices, b sheets, and coils (or loops)

(Fig. 11.1b). The tertiary structure is the three-dimensional arrangement formed

by packing secondary structure elements into globular domains (Fig. 11.1c).

Finally, quaternary structure involves this arrangement of several polypeptide

chains. Figure 11.1d depicts two alpha globin chains and two beta globin

chains joined to form mature hemoglobin, with four heme groups attached.

Functionally important areas of a protein such as ligand-binding sites or enzymatic

active sites are formed at the levels of tertiary and quaternary structure. We will

next describe these levels of protein structure using myoglobin and hemoglobin as

examples.
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Primary Structure
In nature, the primary amino acid sequence specifies a three-dimensional structure

that forms for each protein. A protein folds to form its native structure(s), sometimes

including the participation of chaperones. This process is rapid, typically taking from

seconds to minutes; consider for example the bacterium Escherichia coli that can

double every 20 minutes, requiring all its thousands of proteins to be functionally

expressed within that time. Formation of the native structure(s) may depend on

some posttranslational modifications, such as the addition of sugars or disulfide

bridges. The central issue, called the protein folding problem, is that each cell inter-

prets the information in a primary amino acid sequence to form an appropriate

FIGURE 11.1. A hierarchy of
protein structure. (a) The primary
structure of a protein refers to the
linear polypeptide chain of amino
acids. Here, human beta globin is
shown (NP_000539). (b) The
secondary structure includes
elements such as alpha helices and
beta sheets. Here, beta globin
protein sequence was input to the
POLE server for secondary struct-
ure (Q http://pbil.univ-lyon1.fr/)
where three prediction algorithms
were run and a consensus was pro-
duced. Abbreviations: h, alpha
helix; c, random coil; e, extended
strand. (c) The tertiary structure
is the three-dimensional structure
of the protein chain. Alpha helices
are represented as thickened cylin-
ders. Arrows labeled N and C
point to the amino- and carboxy-
terminals, respectively. (d) The
quarternary structure includes the
interactions of the protein with
other subunits and heteroatoms.
Here, the four subunits of hemo-
globin are shown (with an a2b2
composition and one beta globin
chain highlighted) as well as four
noncovalently attached heme
groups. Panels (c) and (d) were
produced using Cn3D software
from NCBI.

(a) Primary structure 

(b) Secondary structure 

(c) Tertiary structure (d) Quaternary structure 

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSD
GLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH 

N 

C 

We will discuss intrinsically disor-

dered proteins later in this chap-

ter; they do not adopt a unique

native structure.
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structure. Challenges to structural biologists include (1) how to understand the bio-

logical process of protein folding, and (2) how to predict a three-dimensional struc-

ture based on primary sequence data alone.

Proteins are synthesized from ribosomes where amino acids are joined by peptide

bonds into a polypeptide chain. Each amino acid consists of an amino group, a central

carbon atom Ca towhich a side chain R is attached, and acarboxyl group (Fig. 11.2a).

The peptide bond is a carbon-nitrogen amide linkage between the carboxyl group of

one amino acid and the amino group of the next amino acid. One water molecule is

eliminated during the formation of a peptide bond. The basic repeating unit of a

polypeptide chain is thus NH-CaH-CO with a different R group extending from var-

ious Ca of various amino acids. In glycine, the R group is a hydrogen and thus that

amino acid is not chiral. For the other amino acids the R group is not a hydrogen and

thus there are four different moieties attached to Ca, allowing chiral (L- and D-) forms

of most amino acids.

The amino acid residues of the backbone of the polypeptide chain are con-

strained to the surface of a plane, and have mobility only around a restricted set of

bond angles (Fig. 11.2b) (reviewed by Branden and Tooze, 1991; Shulz and

Schirmer, 1979). Phi (f) is the angle around the N-Ca bond, and psi (c) is the

angle around the Ca-C0 bond. Glycine is an exceptional amino acid because it has

the flexibility to occur at fc combinations that are not tolerated for other amino

acids. For most amino acids the f and c angles are constrained to allowable regions

in which there is a high propensity for particular secondary structures to form.

DeepView is a popular software program used to visualize protein structures and

to analyze many features of one or more protein structures. It is also used in conjunc-

tion with SwissModel, an automated comparative modeling server. DeepView is

available for download from the ExPASy website (Chapter 10). When we upload a

file in the pdb (Protein Data Bank) format for myoglobin, we can view a control

bar with assorted options for manipulating and analyzing the structure (Fig.

11.2c). Using the control panel of DeepView we can select just the first two amino

acids of myoglobin (gly-leu) and obtain a description of the bond angles (Fig.

11.2c and d). One reason it is useful to inspect these bond angles is that they provide

information about the secondary structure of a protein, which we describe next.

Secondary Structure
In general, proteins tend to be arranged with hydrophobic amino acids in the interior

and hydrophilic residues exposed to the surface. This hydrophobic core is produced

in spite of the highly polar nature of the peptide backbone of a protein. The most

common way that a protein solves this problem is to organize the interior amino resi-

dues into secondary structures consisting of a helices and pleated b sheets. Linus

Pauling and Robert Corey (1951) described these structures from studies of hemo-

globin, keratins, and other peptides and proteins. Their models were later confirmed

by x-ray crystallography. These secondary structures consist of patterns of interacting

amino acid residues in which main chain amino (NH) and carboxy (C0O) groups

form hydrogen bonds. There are three types of helices: (1) a helices have 3.6

amino acids per turn, and represent �97% of all helices; (2) 3.10 helices have 3.0

amino acids per turn (and thus are more tightly packed), and account for �3% of

all helices; and (3) p helices, which occur only rarely, have 4.4 amino acids per

turn. Myoglobin is an example of a protein with a helices (Fig. 11.3a); these helices

typically are formed from contiguous stretches of 4 to 40 amino acid residues in

Remarkably, the discovery of the

peptide bond was announced at a

meeting on the same day

(September 22, 1902) by two

researchers: Franz Hofmeister and

Emil Fisher. Fisher won a 1902

Nobel Prize “in recognition of the

extraordinary services he has ren-

dered by his work on sugar and

purine syntheses” (Q http://
nobelprize.org/nobel_prizes/
chemistry/laureates/1902/). In

the area of protein research, he

discovered proline and oxyproline,

synthesized peptides up to eight

amino acids in length, and devised

new methods of compositional

analysis of proteins such as casein.

We describe how to obtain

DeepView in computer lab exer-

cise 11.3 at the end of this chapter.

The pdb file for human myoglo-

bin, 2MM1, is available as web

document 11.1 at Q http://www.

bioinfbook.org/chapter11.

SwissModel is available at

Q http://swissmodel.expasy.org/.
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first amino acid second amino acid dipeptide (peptide bond)

(a) peptide bond
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(c) DeepView control bar

1 2

(d) DeepView viewer

3

FIGURE 11.2. Peptide bonds and angles. (a) Each amino acid includes an amino group, an
alpha carbon (Ca) to which a side group R is attached, and a carboxyl group (having carbon
C0). Two amino acids condense to form a dipeptide with the elimination of water. The peptide
bond (highlighted in red) is an amide linkage. (b) Polypeptide chains can be thought of as extend-
ing from one Ca atom to the next with the peptide bond constrained to lie along a plain. The N-
Ca bond is called phi (f), and the Ca-C0 bond is called psi (c). The angle of rotation around f

and c for each peptide defines the entire main chain conformation. (c) The DeepView software
from ExPASy includes a control bar with buttons for manipulating a molecule (translation,
rotation, and zoom). There are additional tools that measure the following (from left to
right): distance between two atoms (arrow 1); angle between three atoms; dihedral angles
(arrow 2; here this tool has been selected and the f, c, and v values are shown); select
groups a certain distance from an atom; center the molecule on one atom; fit one molecule
onto another; mutation tool; torsion tool. (d) Myoglobin (2MM1) was loaded into DeepView,
and using the Control Panel the first three amino acid residues (Gly-Leu-Ser) were selected.
The nitrogens, oxygens, Ca carbons (CA) and C0 carbons are indicated. By selecting the dihedral
angle tool and clicking the leucine Ca carbon (arrow 3), the bond values in panel (c) were
shown.
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length. The b sheets are formed from adjacent b strands composed of 2 to 15 residues

(typically 5 to 10 residues). They are arranged in either parallel or antiparallel orien-

tations that have distinct hydrogen bonding patterns. Pepsin (1PSN) provides an

example of a protein comprised largely of b sheets (Fig. 11.3b). b sheets have

higher order properties, including the formation of barrels and sandwiches and

“super secondary structure motifs” such as b-a-b loops and a/b barrels. Proteins

commonly contain combinations of both a helices and b sheets.

A Ramachandran plot displays the f and c angles for essentially all amino acids

in a protein (proline and glycine are not displayed). The Ramachandran plot for beta

globin shows a preponderance of fc angle combinations in a region that is typical of

proteins with a helical content (Fig. 11.4a). In contrast for pepsin the majority of fc

angles occur in a region that is characteristic of b sheets (Fig. 11.4b). Ramachandran

plots can be created using a variety of software packages, including WebMol from the

Protein Data Bank and DeepView from ExPASy.

Computational secondary-structure prediction began in the 1970s. Chou and

Fasman (1978) developed a method to predict secondary structure based on the

frequencies of residues found in a helices, b sheets, and turns. Their algorithm

(a) 

(b) 

FIGURE 11.3. Examples of sec-
ondary structure. (a) Myoglobin
(Protein Data Bank ID 2MM1)
is composed of large regions of a
helices, shown as strands wrapped
around barrel-shaped objects. By
entering the accession 2MM1 into
NCBI’s structure site, one can
view this three-dimensional struc-
ture using Cn3D software. The
accompanying sequence viewer
shows the primary amino acid
sequence. By clicking on a colored
region corresponding to an alpha
helix, that structure is highlighted
in the structure viewer (arrow).
(b) Human pepsin (PDB 1PSN)
is an example of a protein primar-
ily composed as b strands, drawn
as large arrows. Selecting a region
of the primary amino acid sequence
(bracket) results in a highlighting
of the corresponding b strand.

We describe how to use WebMol

in computer lab exercise 11.2 near

the end of this chapter.
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calculates the propensity of each residue to form part of a helix, strand, or coil in the

context of a sliding window of amino acids. For example, a proline is extremely unli-

kely to occur in an a helix, and it is often positioned at a turn. The Chou–Fasman

algorithm scans through a protein sequence and identifies regions where at least

four out of six contiguous residues have a score for a helices above some threshold

FIGURE 11.4. A Ramachandran
plot displays the f and c angles
for each amino acid of a protein
(except proline and in some cases
glycine). Examples are shown for
myoglobin, a protein characterized
by alpha helical secondary struc-
ture (a) and for pepsin, a protein
comprised largely of beta sheets
(b). The plots were generated
using DeepView software from
ExPASy. The arrows in (a)
indicate the region of the
Ramachandran plot in which fc

angles typical of alpha helices and
beta sheets predominate.

Ramachandran plot: myoglobin (2MM1) Ramachandran plot: pepsin (1PSN)

PhiPhi Pi

Pi

–Pi
–Pi Pi–Pi

–Pi

Pi

PsiPsi

α

β

(a) (b)

TABLE 11-1 Conformational Preferences of the Amino Acids

Amino Acid

Preference

PropertiesHelix Strand Turn

Glu 1.59 0.52 1.01 Helical preference; extended flexible
side chainsAla 1.41 0.72 0.82

Leu 1.34 1.22 0.57

Met 1.30 1.14 0.52

Gln 1.27 0.98 0.84

Lys 1.23 0.69 1.07

Arg 1.21 0.84 0.90

His 1.05 0.80 0.81

Val 0.90 1.87 0.41 Strand preference; bulky side chains,
beta-branchedIle 1.09 1.67 0.47

Tyr 0.74 1.45 0.76

Cys 0.66 1.40 0.54

Trp 1.02 1.35 0.65

Phe 1.16 1.33 0.59

Thr 0.76 1.17 0.90

Gly 0.43 0.58 1.77 Turn preference; restricted
conformations, side chain–main
chain interactions

Asn 0.76 0.48 1.34

Pro 0.34 0.31 1.32

Ser 0.57 0.96 1.22

Asp 0.99 0.39 1.24

Source: Adapted from Williams et al. (1987).
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value. The algorithm extends the search in either direction. Similarly, it searches for

bends and turns.

Subsequently other approaches have been developed such as the GOR method

of Garnier, Osguthorpe, and Robson (1978) (Garnier et al., 1996). In most cases,

these algorithms were used to analyze individual sequences (and they are still

useful for this purpose). As multiply aligned sequences have become increasingly

available, the accuracy of related secondary-structure prediction programs has

increased. The PHD program (Rost and Sander, 1993a, 1993b) is an example of

an algorithm that uses multiple sequence alignment for this purpose. The accuracy

of the various algorithms has been assessed by evaluating their performance using

databases of known structures. Typically, the more recently developed algorithms

have about 70% to 75% accuracy (Rost, 2001; Przybylski and Rost, 2002). This

accuracy far exceeds that of the Chou–Fasman algorithm. Williams et al. (1987)

tabulated the conformational preferences of the amino acids (Table 11.1). Their

TABLE 11-2 Secondary StructureAssignment from the DSSP Database
H Alpha helix

B Residue in isolated beta-bridge

E Extended strand, participates in beta ladder

G 3-helix (3/10 helix)

I 5-helix (pi helix)

T Hydrogen bonded turn

S Bend

Blank
or C

Loop or irregular element, incorrectly called
“random coil” or “coil.”

Source: DSSP (Q http://swift.cmbi.ru.nl/gv/dssp/).

TABLE 11-3 Secondary-Structure Prediction Programs Available on Internet
Program Comment URL

APSSP Based on neural networks Q http://imtech.res.in/raghava/apssp/

DSSP

GOR4 From the Pole Bio-
Informatique Lyonnais

Q http://npsa-pbil.ibcp.fr/cgi-bin/
npsa_automat.pl?page ¼ npsa_gor4.
html

Jpred From the Barton group
(Dundee)

Q http://www.compbio.dundee.ac.
uk/� www-jpred/

NNPREDICT An enhanced neural network
approach (from UCSF)

Q http://alexander.compbio.ucsf.
edu/� nomi/nnpredict.html

PredictProtein
server

Based on neural networks Q http://www.predictprotein.org/

PSIPRED From the University College
London

Q http://bioinf.cs.ucl.ac.uk/psipred/

SAM-T02 Uses hidden Markov models
(Chapter 6)

Q http://www.soe.ucsc.edu/research/
compbio/HMM-apps/T02-query.
html

Sosui From the Mitaku Group
(Tokyo)

Q http://bp.nuap.nagoya-u.ac.jp/
sosui/

Note: Additional sites are listed at ExPASy (Q http://www.expasy.org/tools/#secondary) and PBIL
(Q http://npsa-pbil.ibcp.fr).
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analysis assessed accuracy relative to known secondary structures as determined by

the gold standard of x-ray crystallography. The standard measure for prediction accu-

racy, called Q3, is the proportion of all amino acids that have correct matches for the

three states of helix, strand, and loop. Another measure is the segment overlap (Sov),

which is relatively insensitive to small variations in secondary structure assignments,

with less emphasis on assigning states to individual residues (Rost et al., 1994).

In 1983 Wolfgang Kabsch and Christian Sander introduced a dictionary of sec-

ondary structure, including a standardized code for secondary structure assignment.

These are applied in the DSSP database with eight states (Table 11.2). A variety of

web servers allow you to input a primary amino acid sequence and delineate the

secondary structure, often employing the DSSP codes (Table 11.3). Some of the

programs allow you to enter a single sequence, while others allow you to enter a mul-

tiple sequence alignment. As an example, the Pôle Bio-Informatique Lyonnais

(PBIL) has a web server that offers secondary-structure predictions for a protein

query. We used this server to generate the beta globin prediction in Fig. 11.1b.

This server also generates predictions using nine different algorithms and calculates

a consensus. The various predictions differ somewhat in detail but are generally

consistent.

Tertiary Protein Structure: Protein-Folding Problem
How does a protein fold into a three-dimensional structure? As mentioned above, this

problem is solved very rapidly in nature. In 1969 Cyrus Levinthal introduced an

argument (later called “Levinthal’s paradox”) that there are far too many possible

conformations for a linear sequence of amino acids to adopt its native conformation

through random samplings of the energy landscape. To find the most stable thermo-

dynamic structure would require a period of time far greater than the age of the uni-

verse. Thus, proteins must adopt their three-dimensional conformations by following

specific folding pathways. Dill et al. (2007) have reviewed current progress in under-

standing protein folding.

In structural biology, there are two main approaches to determining protein

structure: x-ray crystallography and nuclear magnetic resonance spectroscopy

(NMR). Structures can also be predicted computationally using three approaches

described near the end of this chapter (homology modeling, threading, and ab

initio prediction).

X-ray crystallography is the most rigorous experimental technique used to deter-

mine the structure of a protein (Box 11.1), and about 80% of known structures were

BOX 11.1
X-Ray Crystallography

A protein is obtained in high concentration and crystallized in a solution such as

ammonium sulfate. A beam of x-rays is aimed at the protein crystals. The protein

is in a highly regular array that causes the x-rays to diffract (scatter) where they are

detected on x-ray film. Spot intensities are measured, and an image is generated

by Fourier transformation of the intensities. An electron density map is generated

corresponding to the arrangements of the atoms that comprise the protein.

Individual atoms are distinguishable with 1 to 1.5 Å resolution, and resolution

of less than 2 Å is generally required for a detailed structure determination.

DSSP software is available from

Q http://swift.cmbi.ru.nl/gv/
dssp/. A DSSP server is available

at Q http://bioweb.pasteur.fr/
seqanal/interfaces/dssp-simple.

html. The PBIL website is at

Q http://npsa-pbil.ibcp.fr.
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determined using this approach. The basic steps involved in this process are outlined

in Fig. 11.5a. A protein must be obtained in high concentration and seeded in con-

ditions that permit crystallization. The crystal scatters x-rays onto a detector, and

the structure of the crystal is inferred from the diffraction pattern. The wavelength

of x-rays (about 0.5 to 1.5 Å) is useful to measure the distance between atoms,

making this technique suitable to trace the amino acid side chains of a protein.

Nuclear magnetic resonance spectroscopy is an important alternative approach

to crystallography. A magnetic field is applied to proteins in solution, and character-

istic chemical shifts are observed. From these shifts, the structure is deduced. The

largest structures that have been determined by NMR are about 350 amino acids

(�40 kDa), considerably smaller than the size of proteins routinely studied by crys-

tallography. Other limitations are that the quality of NMR structures is less than those

obtained by crystallography, and NMR yields multiple structure solutions rather

than one. However, an advantage of NMR is that it does not require a protein to

be crystallized, a notoriously difficult process.
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Target selection

PCR amplify the coding sequence

Clone the coding sequence into an expression vector

Express the recombinant protein

Sequence the cDNA to verify that the coding
sequence was correctly amplified

Characterize the expressed protein

Obtain adequate amounts (e.g. milligrams)
and confirm the purity of the protein

Determine appropriate crystallization 
(or NMR) conditions

X-ray or NMR measurements

Determine and refine the structure

Calculate comparative protein structure models

Make functional inferences

Deposit the structure in PDB

FIGURE 11.5. Obtaining high
resolution structures. (a) General
procedure for obtaining a three-
dimensional protein structure
(modified from Burley, 2000). (b)
Key stages of structure determi-
nation from TargetDB, a target
registration database (available at
Q http://targetdb.pdb.org). While
over 100,000 targets have been
cloned as part of structural
genomics initiatives, only about
two-thirds have been successfully
expressed, and 25% purified.
Five percent of the original targets
have been deposited in PDB, either
as a crystal structure or from NMR
spectroscopy. Source: Q http://
targetdb.pdb.org/statistics/TargetSt
atistics.html.
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Target Selection and Acquisition of Three-Dimensional
Protein Structures
The general procedure for experimentally acquiring protein structural data, outlined

in Fig. 11.5a, begins with target selection, the process of choosing which structure to

solve (Brenner, 2000). Historically, proteins such as hemoglobin and cytochrome

c were selected that were most amenable to experimental study. They are generally

small, soluble, abundant, and known to have interesting biological functions.

Today, additional criteria are considered in deciding priorities for which protein

structures to solve (McGuffin and Jones, 2002):

† All branches of life (eukaryotes, bacteria, archaea, and viruses) are studied.

† Should there be efforts to exhaustively solve all structures within an individual

organism? This is being attempted for Methanococcus jannaschii and

Mycobacterium tuberculosis. The Bacterial Structural Genomics Initiative

(Matte et al., 2007) includes efforts to determine structures for a large

number of Escherichia coli proteins.

† Should representatives from previously uncharacterized protein families be

selected preferentially? Chandonia and Brenner (2005) proposed that the

Pfam5000 set be selected: these are the 5000 largest Pfam families for

which no structure has yet been solved.

† Should medically important proteins such as drug discovery targets be chosen

first?

† How can structures be solved for more proteins having transmembrane-

spanning domains? These are among the most technically challenging pro-

teins to study. Chang and Roth (2001) successfully solved the structure of a

multidrug-resistant ABC transporter from E. coli. They screened 96,000 crys-

tallization conditions to find several that were adequate for x-ray structure

determination.

Structural Genomics and the Protein Structure Initiative
Structural genomics is a newly emerging field of research. Its goal is to determine

the three-dimensional structure of all the major protein families throughout the tree

of life, spanning fold space (Gerstein and Levitt, 1997; Brenner, 2001; Koonin

et al., 2002; Thornton et al., 2000; Burley, 2000). Fold space refers to the total

variety of three-dimensional protein structures that occur in nature. This is com-

prised mostly of proteins having a, b, or ab secondary structure composition

(Holm and Sander, 1997). This comprehensive approach will permit a deeper

understanding of the relatedness of protein domains, and will also enable us to

assign function to many proteins. Structure space (or fold space) may be defined

in terms of protein sequence families, which generally are defined as containing

members having greater than about 30% amino acid identity. Thus, structural

genomics ultimately aims to solve at least one high-resolution structure for every

sequence family.

The relationship of structural genomics to traditional structural biology is out-

lined in Fig. 11.6. Traditionally, researchers obtained the structure of individual pro-

teins by starting with information about the known function of the protein. The new

approach of structural genomics is based on a reverse strategy: genome sequence

Links to a variety of structural

genomics initiatives, including the

Mycobacterium tuberculosis

Structural Genomics Consortium

and other bacterial and eukaryotic

projects, can be found at the

Protein Data Bank website,

Q http://sg.pdb.org/target_

centers.html.
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projects generate predictions of protein-coding sequences (Chapters 13 to 19). One

fundamentally important aspect of each predicted protein is its structure. Predicted

proteins may be expressed and their structures are solved to high resolution

(Fig. 11.6b). The recent identification of literally millions of novel predicted proteins

has enabled researchers to choose structures to solve (targets) based on a variety of

criteria. Once a target is selected and a cDNA encoding that protein is cloned,

there are still many challenges in successfully expressing, purifying, and crystallizing

the protein, as well as obtaining its structure by either x-ray crystallography or NMR.

Figure 11.5b shows the recent progress in these areas from structural genomics

initiatives.

The Protein Structure Initiative (PSI) was established in the United States in

2000, with similar structural genomics projects conducted in other countries

RNA

protein

(a) Classical structural biology

1. Determine biochemical and 
cellular role of protein

2. Purify protein

4. experimentally determine
high resolution structures

3. clone cDNA4. express protein
in E. coli

1. Obtain genomic 
DNA sequence

2. Identify many 
protein-coding genes

3. express proteins
in E. coli

5. experimentally determine
high resolution structure

5. Predict structures
in silico

Determine boichemical and 
cellular roles of proteins

(b) Structural genomics

FIGURE 11.6. Classical structural biology versus structural genomics. (a) In classical structural
biology approaches, a protein is purified based on some known function or activity. After biochemi-
cal purification of the protein, if there is sufficient yield, the protein may be crystallized and its
structure determined. This in turn allows one to study the biochemical function of the protein
and its mechanism of action. Having obtained a protein sequence, the corresponding cDNA
may be cloned, allowing recombinant protein to be expressed and purified for structure analyses.
(b) The field of structural genomics proceeds from a genomic DNA sequence. Large numbers of
protein-coding genes are predicted, often including all those encoded by a genome of interest.
Selected proteins are either cloned and expressed for biochemical analysis or the structure is pre-
dicted computionally (“in silico”) as described later in this chapter. The three-dimensional (3D)
structure of a protein may be determined experimentally using techniques such as x-ray crystal-
lography or nuclear magnetic resonance (NMR) spectroscopy. Finally, the biochemical role may
be inferred based on the nature of the structure. Additional insight into biochemical function is
derived from database searches of the protein sequence (e.g., using PSI-BLAST).
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(Canada, Israel, Japan, and Europe). The PSI is a coordinated effort by the aca-

demic, industry, and federal research communities to develop the technology

needed to determine the three-dimensional structures of most proteins based on

knowledge of the corresponding DNA sequences. The pilot phase of the project

(conducted from 2000 to 2005) involved nine structural genomics centers that

solved more than 1100 structures at high resolution. A key feature of this project is

that solving the structure of proteins that are closely related to those having known

structures is relatively easy, but predicting structures without close structure neigh-

bors can be extremely difficult. Of the 1100 solved structures, over 700 were

unique, that is, the structures shared less than 30% amino acid sequence identity

with other known proteins.

The second phase of the PSI project, the production phase, is currently ongoing.

Chandonia and Brenner (2006) reviewed the progress of the project, including the

novelty of the structures, the cost effectiveness of the project, and the impact of the

project on the community. About half of the novel structures that were reported

recently (in which a novel structure is the first member of a protein family) came

from structural genomics projects. An analysis by Levitt (2007) emphasizes the gen-

eral decline in the number of novel structures added to the PDB beginning in 1995,

and a reversal of this trend because of contributions from structural genomics initiat-

ives. Others have also assessed the recent progress of these initiatives (Todd et al.,

2005; Xie and Bourne, 2005; Marsden et al., 2007).

In 1992, even before the first genome of a free-living organism had been fully

sequenced, Cyrus Chothia estimated that there may be about 1500 distinct protein

folds. The structural genomics initiatives continue to bring us closer to identifying

all of them.

THE PROTEIN DATA BANK

Once a protein sequence is determined, there is one principal repository in which the

structure is deposited: the Protein Data Bank (PDB) (Westbrook et al., 2002;

Berman et al., 2002, 2007). A broad range of primary structural data is collected,

such as atomic coordinates, chemical structures of cofactors, and descriptions of

the crystal structure. The PDB then validates structures by assessing the quality of

the deposited models and by how well they match experimental data.

The main page of the PDB website is shown in Fig. 11.7. This database currently

has about 50,000 structure entries (Table 11.4), with new structures added at a rapid

rate (Fig. 11.8). The database can be accessed directly by entering a PDB identifier

into the query box on the main page, that is, by entering an accession number con-

sisting of one number and three letters (e.g., 4HHB for hemoglobin). The PDB data-

base can also be searched by keyword. The result of a keyword search for hemoglobin

is shown in Fig. 11.9. In this case there are hundreds of results, and the list can be

refined using options on the left sidebar. The result of searching for a specific hemo-

globin identifier, 4HHB, links to a typical PDB entry (of which a portion is shown in

Fig. 11.10). By clicking on an icon (arrow 1) the 4HHB.pdb file can be downloaded

locally for further analysis with a variety of tools such as DeepView. Information

provided on the 4HHB page includes the resolution of the experimentally derived

structure, the space group, and the unit cell dimensions of the crystals. There are

links to a series of tools to visualize the three-dimensional structure, including

WebMol (Fig. 11.10, arrow 2). Table 11.5 lists some additional visualization

The main PSI website is Q http://
www.nigms.nih.gov/Initiatives/
PSI/. The targets that are cur-

rently selected for structural

genomics projects including PSI

are centrally listed at TargetDB

(Q http://targetdb.pdb.org/).

The PDB was established at

Brookhaven National

Laboratories in Long Island in

1971. Initially, it contained seven

structures. It moved to the

Research Collaboratory for

Structural Bioinformatics (RCSB)

in 1998. PDB is accessed at

Q http://www.rcsb.org/pdb/ or

Q http://www.pdb.org.

See computer lab problem 11.2

for instructions on using WebMol.
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software. Using WebMol does not require the installation of software (other than

Java), and WebMol is highly versatile (Fig. 11.11).

It is also possible to search within the PDB website using dozens of advanced

search features (accessed via the top of the home page; see Fig. 11.7). This includes

the use of BLASTor FASTA programs, allowing convenient access to PDB structures

related to a query. Other advanced search features allow you to query based on prop-

erties of the molecule (e.g., its molecular weight), PubMed identifier, Medical

Subject Heading (MeSH term; Chapter 2), deposit date, or experimental method.

In addition to the PDB, the European Bioinformatics Institute operates the

Macromolecular Structure Database. This project is integrated with PDB and rep-

resents the European center for the collection of macromolecular structure data.

The PDB database occupies a central position in structural biology. Several

dozen other databases and web servers link directly to it or incorporate its data

into their local resources. We will next explore NCBI and other sites that allow a

single protein structure to be analyzed or several structures to be compared. Then

we will explore databases that create comprehensive classification systems or taxo-

nomies for all protein structures.

TABLE 11-4 PDB Holdings
Molecule Type

Experimental Technique Proteins Nucleic Acids

Protein and
Nucleic Acid
Complexes Other Total

X-ray diffraction 37,105 995 1,723 24 39,847

NMR 5,941 789 136 7 6,873

Electron microscopy 109 11 40 0 160

Other 83 4 4 2 93

Total 43,238 1,799 1,903 33 46,973

Source: From Q http://www.pdb.org (November 2007).

FIGURE 11.7. The PDB is the
main repository for three-dimen-
sional structures of proteins and
other macromolecules (Berman
et al., 2007) (Q http://www.pdb.
org/). A PDB accession number
(such as 2mm1) can be entered
into the search box along the top.
The left sidebar links to many
useful resources. A variety of sites
allow access to PDB data, including
NCBI and EMBL. Also, many
databases analyze PDB structures
to generate classification schemes
for all protein folds and for other
levels of analysis of protein struc-
tures. Examples of these databases
are SCOP, CATH, Dali, and
FSSP (see below).

The Macromolecular Structure

Database is at Q http://www.ebi.

ac.uk/msd/.
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FIGURE 11.8. Number of search-
able structures per year in PDB.
The PDB database has grown dra-
matically in the past decade. The
yearly (red) and total (gray)
number of structures are shown.
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FIGURE 11.9. Result of a PDB
query for hemoglobin. There are
several hundred results, of which
one is shown.

FIGURE 11.10. Result of a search
for a hemoglobin structure, 4HHB.
The summary information
includes a description of the resol-
ution (1.74 Å), the space group,
and the unit cell dimensions.
Available links include one to
download the 4HHB pdb format
file (arrow 1), and a variety of
visualization software (including
WebMol, arrow 2).
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Accessing PDB Entries at the NCBI Website
There are three main ways to find a protein structure in the NCBI databases:

1. Text searches allow access to PDB structures. These searches can be per-

formed on the structure page or through Entrez, and they can consist of key-

words or PDB identifiers (Fig. 11.12a).

FIGURE 11.11. WebMol software
permits the visualization and
analysis of macromolecular struc-
tures. Tools on its sidebars allow a
molecule to be manipulated (e.g.,
zoomed or rotated), colored accord-
ing to criteria such as secondary
structure, visualized (e.g., to show
van der Waal radii), and analyzed
(e.g., by measuring interatomic dis-
tances or Ramachandran plots).

TABLE 11-5 Interactive Visualization Tools for Protein Structures
Tool Comment URL

Chime Plug-in for a web browser Instructions at PDB

Cn3D From NCBI Q http://www.ncbi.nlm.nih.gov/Structure/
CN3D/cn3d.shtml

Mage Reads Kinemages Q http://kinemage.biochem.duke.edu/ and
http://www.ncbi.nlm.nih.gov/Structure/
CN3D/mage.html

MICE Java
applet

Instructions at PDB

RasMol A stand-alone package Instructions at PDB

SwissPDB
viewer

At ExPASy Q http://www.expasy.org/spdbv/

VMD Visual Molecular
Dynamics; University of
Illinois

Q http://www.ks.uiuc.edu/Research/vmd/

VRML Uses MolScript Instructions at PDB

Note: The Protein Data Bank maintains a list of molecular graphics software links, accessible from the PDB
home page via software tools/Molecular Viewers, at Q http://www.pdb.org/pdb/static.do?p ¼ software/
software_links/molecular_graphics.html.
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2. One can search by protein similarity. To do this, use the Entrez protein data-

base to select a protein of interest and look for a link to “Related Structures.”

Alternatively, perform a blastp search and restrict the output to the PDB data-

base (Fig. 11.13). All database matches have entries in the Entrez Structure

database.

3. One can search using nucleotide queries. It is possible to use a blastx search

with a DNA sequence as input, restricting the output to the PDB database.

A keyword search of Entrez structures for hemoglobin yields a list of almost 400

proteins with four-character PDB identifiers. If you know a PDB identifier of interest,

such as 2MM1 for myoglobin, use it as a search term and you can find an Entrez

Structure entry with useful links (Fig. 11.12a), including to the Molecular Modeling

Database (Fig. 11.12b), the Cn3D viewer, the VAST comparison tool (see below),

and the conserved domain database. The Molecular Modeling Database is the

main NCBI database entry for each protein structure (Wang et al., 2000). It includes

literature and taxonomy data, sequence neighbors (as defined by BLAST), structure

neighbors (as defined by VAST; see below), and visualization options.

Cn3D is the NCBI software for structure visualization. We describe its use in

computer lab problem 11.1, and we used it to generate Fig. 11.3. Upon launching

FIGURE 11.12. The structure site
at NCBI offers links to PDB and
to tools for structural genomics
such as Cn3D (a structure
viewer), VAST (a tool to compare
structures), and the structure data-
base MMDB (Molecular Modeling
DataBase). (a) Structure entries
can be retrieved using a keyword
(e.g., myoglobin) or a PDB identi-
fier (e.g., 2MM1 as shown here).
By clicking on the graphic of the
structure in (a), one links to the
entry in the Molecular Modeling
Database at NCBI (panel b).
This includes links (e.g., to the
PDB), a graphic of the myoglobin
structure which, when clicked on,
invokes the Cn3D structure visual-
ization software (or other structure
viewers such as RasMol and
MAGE). There are also links to
related structures and sequences
(panel b, bottom). The NCBI
structure site is at Q http://www.
ncbi.nlm.nih.gov/Structure/.

(a) 

(b) 

1 2 

3 4 

The NCBI structure page is at

Q http://www.ncbi.nlm.nih.gov/
Structure/.
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FIGURE 11.13. Structure entries
can be retrieved from NCBI by per-
forming a blastp search (with a
protein query) or a blastx search
(with DNA) restricting the output
to the PDB database. Here, a
search with human beta globin
(NP_000509) restricted to birds
(aves) produces matches against a
variety of goose and chicken globins
of known structure. Note that the
boxed S symbol refers to a link to
the Entrez Structure database.

FIGURE 11.14. The Vector Align-
ment Search Tool (VAST) at NCBI
allows the comparison of two or
more structures. These may be
selected by checking boxes
(lower left) or by entering a specific
PDB accession number (under
the advanced search options). This
site also provides links to data on
the structures being compared
(see Box 11.2) and links to the
Conserved Domain Database at
NCBI.
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Cn3D two windows open: a Cn3D Viewer and a OneD-Viewer (Fig. 11.3). The

Cn3D Viewer shows the structure of the protein in seven available formats (such as

ball-and-stick or space-filling models), and it can be rotated for exploration of the

structure. The corresponding OneD-Viewer shows the amino acid sequence of the

protein, including a helices and b sheets. Highlighting any individual amino acid

residue or group of residues in either the Cn3D Viewer or the OneD-Viewer

causes the corresponding region of the protein to be highlighted in the other viewer.

In addition to investigating the structure of an individual protein, multiple

protein structures can be compared simultaneously. Beginning at the main

MMDB structure summary for a protein such as myoglobin (Fig. 11.12b), click

“VAST” to obtain a list of related proteins for which PDB entries are available

(Fig. 11.14). This list is part of the Vector Alignment Search Tool (VAST). Select

the entries related structures, or (using the advanced query feature) enter an acces-

sion such as 4HHB for hemoglobin. This results in a Cn3D image of both structures

as well as a corresponding sequence alignment (Fig. 11.15). VAST provides many

kinds of structural data (Box 11.2).

FIGURE 11.15. Three structures
that are selected in VAST (here
myoglobin, 2MM1, and hemo-
globin, 4HHB) are compared as
overlaid structures in the Cn3D
viewer and in the form of a
sequence alignment. Despite the
relatively low sequence identity
between these three proteins, they
adopt highly similar three-dimen-
sional folds.

BOX 11.2
VAST Information

For each structural neighbor detected by VAST (such as Fig. 11.15), the

following information is listed:

† Checkbox: The checkbox allows for selection of individual neighbors.

† PDB: The four-character PDB identifier of the structural neighbor.

† The PDB chain name.

Cn3D is an acronym for “see in

3D.”
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Integrated Views of the Universe of Protein Folds
The PDB database contains over 50,000 structures. We have examined how to view

individual proteins and how to compare small numbers of structures. Chothia (1992)

predicted about 1500 folds; how many different protein folds are now thought to

exist? How many structural groups are there? Several databases have been established

to explore the broad question of the total protein fold space. We will examine several

of these databases: SCOP, CATH, and the Dali Domain Dictionary. These databases

also permit searches for individual proteins.

Taxonomic System for Protein Structures:
The SCOP Database
The Structural Classification of Proteins (SCOP) database provides a comprehensive

description of protein structures and evolutionary relationships based on a hierarch-

ical classification scheme (Fig. 11.16) (Andreeva et al., 2008). At the top of the hier-

archy are classes that are subsequently subdivided into folds, superfamilies, families,

protein domains, and then individual PDB protein structure entries. Myoglobin pro-

vides an example in which the class is all alpha proteins, the fold and superfamily are

globin-like, the family is the globins, and the protein is myoglobin (Fig. 11.17). The

SCOP database can be navigated by browsing the hierarchy, by a keyword query or

PDB identifier query, or by a homology search with a protein sequence. A key feature

of this database is that it is manually curated by experts, including Alexey Murzin,

John-Marc Chandonia, Steven Brenner, Tim Hubbard, and Cyrus Chothia.

Because of their expertise, SCOP has a reputation as being one of the most important

and trusted databases for classifying protein structures. Automatic classification is

now performed in SCOP, in part due to the increase in structures through structural

genomics initiatives, with manual annotation for particularly difficult problems.

The main classes are listed in Table 11.6. The folds level of the hierarchy

describes proteins sharing a particular secondary structure with the same

† The MMDB domain identifier.

† A VAST structure similarity score based on the number of related

secondary structure elements and the quality of the superposition.

† RMSD: The root mean square superposition residual in angstroms. This is

a descriptor of overall structural similarity.

† NRES: The number of equivalent pairs of Ca atoms superimposed

between the two structures. This number gives the alignment length,

that is, how many residues have been used to calculate the three-

dimensional superposition.

† %Id: Percent identical residues in the aligned sequence region.

† Description: A string parsed from PDB records

† A metric (called Loop Hausdorff Metric) that describes how well two

structures match in loop regions

† A gapped score that combines RMSD, the length of the alignment, and the

number of gapped regions.

Source: Q http://www.ncbi.nlm.nih.gov/Structure/VAST/vasthelp.html#

VASTTable.

The SCOP database is accessed at

Q http://scop.mrc-lmb.cam.ac.

uk/scop/. The seven main classes

in release 1.73 contain 92,927

domains organized into 3464

families, 1777 superfamilies, and

1086 folds.
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arrangement and topology. However, different proteins with the same fold are not

necessarily evolutionarily related.

As we continue down the SCOP hierarchy, we arrive at the level of the superfam-

ily. Here proteins probably do share an evolutionary relationship, even if they share

relatively low amino acid sequence identity in pairwise alignments. For example,

the lipocalin superfamily in the SCOP database includes both the retinol-binding

protein (RBP) family that we have used as an example and another group of carrier

FIGURE 11.17. The SCOP classi-
fication of sperm whale myoglobin
showing its class, fold, superfamily,
family, protein, and species. The
entry further lists relevant PDB
structures.

FIGURE 11.16. The Structural
Classification of Proteins (SCOP)
database includes a hierarchy of
terms. From Q http://scop.mrc-lmb.
cam.ac.uk/scop/ (version 1.71).
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proteins exemplified by the fatty acid-binding proteins (FABPs). Like the lipocalins,

most FABPs are small (15 kDa), abundant, secreted proteins that bind hydrophobic

ligands, and they generally have a glycine–X–tryptophan motif near the amino ter-

minus of each protein. Pairwise sequence alignment fails to reveal significant

matches, but the FABP family and the RBP lipocalin family are likely to be homolo-

gous. In the SCOP database, the lipocalin superfamily contains three groups: the

RBP-like lipocalins, the FABPs, and a thrombin protein. (Some researchers have

defined the calycin superfamily as consisting of RBP-like lipocalins, the FABPs,

and the avidins [Flower et al., 2000].)

In the SCOP hierarchy members of a family have a clear evolutionary relation-

ship. Usually, the structures of the proteins are related and the pairwise amino acid

sequence identity is greater than 30%. In some cases, such as the lipocalins or the

globins, some members of each family share as little as 15% identity, but the assign-

ment to the status of a family member is still unambiguous based on structural and

evolutionary considerations.

The CATH Database
CATH is a hierarchical classification system that describes all known protein domain

structures (Greene et al., 2007). It has been developed by Janet Thornton, Christine

Orengo, and colleagues with a particular emphasis on defining domain boundaries.

While some parts of the classification system are automated, expert manual curation

is also employed for tasks such as classifying remote folds and remote homologs.

CATH clusters proteins at four major levels: class (C), architecture (A), topology

(T), and homologous superfamily (H) (Fig. 11.18). Five new levels have been

added within the homologous superfamily level, abbreviated SOLID, which refer

to clustering of domains within the homologous superfamily level having 35%,

60%, 95%, and 100% sequence similarities. A search of CATH with the myoglobin

identifier 2MM1 results in an output displaying the various hierarchy levels

(Fig. 11.19).

At the highest level (class) the CATH database describes main folds based on

secondary-structure prediction: mainly a, mixed a and b, and mainly b, as well as

TABLE 11-6 Release Notes from SCOP Database, Release 1.71 (November 2007)

Class
No. of
Folds

No. of
Superfamilies

No. of
Families Notesa

All alpha proteins 226 392 645 —

All beta proteins 149 300 594 —

Alpha and beta proteins (a/b) 134 221 661 1

Alpha and beta proteins (a þ b) 286 424 753 2

Multidomain proteins 48 48 64 3

Membrane and cell surface proteins 49 90 101 4

Small proteins 79 114 186 5

Total 971 1589 3004 —

For each fold, there are between one and dozens of superfamilies.
a(1) Mainly parallel beta sheets (beta–alpha–beta units). (2) Mainly antiparallel beta sheets (segregated
alpha and beta regions). (3) Folds consisting of two or more domains belonging to different classes.
(4) Does not include proteins in the immune system. (5) Usually dominated by metal ligand, heme,
and/or disulfide bridges.

CATH is accessed at Q http://
www.biochem.ucl.ac.uk/bsm/
cath_new/ or Q http://www.

cathdb.info. Version 3.1.0

includes about 93,000 domains

and 63,000 chains from 30,000

PDB structures (November

2007).
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a category of few secondary structures. Assignment at this level resembles the SCOP

database system (Table 11.6). The architecture (A) level of CATH describes the

shape of the domain structure as determined by the orientations of the secondary

structures. Examples are the TIM barrel (named for triose phosphate isomerase)

and jelly roll. These assignments are made by expert judgment rather than by an

automated process.

The topology (T) level of CATH describes fold families. Protein domains are

clustered into families using several approaches, including the SSAP algorithm of

FIGURE 11.18. The CATH
resource organizes protein struc-
tures by a hierarchical scheme of
class, architecture, topology (fold
family), and homologous super-
family. From Q http://www.
cathdb.info.

α α&β β

TIM barrel Sandwich Roll

flavodoxin
(4fxn)

β-lactamase
(1mblA1)

C

T

A

β

FIGURE 11.19. A search of the
CATH database with the myoglo-
bin PDB accession 2MM1 shows
the resulting domain classification.

The SCOP classification system

distinguishes alpha and beta

proteins (a/b, consisting of

mainly parallel beta sheets with

b-a-b units) from a þ b (mainly

antiparallel beta sheets, segregat-

ing a and b regions). CATH does

not make this distinction.
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Taylor and Orengo (1989a, 1989b). While at the architecture level proteins share

structural elements, they may differ in their connectivities; at the topology level struc-

tures are assembled into groups sharing both shape and connectivity. Proteins shar-

ing topologies in common are not necessarily homologous. In contrast, the

homologous superfamily (H) level clusters proteins that are likely to share homology

(i.e., descent from a common ancestor).

The CATH database is a central resource for the hierarchical classification of

protein domains. The site includes a large number of software tools and links to

structure viewers and databases (e.g., SwissProt and Pfam). The CATH

Dictionary of Homologous Superfamilies is also useful. In sum, the CATH database

provides a deep and broad set of data on the structure of individual proteins, placing

them in the context of a comprehensive taxonomy of protein structure.

The Dali Domain Dictionary
Dali is an acronym for distance matrix alignment. The Dali database provides a

classification of all structures in PDB and a description of families of protein

(a) 

(b) 

(c) 

FIGURE 11.20. The DaliLite
server at the European
Bioinformatics Institute allows a
comparison of two three-
dimensional structures based on
analyses using distance matrices.
(a) The PDB identifiers for myo-
globin and beta globin are entered
in the input form. (b) The output
includes a Z score (here a highly sig-
nificant value of 20.8) based on
quality measures such as the resol-
ution and amount of shared sec-
ondary structure. (c) The output
also links to a pairwise structural
alignment. This can be compared
to pairwise alignments created
with scoring matrices in the
absence of structural information
(Chapter 3). DaliLite is
available at Q http://www.ebi.ac.
uk/DaliLite/.

The SSAP algorithm compares

two protein structures. It can be

accessed at Q http://www.cathdb.

info/cgi-bin/cath/
GetSsapRasmol.pl.
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sequences associated with representative proteins of known structure (Holm and

Sander, 1996a; Holm, 1998). For pairwise alignments, Dali uses a distance matrix

that contains all pairwise distance scores between Ca atoms in two structures.

These scores from structural alignments are derived as a weighted sum of similarities

of intramolecular distances. The Dali output reports Z scores, which are useful to

report biologically interesting matches of proteins even if they are of different lengths.

Dali can be used to compare two structures with the DaliLite server (Holm and

Park, 2000). An example is shown in Fig. 11.20 for myoglobin and beta globin. You

can also search the Dali database with a query, and browse a comprehensive classifi-

cation of folds. For example, a search of the Dali fold index at the website in Finland

yields a classification of structural domains in PDB90 (a subset of the PDB in which

no two chains share more than 90% sequence identity). A portion of the fold index

shows a tree constructed by average linkage clustering of structural similarity scores

(Fig. 11.21a). For one of the entries (myoglobin, accession 1jw8a), the browse link

leads to a set of structural alignments such as that between myoglobin and a hemo-

globin chain (Fig. 11.21b) with quality data and Z scores as shown in Fig. 11.20

for DaliLite. The interact link allows you to select structural neighbors in order to

analyze their structural relationships (Fig. 11.20c).

Comparison of Resources
We have described SCOP, CATH, and the Dali Domain Dictionary. Many other

databases are available that classify and analyze protein structures. Some of these

are listed in Table 11.7. It is notable that for some proteins, such as the four listed

in Table 11.8, authoritative resources such as SCOP, CATH, and Dali-based data-

bases provide different estimates of the number of domains in a protein. The field

of structural biology provides rigorous measurements of the three-dimensional struc-

ture of proteins, and yet classifying domains can be a complex problem requiring

expert human judgments. There may be differing interpretations as to whether a par-

ticular segment of a protein exists as an independent folding unit, or whether the

main principle of domain decomposition involves compactness (as is the case for

the Protein Domain Parser) or the density of residue–residue contacts within a

FIGURE 11.21. Result of search-
ing myoglobin (2MM1) at the
Dali server (Q http://www.ebi.
ac.uk/dali/). (a) The fold index
provides a numerical classification
scheme based on clustering of simi-
larity scores from a set of compre-
hensive pairwise comparisons of
PDB structures. (b) The browse
link shows pairwise structural
alignments (such as that shown in
Fig. 11.20c) of an entry with its
database neighbors. The interact
link, shown here, allows a protein
structure and/or sequence to be
compared and aligned to related
structures.

(b)

(a)

Dali is atQ http://www.ebi.ac.uk/
dali/ or Q http://ekhidna.

biocenter.helsinki.fi/dali/start

and DaliLite is at Q http://www.

ebi.ac.uk/DaliLite/. The Families

of Structurally Similar Protein

(FSSP) database also uses the Dali

algorithm (Q http://www.ebi.ac.

uk/dali/fssp/fssp.html) (Holm

and Sander, 1996a).

You can access the Protein

Domain Parser at Q http://123d.

ncifcrf.gov/pdp.html, and

DomainParser at Q http://
compbio.ornl.gov/structure/
domainparser/.
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putative domain (as is the case for DomainParser). SCOP is especially oriented

towards classifying whole proteins, while CATH is oriented towards classifying

domains.

PROTEIN STRUCTURE PREDICTION

Structure prediction is a major goal of proteomics. There are three principal ways to

predict the structure of a protein (Fig. 11.22). First, for a protein target that shares

substantial similarity to other proteins of known structure, homology modeling

(also called comparative modeling) is applied. Second, for proteins that share folds

TABLE 11-8 Proteins Having Different Numbers of Domains Assigned by SCOP, CATH, DALI, and PDP
Name PDB Accession SCOP CATH DALI PDP

Glycogen phosphorylase 1gpb 1 2 3 2

Annexin V 1avh_A 1 4 4 2

Submaxillary renin 1smr_A 1 2 1 2

Fructose-1,6-bisphosphatase 5fbp_A 1 2 2 2

Values are the number of domains assigned by each database.
Sources: data from CATH, SCOP, and DALI were from the Protein Data Bank (Q http://www.pdb.org).
Protein Domain Parser (PDP) data are from Q http://123d.ncifcrf.gov/pdp.html (November 2007).

TABLE 11-7 Partial List of Protein Structure Databases
Database Comment URL

3dee Structural domain definitions Q http://www.compbio.
dundee.ac.uk/3Dee/

CASTp Computed Atlas of Surface Topography
of proteins (CASTp)

Q http://sts.bioengr.uic.
edu/castp/index.php

CE Complete PDB and representative
structure comparison and alignments

Q http://cl.sdsc.edu/ce.
html

Enzyme Structures
Databases

Enzyme classifications and
nomenclature

Q http://www.ebi.ac.uk/
thornton-srv/databases/
enzymes/

FATCAT Flexible structure AlignmenT by
Chaining Aligned fragment pairs
allowing Twists

Q http://fatcat.burnham.
org/

FSSP Structurally similar families Q http://www.sander.ebi.
ac.uk/dali/fssp/

HSSP Homology-derived secondary
structures

Q http://swift.cmbi.ru.nl/
gv/hssp/

JenaLib Jena Library of Biological
Macromolecules (JenaLib)

Q http://www.fli-leibniz.
de/IMAGE.html

NDB Database of three-dimensional nucleic
acid structures

Q http://ndbserver.
rutgers.edu/

OCA Browser-database for protein structure/
function

Q http://oca.ebi.ac.uk/
oca-docs/oca-home.
html

PDBSum Summary information about protein
structures

Q http://www.ebi.ac.uk/
pdbsum/
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but are not necessarily homologous, threading is a major approach. Proteins that are

analogous (related by convergent evolution rather than homology) can be studied this

way. Third, for targets lacking identifiable homology (or analogy) to proteins of

known structure, ab initio approaches are applied.

Homology Modeling (Comparative Modeling)
While approximately 50,000 protein structures have been deposited in PDB, over five

million protein sequences have been deposited in the SwissProt/TrEMBL databases

(November 2007). For the vast majority of proteins, the assignment of structural

models relies on computational biology approaches rather than experimental deter-

mination. As protein structures continue to be solved by x-ray crystallography and

NMR spectroscopy, the most reliable method of modeling and evaluating new struc-

tures is by comparison to previously known structures (Jones, 2001; Baker and Sali,

2001). This is the method of comparative modeling of protein structure, also called

homology modeling. This method is fundamental to the field of structural genomics.

Comparative modeling consists of four sequential steps (Marti-Renom et al.,

2000).

1. Template selection and fold assignment are performed. This can be accom-

plished by searching for homologous protein sequences and/or structures

FIGURE 11.22. Approaches to
predicting protein structures
(adapted from Baker and Sali,
2001). Comparative modeling is
the most powerful approach when
a target sequence has any indi-
cations of homology with a known
structure. Threading is used to
compare segments of a protein to
a library of known folds. In the
absence of homologous structures,
ab initio prediction is used to
model protein structure.

obtain sequence ("target")

find known structures
(templates) related
to the novel sequence

align the sequence 
with the template

build a model

assess the model

assume the native state
of the protein is at the global
free energy minimum

search for tertiary structures
that are low in free energy

build a model

assess the model

fold assignment

comparative modeling ab initio predictionfold recognition

obtain a library
of known folds

“thread” the target on
different folds; obtain scores 

to evaluate compatibility

build a model

assess the model
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with tools such as BLASTand PSI-BLAST. The target can be queried against

databases described in this chapter, such as PDB, CATH, and SCOP. As part

of this analysis, structurally conserved regions and structurally variable

regions are identified. It is common for structurally variable regions to corre-

spond to loops and turns, often at the exterior of a protein.

2. The target is aligned with the template. As for any alignment problem, it is

especially difficult to determine accurate alignments for distantly related pro-

teins. For 30% sequence identity between a target and a template protein, the

two proteins are likely to have a similar structure if the length of the aligned

region is sufficient (e.g., more than 60 amino acids). The use of multiple

sequence alignments (Chapter 6) can be especially useful.

3. A model is built. A variety of approaches are employed, such as rigid-body

assembly and segment matching.

4. The model must be evaluated (see below).

There are several principal types of errors that occur in comparative modeling

(see Marti-Renom et al., 2000):

† Errors in side-chain packing

† Distortions within correctly aligned regions

† Errors in regions of a target that lack a match to a template

† Errors in sequence alignment

† Use of incorrect templates
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applications

Studying catalytic
mechanisms

Identifying regions of 
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Fitting into low-resolution
electron density

Defining antibody epitopes

Refining NMR structures

Designing and improving
ligands

Prediction of protein
partners

Supporting site-directed
mutagenesis

FIGURE 11.23. Protein structure
prediction and accuracy as a func-
tion of the relatedness of a novel
structure to a known template.
Modified from Baker and Sali
(2001). Abbreviation: aa, amino
acids. Used with permission.
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The accuracy of protein structure prediction is closely related to the percent

sequence identity between a target protein and its template (Fig. 11.23). When the

two proteins share 50% amino acid identity or more, the quality of the model is

usually excellent. For example, the root mean square deviation (RMSD) for the

main-chain atoms tends to be 1 Å in such cases. Model accuracy declines when com-

parative models rely on 30% to 50% identity, and the error rate rises rapidly below

30% identity. De novo models are able to generate low-resolution structure models.

Many web servers offer comparative modeling including quality assessment, such

as SWISSMODEL at ExPASy, MODELLER, and the Predict Protein server (Table

11.9). After a model is generated it is necessary to assess its quality. The goal is to

assess whether a particular structure is likely, based on a general knowledge of protein

structure principles. Criteria for quality assessment may include whether the bond

lengths and angles are appropriate; whether peptide bonds are planar; whether the

carbon backbone conformations are allowable (e.g., following a Ramachandran

plot); whether there are appropriate local environments for hydrophobic and hydro-

philic residues; and solvent accessibility. Quality assessment programs include

VERIFY3D, PROCHECK, and WHATIF at CMBI (Netherlands) (Table 11.9).

Fold Recognition (Threading)
While there are currently 50,000 entries in the Protein Data Bank, there may be only

1000 to 2000 distinct folds in nature. Fold recognition, also called threading, is useful

when a target sequence of interest lacks identifiable sequence matches and yet may

have folds in common with proteins of known structure. The target might assume

a fold that occurs in a characterized protein because of convergent evolution, or

because the two proteins are homologous but extremely distantly related. An input

sequence is parsed into subfragments and “threaded” onto a library of known

folds. Scoring functions allow an assessment of how compatible the sequence is

with known structures. A variety of web servers provide automatic threading.

Ab Initio Prediction (Template-Free Modeling)
In the absence of detectable homologs, protein structure may be assessed by ab initio

(or de novo) structure prediction (Fig. 11.22). “Ab initio,” meaning “from the

TABLE 11-9 Websites for Structure Prediction by Comparative Modeling, and for Quality Assessment
Website Comment URL

3D-JIGSAW Laboratory of Paul
Bates

Q http://www.bmm.icnet.uk/servers/
3djigsaw/

Geno3D POLE Q http://pbil.ibcp.fr/htm/index.php

MODELLER From Andrej Sali’s
group

Q http://www.salilab.org/modeller/

PredictProtein Laboratory of
Burkhard Rost

Q http://www.predictprotein.org/

SWISS-
MODEL

ExPASy Q http://swissmodel.expasy.org/

PROCHECK Quality assessment Q http://www.biochem.ucl.ac.uk/�roman/
procheck/procheck.html

VERIFY3D Quality assessment Q http://nihserver.mbi.ucla.edu/Verify_3D/

WHATIF Quality assessment Q http://swift.cmbi.kun.nl/whatif/

In Chapter 3, we discussed the

importance of the length of the

alignment in considering percent

identity between two proteins.

Websites for fold recognition

include 3D-PSSM (Q http://
www.sbg.bio.ic.ac.uk/ � 3dpssm/
index2.html) and its successor

PHYRE (Q http://www.sbg.bio.

ic.ac.uk/� phyre/), FUGUE

(Q http://www-cryst.bioc.cam.

ac.uk/servers.html/), LIBRA I

(Q), the UCLA-DOE fold server

(Q http://www.doe-mbi.ucla.

edu/Services/FOLD/), 123D

(Q http://123d.ncifcrf.gov/
123D þ .html), and the Structure

Prediction Meta Server (Q http://
meta.bioinfo.pl/submit_wizard.pl).
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beginning,” is the most difficult approach to structure prediction (Osguthorpe, 2000;

Simons et al., 2001). It is based on two assumptions: (1) All the information about

the structure of a protein is contained in its amino acid sequence. (2) A globular

protein folds into the structure with the lowest free energy. Finding such a structure

requires both a scoring function and a search strategy. While the resolution of

ab initio methods is generally low, this approach is useful to provide structural

models.

The Rosetta method is one of the most successful ab initio strategies (Simons

et al., 2001; Rohl et al., 2004). The target protein is evaluated in fragments of nine

amino acids. These fragments are compared to known structures in PDB. From

this analysis, structures can be inferred for the entire peptide chain. Typically,

models generated with Rosetta have accuracies of 3 to 6 Å RMSD from known struc-

tures for aligned segments of 60 or more amino acids (Rohl et al., 2004). Bonneau

et al. (2002) used the Rosetta method to model the structure of all Pfam-A sequence

families (Chapter 6) for which three-dimensional structures are unknown. By cali-

brating their method on known structures, they estimated that for 60% of the proteins

studied (80 of 131), one of the top five ranked models successfully predicted the

structure within 6.0 Å RMSD.

A Competition to Assess Progress in Structure Prediction
How well can the community predict the structures of proteins, particularly those

with novel folds? The state of the art of protein prediction is assessed by the structural

genomics community at Critical Assessment of Techniques for Protein Structure

Prediction (CASP) (Moult, 2005; Kryshtafovych et al., 2007). This is a double-

blind structure prediction experiment (or competition) that has occurred every

two years since the first competition in 1996. While 35 groups participated in

CASP1, over 200 prediction teams from dozens of countries joined CASP8 in

2008. Ninety-five experimentally determined targets (with 123 domains) were eval-

uated, and tens of thousands of models were deposited with the team of assessors.

The structures of the targets were known but withheld from publication so that the

community could perform predictions in a blind fashion. Predictors consisted of

either scientists who performed modeling of each target, or automatic servers that

produced predictions in a short time (48 hours) without human intervention.

The CASP targets include those that require (1) comparative modeling with

close evolutionary relationships (e.g., those identifiable by BLAST), (2) comparative

modeling to distantly related targets (e.g., those requiring PSI-BLAST or hidden

Markov models to detect relationships of a template to proteins having known struc-

ture), (3) threading, or (4) template-free modeling. With each successive CASP

experiment the ability to accurately model templates in all categories has improved.

Major challenges include the need for improved alignments, the need for models of

close evolutionary relationships to approach the accuracy obtained by experimental

structure determination, the need to better refine models of remote evolutionary

relationships, and the need to discriminate among the best template-free models

(Moult, 2005; Moult et al., 2007; Tai et al., 2005).

The CASP website provides detailed results of the competition. One measure of

the accuracy of a prediction is the GDT_TS measure, which compares the difference

in position of the main chain Ca atoms in a model relative to the position in the exper-

imentally determined structure. Figures 11.24a and b show examples of an easy

protein target from CASP7 that was solved by most groups and a difficult target

The Robetta server from David

Baker’s lab is at Q http://robetta.

bakerlab.org/. It applies the

Rosetta method (Kim et al.,

2004).

The Protein Structure Prediction

Center organizes CASP infor-

mation (Q http://
predictioncenter.org/) including

results from each CASP

competition.
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that no group solved. Figure 11.24c shows an example of a target that was aligned

either very well or very poorly by many groups; those with poor results misaligned

the sequence of the target, highlighting the difficulty of correctly aligning a target

sequence onto available template structures for template-based models. The group

of David Baker reported that the Rosetta methodology generated highly accurate

FIGURE 11.24. Examples of
results from the CASP7 compe-
tition. Each plot (called a GDT
plot or “Hubbard plot”) shows the
percent of CA or Ca residues
(that is, the percent of the modeled
structure; x axis) versus the dis-
tance cutoff in Ångstroms (from 0
to 10 Å; y axis). Each line rep-
resents a summary of a single pre-
diction of that protein’s structure;
multiple lines are from the many
groups that submitted predictions.
(a) Example of a protein target
(T0346) whose structure was mod-
eled extremely well by many teams
participating in the CASP compe-
tition. Note that a very high percen-
tage of the residues in the
predictions that could be overlaid
on the correct structure (x axis
values up to 100%) with only a
very small root mean squared devi-
ation (distance cutoff, y axis) as
indicated by arrow 1. A small
number of predictions were wrong
(arrow 2) because they correctly
matched the true structure over
only a small percent of residues
even at large distance cutoffs. (b)
Example of a protein target
(T0287) whose true structure was
not predicted by any group in the
CASP competition. A single
group’s prediction (arrow 3) was
better than all others. (c)
Example of a target (T0328) that
was predicted incorrectly by many
teams (arrow 4) but correctly by
others (arrow 5). Such a broad dis-
crepancy in prediction accuracy is
often attributable to incorrect
sequence alignments in homology
modeling. Source: CASP7 results at
Q http://www.predictioncenter.
org/casp/casp7/public/cgi-bin/
results.cgi.
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predictions for some targets under 100 residues for template-free modeling,

incorporating an all-atom energy function for refinement of the predicted structures

(Das et al., 2007).

INTRINSICALLY DISORDERED PROTEINS

Dyson and Wright (2006) wrote an article entitled “According to Current

Textbooks, a Well-Defined Three-Dimensional Structure Is a Prerequisite for the

Function of a Protein. Is This Correct?” Many proteins do not adopt stable three-

dimensional structures, and this may be an essential aspect of their ability to function

properly. Intrinsically disordered proteins are defined as having unstructured regions

of significant size such as at least 30 or 50 amino acids (Dyson and Wright, 2005; Le

Gall et al., 2007; Radivojac et al., 2007). Such regions do not adopt a fixed three-

dimensional structure under physiological conditions, but instead exist as dynamic

ensembles in which the backbone amino acid positions vary over time without adopt-

ing stable equilibrium values.

Keith Dunker and colleagues have estimated that about 10% of the PDB proteins

have disordered regions longer than 30 amino acids (Le Gall et al., 2007). Only �7%

of the protein structures in PDB correspond to the full-length sequence in SwissProt

(and only �25% of the proteins correspond to the structures that match .95% of the

length of the protein in SwissProt). The lack of full-length sequences among proteins

with solved structures may reflect the common occurrence of intrinsic disorder.

Furthermore these authors suggest that .25% of the proteins in SwissProt have dis-

ordered regions. DisProt, the Database of Disordered Proteins, centralizes infor-

mation on this class of proteins (Sickmeier et al., 2007).

Intrinsically disordered regions may have important cellular functions. They may

change conformation upon binding to a biological target (a ligand) in a process in

which folding and binding are coupled. Many disordered regions of proteins are

highly conserved, consistent with their having functionally important roles.

Dunker et al. (2005) discuss the role of intrinsic disorder in protein–protein inter-

action networks, in which it is thought that the average protein has few connections

but “hub” proteins serve central roles with many (tens to hundreds) links. Intrinsic

disorder in hub proteins could facilitate their ability to bind to structurally diverse

protein partners.

PROTEIN STRUCTURE AND DISEASE

The linear sequence of amino acids specifies the three-dimensional structure of a

protein. A change in even a single amino acid can cause a profound disruption in

structure. For example, cystic fibrosis is caused by mutations in the gene encoding

cystic fibrosis transmembrane regulator (CFTR) (Ratjen and Döring, 2003). The

most common mutation is DF508, a deletion of a phenylalanine at position 508.

The consequence of removing this residue is to alter the alpha helical content of

the protein. This in some way impairs the ability of the CFTR protein to traffic

through the secretory pathway to its normal location on the plasma membrane of

lung epithelial cells.

A variety of protein structures in PDB have been annotated in terms of diseases

they are associated with (Fig. 11.25). Changes in protein sequence that are associated

with disease do not necessarily cause large changes in protein structure. An example

The Database of Intrinsic

Disorder is available at Q http://
www.disprot.org/.
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is provided by sickle cell anemia, the most common inherited blood disorder. It is

caused by mutations in the gene encoding beta globin on chromosome 11p15.4.

Adult hemoglobin is a tetramer consisting of two alpha chains and two beta chains.

The protein carries oxygen in blood from the lungs to various parts of the body.

A substitution of a valine for a normally occurring glutamic acid residue forms a

hydrophobic patch on the surface of the beta globin, leading to clumping of many

hemoglobin molecules. Several examples of proteins associated with human disease

are presented in Table 11.10, including CFTR and beta globin.

PERSPECTIVE

The aim of structural genomics is to define structures that span the entire space of

protein folds. This project has many parallels to the Human Genome Project.

Both are ambitious endeavors that require the international cooperation of many lab-

oratories. Both involve central repositories for the deposit of raw data, and in each the

growth of the databases is exponential.

It is realistic to expect that the great majority of protein folds will be defined in the

near future. Each year, the proportion of novel folds declines rapidly. A number of

lessons are emerging:

† Proteins assume a limited number of folds.

† A single three-dimensional fold may be used by proteins to perform entirely

distinct functions.

† The same function may be performed by proteins using entirely different

folds.

TABLE 11-10 Examples of Proteins Associated with Diseases for Which Subtle Change in Protein
Sequence Leads to Change in Structure
Disease Gene/Protein RefSeq

Cystic fibrosis CFTR NP_000483

Sickle cell anemia Hemoglobin beta NP_000509

“Mad cow” disease (BSE) Prion protein NP_000302

Alzheimer disease Amyloid precursor protein NP_000475

Abbreviations: CFTR, cystic fibrosis transmembrane regulator; BSE, bovine spongiform encephalopathy.

FIGURE 11.25. Distribution of
PDB structures annotated accord-
ing to disease (from Q http://
function.rcsb.org:8080/pdb/).

nervous system (21)

heart and blood vessels (2)

digestive system (4)

skin and connective tissue (6)

respiratory diseases (1)

neonatal diseases (4)

nutritional and
metabolic diseases (4)

blood and lymph diseases (11)

cancers (10)

diseases of the eye (7)

diseases of the
immune system (4)
ear, nose, and throat (6)

female-specific diseases (5)
glands and hormones (5)
muscle and bone (1)

You can access a brief definition of

the hemoglobin chains at Entrez

Gene. You can also find a link

there to Online Mendelian

Inheritance in Man, which pro-

vides a detailed description of the

clinical and molecular conse-

quences of globin gene mutations.

We discuss sickle cell anemia in

Chapter 20.
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PITFALLS

One of the great mysteries of biology is how the linear amino acid sequence of a

protein folds quickly into the correct three-dimensional conformation. One set of

challenges concerns the experimental solution of three-dimensional structures that

span the extent of sequence space. At the present time, no representative structures

have been solved for thousands of protein families. Another set of challenges con-

cerns protein structure prediction. While structures can be predicted with high con-

fidence when a closely related template of known structure is available, it is still

difficult to predict entirely novel protein structures. Ab initio methods are continually

improving, particularly for predicting the structures of small proteins.

DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

[11-1] The Protein Data Bank (PDB) is the central repository of

protein structure data. What do databases such as SCOP

and CATH offer that PDB lacks?

[11-2] A general rule is that protein structure evolves more slowly

than primary amino sequence. Thus, two proteins can have

only limited amino acid sequence identity while sharing

highly similar structures. (A good example of this is the

lipocalins, where retinol-binding protein, odorant-binding

protein, and b-lactoglobulin share highly related structures

with low sequence identity.) Are there likely to be excep-

tions to this general rule?

[11-1] View the structure of a protein using Cn3D at NCBI.

(a) Download Cn3D from the NCBI Structure site (Q http://

www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

(b) Go to NCBI Entrez Structures and select a lipocalin. You

can access this from the main NCBI page by going to

“structure.” Alternatively, in Entrez you can type a query,

select “limits,” and restrict the output to PDB. If you

select “odorant-binding protein,” there are entries for

odorant-binding proteins from several different species.

From cow, there are entries deposited independently

from different research groups (e.g., PDB identifiers

1OBP, 1PBO).

(c) Select “View 3D Structure” in the MMDB web page.

Explore the links on the page. Click “View/Save Structure.”

(d) Two windows open: the Cn3D viewer and the 1D-viewer.

Click on each of these, and notice how they are intercon-

nected. Change the “style” of the Cn3D viewer. Identify

the a helices and b sheets of the protein.

[11-2] View the structure of a protein using WebMol at PDB.

(a) Go to Q http://www.pdb.org and enter the term 4HHB

(for hemoglobin) in the search box. Note that the title of

this page is “the crystal structure of human deoxyhaemo-

globin at 1.74 angstroms resolution.” An icon at the top

includes the option to download the pdb file to your desk-

top; by doing this you can easily load the 4HHB file into

other programs later. Next, under the heading “display

options” click WebMol.

(b) The WebMol program opens (running Java) without the

need to install software locally. There are pull-down

menus and command tabs along the side and bottom of

the image of hemoglobin, including a help document.

While there are dozens of features, we will select just sev-

eral. First, explore the mouse options. On a PC, left click

to rotate the structure; right click to zoom in and out.

(c) Change the view from all atoms (AllAt) to the main chain

(MainCh). Color the hemoglobin molecule by secondary

structure. Add (then remove) labels to view the amino

acids. Toggle the heteroatoms (HetAt) to see the four

heme groups positioned inside each of the four globin

chains. Rock to gain a view of the protein.

(d) Click the select tool, and highlight the first three amino acids

of the B chain (val-his-leu). Zoom in to view these. Under

measure, select the omega angle. Click DMat to invoke a

distance matrix, and Rama for a Ramachandran plot.

While globins have a high alpha helical content, repeat the

Ramachandran plot using a protein with beta sheets.

[11-3] View the structure of a protein using DeepView at ExPASy.

(a) Visit the website for DeepView, the Swiss PDB Viewer, at

Q http://expasy.org/spdbv/. Select download and install

the software locally.
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SELF-TEST QUIZ

[11-1] In comparing two homologous but distantly related proteins:

(a) They tend to share more three-dimensional structure fea-

tures in common than percent amino acid identity.

(b) They tend to share more percent amino acid identity in

common than three-dimensional structure features.

(c) They tend to share three-dimensional structure features and

percent amino acid identity to a comparable extent.

(d) It is not reasonable to generalize about the extent to which

they share three-dimensional structure features and percent

amino acid identity.

[11-2] Protein secondary structure prediction algorithms typically cal-

culate the likelihood that a protein:

(a) Forms a helices

(b) Forms a helices and b sheets

(c) Forms a helices, b sheets, and coils

(d) Forms a helices, b sheets, coils, and multimers

[11-3] An advantage of x-ray crystallography relative to NMR for

structure determination is that using x-ray crystallography:

(a) It is easier to solve the structure of transmembrane domain-

containing proteins.

(b) It is easier to grow crystals than to prepare samples for NMR.

(c) It is easier to interpret diffraction data.

(d) It is easier to determine the structures of large proteins.

[11-4] The Protein Data Bank (PDB):

(a) Functions primarily as the major worldwide repository of

macromolecular secondary structures.

(b) Contains approximately as many structures as there are

protein sequences in SwissProt/TrEMBL.

(c) Includes data on proteins, DNA–protein complexes as well

as carbohydrates.

(d) Is operated jointly by the NCBI and EBI.

[11-5] The NCBI VASTalgorithm:

(a) Is a web browser tool for the visualization of related protein

structures by threading.

(b) Is a visualization tool that allows the simultaneous compari-

son of as many as two structures.

(c) Allows searches of all the NCBI structure database with

queries that have known structures (i.e., having PDB acces-

sion numbers), but this tool is not useful for the analysis of

uncharacterized structures.

(d) Allows searches of all the NCBI structure database entries

against each other and provides a list of “structure neigh-

bors” for a given query.

[11-6] Cn3D is a molecular structure viewer at NCBI. It features

(a) A menu-driven program linked to automated homology

modeling

(b) Open the file 2MM1 (a myoglobin pdb file). You can find

this by visiting PDB (Q http://www.pdb.org), querying

2MM1, and downloading the pdb file to your desktop.

There is a main toolbar (see Fig. 11.2b); use its File !
Open command.

(c) Under the Window pull-down menu, open the control

panel. Click the column header “show” to deselect all the

amino acid residues, then click the first two to view just

them. On the main toolbar, click the v, f, c button (see

Fig. 11.2b) to view the bond angles.

[11-4] Compare the structures of two lipocalins using VASTat NCBI:

(a) Go back to the MMDB page for 1PBO and select

“Structure neighbors.” (This can be accessed by mousing

over the protein graphic.) You are now looking at the

NCBI VAST (Vector Alignment Search Tool) site. There

is a list of proteins related to OBP. Select one or two

other proteins, such as b-lactoglobulin or retinol-binding

protein, by clicking on the box(es) to the left. Now view/

save the alignments.

(b) Notice that two windows open up: Cn3D and DDV (the

two-dimensional viewer). Again explore the relationship

between these two visualization tools. What are the simi-

larities between the proteins you are comparing? What

are their differences? Highlight the regions of conserved

amino acids both in the alignment viewer and the graphical

viewer. Where are the invariant GXW residues located?

[11-5] Compare the structures of two lipocalins using DaliLite at EBI

(Q http://www.ebi.ac.uk/DaliLite/). Try structures such as

1PBO (for an odorant-binding protein) and 1RBP (for

retinol-binding protein). Are the structures significantly

related? By what criteria? Are the sequences significantly

related, and by what criteria?

[11-6] Mutations in the beta chain of hemoglobin (gene symbol HBB;

also called beta globin) can cause sickle cell anemia or other

diseases. Try to find the PDB accession numbers for both

normal hemoglobin and a mutated form. Try the following:

(a) The NCBI Structure page

(b) The PDB

(c) CATH or SCOP

(d) A blastp search against the PDB at the NCBI website

[11-7] Sickle-cell anemia is caused by a specific mutation in HBB,

E6V (i.e., a glutamic acid residue at amino acid position 6 is

substituted with a valine). As a consequence of this mutation,

hemoglobin tetramers can clump together. This causes the

entire red blood cell to deform, adopting a sickled shape. Use

PDB identifier 4HHB for wild-type hemoglobin and 2HBS

for a mutant form. Compare the structures using the VAST

tool at NCBI. Is the glutamate at position 6 on the surface of

the protein or is it buried inside? Does the mutation to a

valine cause a change in the predicted secondary or tertiary

structure of the protein?
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(b) A command line interface useful for a variety of structure

analyses

(c) A structure viewer that is accompanied by a sequence viewer

(d) A structure viewer that allows stereoscopic viewing of struc-

ture images

[11-7] The CATH database offers a hierarchical classification of

protein structures. The first three levels, class (C), architecture

(A), and topology (T), all describe:

(a) Protein tertiary structure (e.g., tertiary structure compo-

sition, packing, shape, orientation, and connectivity)

(b) Protein secondary structure (e.g., secondary structure com-

position, packing, shape, orientation, and connectivity)

(c) Protein domain structure

(d) Protein superfamilies grouped according to homologous

domains

[11-8] Homology modeling may be distinguished from ab initio pre-

diction because:

(a) Homology modeling requires a model to be built.

(b) Homology modeling requires alignment of a target to a

template.

(c) Homology modeling is usefully applied to any protein

sequence.

(d) The accuracy of homology modeling is independent of the

percent identity between the target and the template.

[11-9] You have a protein sequence, and you want to quickly predict its

structure. After performing BLASTand PSI-BLAST searches,

you identify the most closely related proteins with known struc-

tures as several having 15% amino acid identity to your protein,

with a nonsignificant expect value. Which of these options is

best?

(a) X-ray crystallography

(b) NMR

(c) Submitting your sequence to a protein structure prediction

server that performs homology modeling

(d) Submitting your sequence to a protein structure prediction

server that performs ab initio modeling
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It is of great interest to understand the relationship between the genotype (e.g., having an altered chromosome number) and the
phenotype (the appearance of the organism, including its fitness). When an organism has an extra copy of a chromosome it is trisomic.
By the 1940s, the mechanisms by which trisomy occurs were understood in detail. The jimsonweed (Datura stramonium L.), a flowering
plant of the potato family (Solanaceae), normally has 12 pairs of chromosomes. Albert Blakeslee (1874–1954) investigated the seed
capsule from wild-type Datura (top) and 12 distinct trisomic types. For each trisomic type, a diagram of the extra chromosome is shown,
including a numbering system for the chromosome ends (telomeres). Blakeslee noted that since each chromosome has a distinctive set of
genes, each trisomic plant has a distinctive phenotype. From Riley (1948, p. 420). Used with permission.



12

Functional Genomics

Nil adeo quoniam natum’st in corpore, ut uti possemus, sed quod natum’st, id procreat usum.

(In fact, nothing in our bodies was born in order that we might be able to use it, but rather,

having been born, it begets a use.)

—Lucretius (c.100–c.55 B.C.E.), De Rerum Natura, IV, 834–835 (1772, p. 160).

INTRODUCTION TO FUNCTIONAL GENOMICS

A genome is the collection of DNA that comprises an organism. Functional genomics

is the genome-wide study of the function of DNA (including genes and nongenic

elements), as well as the nucleic acid and protein products encoded by DNA. We

may further consider the meaning of the term functional genomics by considering

some examples of the ways it has been characterized in recent years.

† Functional genomics may be applied to the complete collection of DNA

(the genome), RNA (the transcriptome), or protein (the proteome) of an

organism. The assessment of RNA transcripts that are expressed at various

times of development or various body regions constitutes an example of

functional genomics.

† Functional genomics implies the use of high throughput screens, in contrast

to traditional methods of biology in which one gene or protein has been

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner
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characterized experimentally in depth. Such traditional methods commonly

complement high throughput approaches. For example, after performing a

yeast two-hybrid screen to identify thousands of interacting protein partners

in some model organism, further validation of selected binding partners is

subsequently performed.

† Functional genomics often involves the perturbation of gene function to

investigate the consequence on the function of other genes in a genome. For

example, in the yeast Saccharomyces cerevisiae each gene has been individually

knocked out and “bar-coded” as discussed below.

† One of the most challenging and fundamental problems in modern biology is

to understand the relationship between genotype and phenotype (discussed

below). Connecting the two is a fundamental part of functional genomics.

We provide an overview of functional genomics in Fig. 12.1 with a schematic of a

cell. We can consider the three cellular consitutents of genomic DNA (including

genes), RNA (including coding and noncoding RNA; Chapter 8); and proteins

(Chapters 10 and 11). Other constituents, such as lipids and various metabolites, are

also worthy of consideration but are not “informational” in the same sense as the

polymers above. The scope of functional genomics includes two levels. (1) Natural vari-

ation. How do genes, RNA transcripts, and proteins change across body regions, or

across developmental stages? In terms of genomic DNA we will see in Chapter 17

that the genomes of many closely related yeast species have been sequenced, and in

Chapter 18 we will describe the recent sequencing of 12 Drosophila species and 15

mouse strains. In Chapter 19, we discuss the variation in individual human genome

sequences as well. Variation encompasses other aspects such as epigenetics (the study

of heritable changes in gene function that occur without a change in DNA sequence,

as when DNA is reversibly methylated). In terms of RNA transcripts, techniques

such as microarrays and serial analysis of gene expression (Chapter 8) are used to

define region- and time-specific featuresof RNA transcripts. (2) Functional disruptions

occur in nature and are studied experimentally. These include deletions, duplications,

inversions, and translocations. The scale includes entire genomes (we discuss fish,

plant, and Paramecium genome duplications in Chapter 18), entire chromosomes

(which may become aneuploid, that is, having an abnormal copy number), segments

of chromosomes, or single nucleotides. Examples of naturally occurring deletions

include the many microdeletion syndromes in which there is a hemizygous loss of chro-

mosomal material, often spanning several million base pairs and including the loss of

one copy or dozens of genes. We can find many examples of RNA loss (such as non-

sense-mediated decay) and protein loss (for example, in one form of myasthenia

gravis, muscle weakness results from an autoimmune reaction that destroys copies of

the nicotinic acetylcholine receptor at the neuromuscular junction; reviewed in

Drachman, 1994). In this chapter we will describe many experimental approaches to

deleting genes as well as to reducing protein levels. Amplifications also commonly

occur in nature; Down syndrome is a well-known example in which the presence

of three copies of chromosome 21 (instead of the usual two) is associated with increased

levels of mRNA and possibly of protein derived from chromosome 21. Experimentally,

transgenic or other models can be used to overexpress DNA, RNA, or protein.

We can summarize our focus in this chapter as the consideration of both natural

variation and also disrupted cellular function. We will explore how to disrupt gene,

gene expression, or protein function, and what the consequences are of such disruptions.
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The Relationship of Genotype and Phenotype
The genotype of an individual consists of the DNA that comprises the organism. The

phenotype is the outward manifestation in terms of properties such as size, shape,

movement, and physiology. We can consider the phenotype of a cell (e.g., a precursor

cell may develop into a brain cell or liver cell) or the phenotype of an organism (e.g., a

person may have a disease phenotype such as sickle-cell anemia). We can trace the

history of how genotype and phenotype are defined back to August Weismann in

the late nineteenth century (Box 12.1).

A great challenge of biology is to understand the relationship between genotype

and phenotype. We can gather information about either one alone. Considering the

genotype, we have now sequenced thousands of genomes (including viral and

DNA RNA protein

DNA RNA protein

Natural variation SNPs; epigenomics transcriptome profiling
(microarray, SAGE) 

protein localization;
  --across development protein-protein
  --across body regions interactions; pathways 
  --across species, strains

Functional disruptions
--experimental knockout collections RNAi; siRNA chemical modification 

  transgenic animals         
--in nature Williams syndrome nonsense-mediated myasthenia gravis  

  Down syndrome 
cancers RNA decay 
chromosomal changes 

phenotype

FIGURE 12.1. Functional genomics approaches to high throughput protein analysis. From left
to right, we can consider several aspects of a cell: the functions associated with DNA, RNA, and
protein, as well as higher-order aspects such as protein interactions, biochemical pathways, cell
metabolism, and ultimately the phenotype of the cell and of the organism. We can also consider
functional genomics approaches in the two broad categories of natural variation and of func-
tional disruptions. Natural variation includes comparisons of the state of DNA, RNA, protein,
or other cellular constituents as changes occur over time, under different physiological conditions,
or (in the case of multicellular organisms) across different cell types and body regions. Functional
disruptions occur in nature (such as chromosomal abnormalities); Williams syndrome is an
example of a microdeletion syndrome causing the hemizygous (single-copy) loss of dozens of
genes on chromosome 7, and Down syndrome is caused by the gain of an extra copy of chromo-
some 21. In this chapter we will discuss high throughput experimental approaches to disrupting
gene function. Such studies elucidate the normal function of genes.
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organellar genomes), and defined many of the coding and noncoding genes.

Information about the DNA is deposited in GenBank, EMBL, and DDBJ

(Chapter 2). It is possible to further describe the transcription of DNA into both

coding and noncoding RNA. Protein products are also characterized in depth.

Considering the phenotype, we can describe many categories of phenotype, from

variation in the natural state (such as hair color or other quantitative traits) to disease.

We discuss the major database for human disease (OMIM) in Chapter 20. As an

example of a disease phenotype, Rett syndrome primarily affects girls, leading to

hand-wringing, the loss of purposeful hand movements, and autism-like features.

The syndrome was recognized (and named) in the 1980s when a group of patients

with a similar phenotype were gathered at a meeting in Austria. Eventually, Huda

Zhogbi and colleagues identified mutations in the X-linked gene MECP2 as causing

Rett syndrome (Amir et al., 1999). MECP2 encodes a protein that functions as a tran-

scriptional repressor, regulating gene expression. This case typifies the challenge in

BOX 12.1
Early Theories of Genotype and Phenotype, Germ Cells and
Somatic Cells

The germ cells (eggs and sperm) are responsible for propagating the genetic

material. Somatic cells of most eukaryotes (such as skin fibroblasts) have a full

complement of the genetic material, but changes are not inherited. Recognizing

this, Wilhelm Johannsen in 1908 defined the genotype as “the kind or type of

the hereditary properties of an organism,” while the phenotype is “the external

appearance produced by the reaction of an organism of a given genotype with a

given environment” (cited in Darlington, 1932 p. 499).

These ideas were introduced even earlier by August Weismann of the

University of Freiburg-in-Baden. He described the units of heredity (what we

call genes and DNA) as ids, and he wrote (1893, p. 392): “By acquired

characters I mean those which are not preformed in the germ, but which arise

only through special influences affecting the body or parts of it. They are due to

the reaction of these parts to any external influences apart from the necessary

conditions for development. I have called them ‘somatogenic’ characters,

because they are produced by the reaction of the body or soma, and I contrast

them with the ‘blastogenic’ characters of an individual, or those which originate

solely in the primary constituents of the germ. It is an inevitable consequence of

the theory of the germ-plasm, and of its present elaboration and extension so as

to include the doctrine of determinants, that somatogenic variations are not

transmissible, and that consequently every permanent variation proceeds from

the germ, in which it must be represented by a modification of the primary

constituents.” Thus, acquired characteristics (such as an injured hand) could

not be inherited as Lamarck had hypothesized. Weismann (1893, p. 458)

discussed the process of development following fertilization of the egg. “The

type of the child is determined by the paternal and maternal ids contained in the

corresponding germ-cells meeting together in the process of fertilization, and

the blending of the parental and ancestral characters is thus predetermined, and

cannot become essentially modified by subsequent influences. The facts relating

to identical twins and to plant-hybrids prove that this is so.” Weissman described

“perfectly homologous ids,” one of the earliest references to homology (see also

Richard Owen’s definition of homology in Chapter 3).
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understanding the relationship between the genotype (a mutation in a specific gene

encoding a transcriptional repressor) and a phenotype (a syndrome having unique

features). We have thousands of patients with diagnoses from mental retardation to

learning disorders, and beginning with a phenotype how do we find the correspond-

ing genotype for disorders that have a genetic basis? In the case of diseases such as

Rett syndrome for which both genotype and phenotype are known, how do we con-

nect them? Through understanding the cellular phenotype we may rationally devise

therapeutic strategies aimed at correcting abnormalities that are introduced by a

mutant gene product.

The field of functional genomics involves experimental and computational

strategies to elucidate the function of DNA and chromosomes in relation to

phenotype at the levels of the cell, the tissue, and the organism. There is a large

gap in our understanding of how genotype and phenotype are connected. For

many diseases, understanding a primary genetic mutation (or insult) has not led to

effective treatment or to a cure because of this gap in our understanding. We

know that Down syndrome is caused by the occurrence of an extra copy of chro-

mosome 21, but we do not understand why Down syndrome individuals have charac-

teristic symptoms ranging from mental retardation to abnormal facial features to

common heart problems, and we do not know why the phenotype ranges from

mild to extremely severe (e.g., profound mental retardation and self-injurious

behavior).

The remainder of this chapter is organized in three parts. First, we introduce

eight model organisms that are prominent in functional genomics studies. We then

describe two basic approaches to genetic studies of gene function, reverse and

forward genetics. Finally we explore functional genomics as related to proteomics,

networks, and pathways as molecular biology intersects with systems biology.

EIGHT MODEL ORGANISMS FOR FUNCTIONAL GENOMICS

The tree of life has three great domains: the bacteria, archaea, and eukaryotes, as well

as the separate group of viruses. Thousands of organisms across the tree of life are

studied intensively. We can describe eight of them that have particularly important

roles in the field of functional genomics. This is not a comprehensive list of model

organisms, but helps to define the strengths and limitations of different experimental

systems, as well as the types of questions that can be addressed. For the eight species

highlighted in this chapter, we will discuss the properties of their genomes in more

detail in Chapters 13 (providing an overview of genomes), 15 (Escherichia coli), 16

(the eukaryotic chromosome), 18 (various eukaryotic genomes), and 19 and 20 (the

human genome).

Leading bioinformatics and genomics organizations have initiated a broad range

of functional genomics projects related to model organisms. These include efforts by

the Wellcome Trust Sanger Institute, the National Institutes of Health (NIH), and

the National Human Genome Resaerch Institute (NHGRI) at NIH. The

Encyclopedia of DNA Elements (ENCODE) project, which focused on functionally

characterizing 1% of the human genome in great depth, includes efforts to assess

function in model organisms as well (ENCODE Project Consortium, 2007). We dis-

cuss ENCODE in Chapter 16 and other chapters.

The Model Organism Genetics

website at the Wellcome Trust

Sanger Institute is available at

Q http://www.sanger.ac.uk/
modelorgs/. The NIH offers a

website on model organisms for

biomedical research (Q http://
www.nih.gov/science/models/).

The NHGRI Functional Analysis

Program is available at Q http://
www.genome.gov/10000612.

The website for the ENCODE
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The Bacterium Escherichia coli
The bacterium Escherichia coli serves as the best-characterized prokaryotic organism

if not the best-characterized living organism. For decades it served as a leading model

organism for bacterial genetics and molecular biology studies. Its 4.6 megabase

genome was sequenced by Blattner et al. (1997); we will describe the genome further

in Chapter 15. At the time of the initial genome sequencing some function could be

assigned to 62% of its genes. The principal website for E. coli is EcoCyc, the

Encyclopedia of Escherichia coli K-12 Genes and Metabolism (Karp et al., 2007).

Today EcoCyc assigns a function to 76% of the 4460 annotated genes.

Genome databases are available for all prominent organisms. As an introduction

to the use of the EcoCyc database, a query with the term globin links to nitric

oxide dioxygenase, a flavohemoglobin. The result includes links to the protein

sequence, and functional annotation from the Gene Ontology project (Chapter 10)

and Multifun (a classification scheme similar to that of Clusters of Orthologous

Groups [COGs] described in Chapter 10). There is extensive annotation of thousands

of E. coli genes at EcoCyc.

Reed et al. (2006) described four dimensions of genome annotation,

encompassing both experimental and computational (in silico) approaches.

1. One-dimensional annotation refers to identifying genes and assigning

predicted functions. For E. coli this has been achieved to a high degree. For

avarietyof eukaryotes (Chapters 16 to 19), obtaining a trusted, precise catalog

of genes has been extremely challenging because of the difficulty of identifying

genes in genomic DNA. The task is becoming easier as more genomes are

sequenced and comparative genomics approaches facilitate gene discovery.

2. Two-dimensional annotation refers to specifying the cellular components and

their interactions, a topic we will discuss later in this chapter. For E. coli this

has been achieved to a great extent, for example through the description

of transcriptional regulatory networks in the RegulonDB database

(Gama-Castro et al. 2008) and protein interactions in Bacteriome.org (Su

et al., 2008). The MetaCyc database (Caspi et al., 2008) currently includes

over 900 metabolic pathways from over 900 organisms.

3. Three-dimensional annotation is a description of the intracellular arrange-

ment of chromosomes and of cellular components.

4. Four-dimensional annotation refers to characterizing genome changes that

occur during evolution. This is a major theme of our study of eukaryotic

chromosomes, where comparative genomics approaches have allowed the deli-

neation of evolution from the level of whole genomes and chromosomes to indi-

vidual DNA segments that are under positive or negative selection (Chapter 7).

The Yeast Saccharomyces cerevisiae
The budding yeast S. cerevisiae is the best characterized organism among the

eukaroytes. This single-celled fungus was the first eukaryote to have its genome

sequenced (see Chapters 13 and 17). Its 13 megabase genome encodes about

6000 proteins. The Saccharomyces Genome Database (SGD) offers a remarkably

deep view into many aspects of the genome, including access to the results of

hundreds of functional genomics experiments (Christie et al., 2004). There are

project at UCSC is Q http://
genome.ucsc.edu/ENCODE/.

EcoCyc is online at Q http://
ecocyc.org/, Regulon is at

Q http://regulondb.ccg.unam.

mx/, and EcoGene is available at

Q http://ecogene.org/.

MetaCyc is available at Q http://
metacyc.org/index.shtml.

SGD is online at Q http://www.

yeastgenome.org/. Genome stat-

istics are available at Q http://
www.yeastgenome.org/cache/
genomeSnapshot.html.
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currently 6608 annotated genes, including �4600 that are verified, �1100 that

are uncharacterized (likely to be functional based on conservation across species

but not experimentally validated), and �800 dubious (open reading frames that

are neither well conserved nor validated). Approximately 4200 gene products have

been annotated to the root gene ontology terms (molecular function, biological pro-

cess, cellular component; see Chapter 10).

To introduce SGD, we perform a search with a typical query, SEC1 (Figs. 12.2 and

12.3). SEC1 is a gene that encodes a protein (Sec1p) involved in vesicle trafficking

(Fig. 12.4a). SEC1 was discovered in a genetic screen (described below) for mutants

that fail to secrete the enzyme invertase properly. Later experiments showed that

Sec1p is related to SSO1 (named “suppressor of SEC1”) and that the Sec1p and

Sso1p proteins bind to each other to facilitate vesicle-mediated secretion in yeast.

Sso1p, localized to the plasma membrane, is called a SNARE protein (a-soluble

NSFattachment protein receptor) that also interacts with the vesicular SNARE protein

Snc1p. Thus, Sec1p, Sso1p, and Snc1p are proteins that function in the process of deli-

vering a vesicle and its contents to an appropriate compartment in a eukaryotic cell; in

this case, the vesicles deliver proteins to the plasma membrane and they are then

secretedoutside the cell. All of theseyeast trafficking proteins have mammalian counter-

parts (indicated in Fig. 8.4b). The SGD entry for SEC1 includes a wealth of infor-

mation, including a description of its role in vesicle trafficking, and an explanation

that the null (or knockout) phenotype is inviable and accumulates secretory vesicles

FIGURE 12.2. The Saccharomyces
Genome Database (SGD) offers a
wealth of functional genomics infor-
mation. The top portion of a search
for a typical gene, SEC1, is shown.
See Q http://www.yeastgenome.org.
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(consistent with its required role in trafficking) (Fig. 12.2). The SGD page also provides

dozens of resources, including links to a genome browser (GBrowse), literature, inter-

action databases, and information on physical and genetic interactions (Fig. 12.3). As

we introduce functional genomics approaches we will return to SEC1 as an example.

Over 100 milllion years ago the entire S. cerevisiae genome duplicated, followed by a

massive loss of duplicated genes. We will discuss this in Chapter 17, and we will use

SSO1 and its paralog SSO2 as examples to discuss the evidence for whole genome

duplication and the possible fates of duplicated genes.

In this chapter we will introduce a variety of functional genomics assays in

yeast. One reason that yeast offers an appealing experimental system is that

virtually any desired genomic change can be introduced at the native locus using

very efficient homologous recombination based methods. In addition they grow

rapidly, they can make colored colonies, and it is easy to construct yeast strains

with “reporters” that allow for selection of mutants with interesting traits, even if

very rare. A variety of selectable colony color markers are available, such as

MET15 or ADE2, in which mutants can be selected for color upon growth in a par-

ticular medium. In this way the phenotypic consequence of genetic manipulations

can be readily determined.

FIGURE 12.3. Bottom portion of
a search for SEC1 in SGD (see
Fig. 12.2).
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FIGURE 12.4. Diagram of S. cerevisiae and mammalian proteins involved in secretion as an illus-
tration of functional genomics principles and approaches. (a) A constitutive trafficking pathway
exists in yeast with a set of proteins, including several of the sec (secretory pathway) mutants.
The cytosolic protein Sec1p interacts with Sso1p, a plasma membrane protein and ortholog of mam-
malian syntaxin. Sso1p also interacts with a protein complex that includes the vesicle-associated pro-
teins Snc1p and Snc2p (mammalian synaptobrevin/VAMP) and the membrane-associated protein
Sec9p (mammalian SNAP-25). Sec17p and Sec18p are required for this step and for other intra-
cellular trafficking pathways such as from the Golgi apparatus to the vacuole. In yeast, the paralo-
gous SNC1/SNC2 and SSO1/SSO2 genes arose after an ancient whole genome duplication event
(see Chapter 17). The presence of two copies of each molecule could allow functional redundancy, so
that if one copy is lost (e.g., through mutation), the organism could be viable. Alternatively, the dupli-
cated genes could acquire distinct functions, such as conferring the specificity of the docking and
fusion events of transport vesicles with the appropriate intracellular target membrane. (b)
Simplified diagram of proteins in the mammalian nerve terminal. Syntaxin binding protein 1
(Stxbp1, also called Munc18-1/N-sec1) binds tightly to the plasma membrane protein syntaxin.
Separately, syntaxin binds to the synaptic vesicle protein synaptobrevin as well as SNAP-25 to
form a protein complex, and subsequently the proteins NSF and a-SNAP further bind. Through
this pathway synaptic vesicles fuse with the plasma membrane and release their neurotransmitter
contents by exocytosis. (c) Hypothetical pathway diagram showing two sets of proteins that could
accomplish the task of secretion in yeast using parallel pathways. (d) Biochemical studies can
reveal pairwise protein interactions and can also reveal complexes of multiple proteins. However,
physical interactions would not reveal the relationship of proteins that do not interact directly but
are part of the same pathway (such as Sec1p and Sec9p). (e) Genetic interaction maps reveal func-
tionally related genes, including those involved in parallel pathways and those that do not physically
interact. Adapted in part from Ooi et al. (2006).
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The Plant Arabidopsis thaliana
The thale cress Arabidopsis thaliana was the first plant to have its genome sequenced

(and the third finished eukaryotic genome sequence). It has served as a model for

eukaryotic functional genomics projects (reviewed in Borevitz and Ecker, 2004). The

principal website, the Arabidopsis Information Resource (TAIR), centralizes a vast

amount of information about its genome (Swarbreck et al., 2008). Figure 12.5 shows

some of the diversity of information that is accessible from the home page pull-down

menus. Under the browse menu, a link to “2010 projects” describes dozens of projects

designed to reach a National Science Foundation goal to functionally annotate all

Arabidopsis genes by 2010. As an example of a gene search at TAIR, a query for

Arabidopsis SEC1A (RefSeq accession NP_563643; locus tag At1g02010) reveals infor-

mation about its chromosomal location and available mutants.

The Nematode Caenorhabditis elegans
Among the metazoans (animals), the soil-dwelling nematode Caenorhabditis elegans is

a key model organism. This was the first multicellular animal to have its genome

sequenced. This roundworm, like fruitflies and humans, is capable of complex

FIGURE 12.5. The Arabidopsis
Information Resource (TAIR) is
the principal genome database
for Arabidopsis (Q http://www.
arabidopsis.org/). The screen cap-
ture shows some of the menu
options, including search strategies,
analysis tools, available stocks,
functional classification, and acess
to functional genomics initiatives.

The TAIR website is Q http://
www.arabidopsis.org/.

WormBase is available atQ http://
www.wormbase.org. The trans-

NIH C. elegans initiative website is
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behaviors, but its body is simple and all 959 somatic cells in its body have been

mapped, including their lineages throughout development. Wormbase is the main

on-line information repository (Rogers et al., 2008).

The Fruitfly Drosophila melanogaster
The fruitfly Drosophila melanogaster, another metazoan invertebrate, has long served

as a model for genetics. Early studies of Drosophila resulted in the descriptions of the

nature of the gene, as well as linkage and recombination, producing gene maps a

century ago. The recent sequencing of 12 species of the Drosophila genus is already pro-

viding unprecedented insight into mechanisms of genome evolution (Chapter 18). The

central Drosophila database, FlyBase, combines molecular and genetic data on the

Drosophilidae (Wilson et al., 2008). A strength of Drosophila as a model organism is

that genomic changes can be induced with extreme precision, from single nucleotide

changes to introducing large-scale chromosomal deletions, duplications, inversions,

or other modifications. At the same time, it is a multicellular animal that features a

complex body plan. Currently, loss of function mutations have been introduced into

all of its �14,000 genes, and over half of these have an identifiable phenotype.

The Zebrafish Danio rerio
Although the lineages leading to modern fish and humans diverged approximately 450

million years ago, both are vertebrate species, and orthologs are identifiable for the great

majority of their protein-coding genes (with an average of about 80% amino acid

identity between orthologs). The first four fish genomes to be sequenced were the puf-

ferfish Takifugu rubripes and Tetraodon nigroviridis, the medaka Oryzias latipes, and the

zebrafish Danio rerio (Chapter 18). Of these, the zebrafish has emerged as an important

model organism for functional genomics (Henken et al., 2004). It is a small tropical

freshwater fish having a genome size of 1.8 billion base pairs (Gb) organized into 25

chromsomes. For functional genomics studies, the zebrafish has served as a model

for understanding both normal and abnormal development. Mutations in large

numbers of human disease gene orthologs have been generated and characterized,

and both forward and reverse genetic screens (introduced below) have been applied.

Some of the advantages of zebrafish as a model organism include the following:

† Its generation time is short, especially for a vertebrate.

† It produces large numbers of progeny.

† The developing embryo is transparent. Thus, for example, if a transgene is

inserted into the genome with a promoter that drives the expression of

green fluorescent protein (GFP), it is possible to see this expression from

the outside of each animal’s body.

† It is a vertebrate and thus a close model for human disease.

† Its genome is well annotated. The vertebrate genome annotation (Vega)

database at the Sanger Institute focuses on high quality manual annotation

with a particular focus on just three genomes: human, mouse, and zebrafish

(Wilming et al., 2008).

The principal zebrafish website is the Zebrafish Information Network (ZFIN)

(Sprague et al., 2008).

Q http://www.nih.gov/science/
models/c_elegans/.

Flybase is at Q http://www.

flybase.org.

Two of the giants of genetics

research focused their studies on

Drosophila: Thomas Hunt Morgan

and Hermann J. Muller. Morgan

was awarded a Nobel Prize in

1933 “for his discoveries con-

cerning the role played by the

chromosome in heredity”

(Q http://nobelprize.org/nobel_

prizes/medicine/laureates/1933/).

He and his contemporaries A.H.

Sturtevant, C.B. Bridges, and H.J.

Muller discovered a broad array of

properties of genes and chromo-

somes. They described chromo-

somal deficiencies, including

nondisjunction, balanced lethals,

chromosomal duplication (tris-

omy) and monosomy, and trans-

locations. Muller was awarded a

1946 Nobel Prize “for the discov-

ery of the production of mutations

by means of X-ray irradiation.”

His finding of position effect var-

iegation laid the foundation for

modern epigenetics research. The

1995 Nobel Prize in Physiology or

Medicine was awarded to Edward

B. Lewis, Christiane Nüsslein-

Volhard, and Eric F. Wieschaus

“for their discoveries concerning

the genetic control of early

embryonic development.” These

studies were also performed in

Drosophila (Q http://nobelprize.

org/nobel_prizes/medicine/
laureates/1995/).

The Vega database is available at

Q http://vega.sanger.ac.uk/.

ZFIN is online at Q http://www.

zfin.org. The trans-NIH zebrafish

initiative website is Q http://www.

nih.gov/science/models/
zebrafish/.
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The Mouse Mus musculus
The rodents diverged from the primate lineage relatively recently (80 million years

ago) and share almost all of their genes with humans. The mouse Mus musculus is

one of the most important model organisms for the study of human gene function

because of the close structural and functional relationship between the two genomes,

combined with a relatively short generational span, and powerful tools have been

developed to manipulate its genome. About 9000 mouse genes have been knocked

out. There are currently three major mouse functional genomics initiatives

(International Mouse Knockout Consortium, 2007): the Knockout Mouse Project

(KOMP), The European Conditional Mouse Mutagenesis Program (EUCOMM),

and the North American Conditional Mouse Mutagenesis Project (NorCOMM).

We will discuss their strategies for mutating all protein-coding genes in mouse,

including gene targeting and gene trapping.

FIGURE 12.6. The Mouse Genome
Informatics (MGI) Database is the
principal website for mouse geno-
mics information (Q http://www.
informatics.jax.org/). It includes the
Mouse Genome Database (MGD),
the Gene Expression Database
(GXD), the Mouse Tumor Biology
(MTB) Database, and a Gene
Ontology project.

The trans-NIH mouse Initiatives

homepage is Q http://www.nih.

gov/science/models/mouse/.
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The main mouse genome website is the Mouse Genome Database (MGD) (Bult

et al., 2008). In reviewing dozens of organism-specific website resources, those dedi-

cated to three stand out for their breadth and depth: SGD for yeast, the main human

genome web browsers (Chapters 16 and 19), and MGD. MGD provides a portal to

mouse-specific resources, including sequence data, a web browser, available mutant

strains, gene expression studies, and literature (Fig. 12.6).

In a project called the Collaborative Cross, one thousand recombinant inbred

strains of mouse are being bred (Complex Trait Consortium, 2004). This project

will produce large numbers of genetically identical mice that have nonlethal pheno-

typic diversity, and also that can be exposed to manipulations such as phenotypic

screens (see below). The 1000 strains are derived from eight inbred founder strains

that were systematically crossed. These strains will be fully genotyped and used to

model human populations and diseases. If we denote the eight inbred founder strains

A to H, then the G1 generation will consist of AB, CD, EF, and GH genotypes

(from mating of AA � BB mice, CC �DD, etc.), the G2 generation will consist of

AB � CD mice yielding ABCD genotypes and EF �GH yielding EFGH. After

23 generations there will be 99% inbreeding with unique recombination events.

The 1000 mouse strains are expected to provide an important resource for modeling

human populations and diseases.

Homo sapiens: Variation in Humans

To some, humans are not considered to be a model organism, and we do not

consider ourselves to be an experimental system per se. And yet we are motivated

to understand the range of phenotypic expression to understand how we aquire

our characteristic features, how we have evolved, and how we fit into the ecosystem.

One of the strongest motivations for studying humans is to understand the causes of

disease in order to search for more effective diagnoses, treatments, and ultimately to

find cures if possible. And although in most contexts we do not experiment on

ourselves invasively, nature does perform functional genomics experiments on us.

For example, human fecundity is extraordinarily low, relative to other mammalian

and vertebrate species (see Chapter 20). Of all conceptuses that appear normal

after one week of development as a zygote, perhaps over 80% are not viable. This

is due to massive aneuploidy that commonly occurs, causing trisomy, monosomy,

and even tetrasomy (four copies) or nullisomy (zero copies) of many chromosomes.

Functional genomics is an experimental science in which gene function is often

assessed by perturbing a system. Genes may be selectively deleted or duplicated,

and then the functional consequence is measured to infer the function of the gene.

Nature produces the equivalent of functional genomics experiments through the

many forms of variation that organisms experience.

FUNCTIONAL GENOMICS USING REVERSE GENETICS AND

FORWARD GENETICS

There are many different basic approaches to identifying the function of a gene.

Biochemical strategies can be employed. This typically involves studying one gene

or gene product at a time. This is often the most rigorous way to study gene function,

and it has been the main approach for the past century. For example, in order to

understand the function of a globin gene one can purify its protein product to

The MGD website is Q http://
www.informatics.jax.org/.

Aneuploidy refers to a change in

chromosomal copy number. A

euploid individual has the normal

two copies of a set of

chromosomes.
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homogeneity and characterize its physical properties (such as molecular mass, isoelec-

tric point, oxygen- and heme-binding properties, and posttranslational modifications;

Chapter 10), its interactions with other proteins, its role in cellular pathways, and the

consequence of mutating the gene. We described seven different aspects of protein

function in Fig 10.19. The analysis of a single gene and its products, while invaluable,

is almost always laborious and time consuming and can be myopic. Thus, a variety of

complementary high throughput strategies have been introduced. These strategies

can produce thousands of mutant alleles that are then available to facilitate the

research of scientists who focus on the study of any particular genes.

One high throughput way to assess gene function is to examine messenger RNA

levels in various conditions or states using microarrays (described in Chapters 8 and 9)

or to measure protein levels (Chapter 10). These studies give only indirect, rather than

direct information about gene function. Forexample, if red blood cells are treated with

a drug that inhibits heme biosynthesis in mitochondria, the cell may respond with a

complex program of responses that serve to regulate the expression of heme-binding

proteins such as the globins. Globin messenger RNA and protein levels might be

reduced dramatically, but it would be incorrect to infer that the drug acted directly

on the globin gene, messenger RNA, or protein. Similarly, when one measures

RNA transcript levels in tissues or cell lines derived from individuals with a disease,

significantly regulated transcripts might reflect adaptive changes made in response

to a primary insult such as a genetic mutation. Changes might also occur because

of downstream effects: a gene defect could disrupt a pathway, leading to degeneration

of a brain region, and other cells such as glia could proliferate as a downstream

response. Such experiments are not likely to directly reveal the gene-causing mutation

although they may reveal information about its secondary consequences and are

essentially a molecular phenotype for the mutant.

There are two main kinds of genetic screens that are used to identify gene

function in a high throughput fashion: reverse and forward genetics (reviewed in

Schulze and McMahon, 2004; Ross-Macdonald, 2005; Alonso and Ecker, 2006;

Caspary and Anderson, 2006). These two approaches are illustrated in Fig. 12.7.

In reverse genetic screens, a large number of genes (or gene products) is systemati-

cally inhibited one by one. This can be accomplished many ways, for example by

deleting genes using homologous recombination or by selectively reducing messen-

ger RNA abundance. Then, one or more phenotypes of interest are measured.

The main challenge of this approach is that for some organisms it is difficult to

disrupt large numbers of genes (such as tens of thousands) in a systematic fashion.

It can also be challenging to discern the phenotypic consequences for a gene that

is disrupted. As an example of reverse genetics, Thomas Südhoff and colleagues tar-

geted the deletion of mouse syntaxin binding protein 1 (Stxb1; also called Munc18-1 or

N-sec1), a gene encoding a nerve terminal protein (Verhage et al., 2000). The

phenotype was lethality at the time of birth, with neurons unable to secrete

neurotransmitter. Remarkably, brain development appeared normal up to the time

of death. This targeted deletion allowed the dissection of the functional role of

this gene. We will return to Stxb1 in this chapter to illustrate several principles of

functional genomics. Figure 12.4b shows a schematic diagram of its function.

In forward genetic screens, one begins with a defined phenotype of interest, such

as the ability of plants to grow in the presence of a drug, or the ability of neurons to

extend axons to appropriate targets in the mammalian nervous system, or the ability

of a eukaryotic cell to transport cargo. An experimental intervention is made, such as

administering a chemical mutagen or radiation to cells (or to an organism). This

results in the creation of mutants. The phenotype of interest is observed in rare

As a particularly complex example

of reverse genetics, Tumpey et al.

(2005) engineered a virus con-

taining all the open reading frames

of the deadly 1918 influenza virus

that is estimated to have killed 50

million people. They character-

ized its extraordinary pathogen-

icity (see Chapter 14).
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representatives among a large collection of mutants. If individuals need to be assayed

for the phenotype one at a time (as part of a screen) this can be extremely laborious. If

a specific selective condition can be defined in which only the desired mutant grows

(a selection) the process is greatly facilitated. A second challenge of forward genetics

approaches is to then identify the responsible gene(s) using mapping and sequencing

strategies. As an example of this approach, Peter Novick, Randy Schekman, and

colleagues characterized temperature-sensitive yeast mutants that accumulate

secretory vesicles (Novick and Schekman, 1979; Novick et al., 1980). These

secretion (sec) mutants occurred in a series of dozens of complementation groups

(yeast strains harboring different mutant alleles of the same gene). All the sec

mutant genes were subsequently identified. For example, the SEC1 gene encodes

that Sec1p protein that functions in vesicle docking at the cell surface. Sec1p is a

yeast ortholog of mammalian Stxb1. A schematic showing the role of Sec1p and

three other sec proteins in vesicle trafficking is shown in Fig. 12.4a.

Reverse Genetics: Mouse Knockouts and the b-Globin Gene
Knocking out a gene refers to creating an animal model in which a homozygous del-

etion is created, that is, there are zero copies [denoted (2/2) and referred to as a null

allele] instead of the wild-type situation of two copies in a diploid organism (þ/þ ).

In a hemizygous deletion one copy is deleted and one copy remains (þ/2).

We can illustrate the use of knockouts with the example of the b-globin gene. In

normal adult humans, hemoglobin is a tetramer that consists of two a-globin

subunits and two b-globin subunits (a2b2), with a minor amount (�2% to 3%)

DNA RNA protein

Reverse genetics (mutate genes then examine phenotypes)

Forward genetics (“phenotype-driven” screen)

phenotype

Strategy:  systematically inhibit the function of every gene in a genome 
 approach 1: gene targeting by homologous recombination
 approach 2: gene trap mutagenesis
 approach 3: inhibit gene expression using RNA interference
 measure the effect of gene disruption on a phenotype

Strategy:  identify a phenotype (e.g., growth in the presence of a drug)
 mutate genomic DNA (e.g., by chemical mutagenesis)
 identify individuals having an altered phenotype
 identify the gene(s) that were mutated
 confirm those genes have causal roles in influencing the genotype

FIGURE 12.7. Reverse and for-
ward genetics. In reverse genetics,
genes are targeted for deletion
through approaches such as homolo-
gous recombination. After a knock-
out animal is produced, the
phenotype is investigated to discern
the function of the gene. This is
called a “gene-driven” approach
because it begins with targeted del-
etion or disruption of a gene. In for-
ward genetics, one typically begins
with a phenotype of interest. The
genome is subjected to a process of
mutagenesis (typically N-ethyl-N-
nitrosurea with a chemical such as
or an exogenous DNA transposon).
Mutants are collected and screened
for those that display an altered phe-
notype. Next, the genes underlying
the altered phenotype are mapped
and identified. This is called a “phe-
notype-driven” approach because
one does not begin with particular
disrupted genes but instead with
an altered phenotype.

The accession number of S. cere-

visiae Sec1p is NP_010448. The

accession of an ortholog, human

syntaxin binding protein 1a

(Munc18-1; N-sec1), is

NP_003156.
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consisting of a2d2 tetramers. The b and d genes are part of a cluster of b-like genes on

chromosome 11 (Fig. 12.8a). There is a similar arrangement on mouse chromo-

some 7 (Fig. 12.8b). The globin genes are expressed at different developmental

stages and cell types in a manner that is exquisitely choreographed. Within the

b-globin cluster, 1-globin is expressed in the blood island of the yolk sac until 6 to

FIGURE 12.8. The b globin locus (a) on human 11 and (b) on mouse chromosome 7. In (a), a
region of 100,000 base pairs is displayed (chr11:5,180,001–5,280,000) on the UCSC Genome
Browser (Q http://genome.ucsc.edu). This region includes five globin RefSeq genes, transcribed
from right to left (along the bottom strand towards the 11p telomere). This region is part of the
ENCODE project (discussed in Chapter 16) in which 1% of the human genome has been studied
in tremendous detail. Annotation tracks from the ENCODE project are shown, including a
Duke/NHGRI DNAase I hypersensitivity study, showing genomic loci that are likely to have regu-
latory functions because they are in a conformation that is susceptible to DNase cleavage. Five of
these sites are indicated upstream of the b globin locus (arrows 1 to 5). Other annotation tracks
show comparable patterns (e.g., arrows 6 to 10). Note that these studies further show that the prop-
erties of gene regulatory regions vary across cell types (e.g., erythrocytes and hematopoietic precursor
K562 cells prominently display hypersensitivity sites), as well as at different developmental stages
(e.g., fetal versus adult erythrocytes). In (b), mouse globin genes are shown in a 100,000 base
pair window. These are flanked by a very large number of olfactory receptor genes (not shown).
A conservation track is displayed, showing multispecies conservation corresponding to exons as
well as some conservation in noncoding regions, corresponding to cis-regulatory elements.
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8 weeks of gestation when it is silenced and g-globin genes are activated. At birth,

d-globin and b-globin gene expression increase, while g-globin expression declines

until it is silenced at about age 1. This process is called hemoglobin switching, and

it is thought to occur because of interactions between the globin genes and the

upstream locus control region (reviewed in Q. Li et al., 2006). Various protein

complexes interact with the locus control region (Mahajan and Wissman, 2006).

As indicated in Fig. 12.8a, specific regulatory sites have been identified by techniques

such as DNase I hypersensitivity assays that reveal regions of exposed chromatin.

Several diseases are associated with perturbations of globin function (discussed in

Chapter 20 on human disease). Sickle-cell anemia is caused by mutations in a copy of

theb-globin gene. Thalassemias are hereditary anemias that result from an imbalance

in the usual one-to-one proportion of a and b chains. In an effort to create an animal

model of thalassemias, and to further understand the function of the b globin gene,

Oliver Smithies and colleagues used homologous recombination in embryonic stem

cells to disrupt the mouse major adultb-globin gene b1 (Shehee et al., 1993). In hom-

ologous recombination, recombinant DNA introduced into the cell recombines with

the endogenous, homologous sequence (Capecchi, 1989). The approach, outlined in

Fig. 12.9, requires a targeting vector that includes the b-globin gene having a portion

modified by insertion of the neo gene into exon 2. This targeting vector is introduced

into embryonic stem cells by electroporation. When the cells are cultured in the pre-

sence of the drug G418, wild-type cells die, whereas cells having the neo cassette sur-

vive. The successful introduction of an interrupted form of theb-globin gene into stem

cells can be confirmed by using the polymerase chain reaction and/orSouthern blots (in

which a radiolabeled fragment of the insert is hybridized to membranes containing

extracts of genomic DNA from wild-type and targeted cells). Targeted embryonic

cell lines are injected into mouse blastocysts and implanted into the uterus of a foster

mother to generate chimeric offspring. The mice that were heterozygous for the

disrupted gene (þ/2) appeared normal, while homozygous mutants (2/2) died

FIGURE 12.9. Method of gene knockout by homologous recombination. (a) Structure of the b
globin gene locus (from the UCSC Genome Browser), showing three exons that are transcribed
from right to left. (b) Schematic of the linearized targeting vector used by Shehee et al. (1993). It
includes the b globin gene with a neo gene inserted into exon 2 to allow for selection based on
conferring resistance to the drug G418. Copies of the thymidine kinase (TK) gene from herpes
simplex virus 1 flank the homologous segments and are also used for selection. The large X sym-
bols indicate regions where crossing over can occur between homologous segments. (c) The suc-
cessfully targeted locus includes a b globin gene that is interrupted by the neo gene.

The 2007 Nobel Prize in

Physiology or Medicine was

awarded to Mario Capecchi, Sir

Martin Evans, and Oliver

Smithies “for their discoveries of

principles for introducing specific

gene modifications in mice by the

use of embryonic stem cells.” See

Q http://nobelprize.org/nobel_

prizes/medicine/laureates/2007/.
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in utero or near the time of birth. Thus, the knockout caused a lethal thalassemia, with

abnormal red blood cells and lack of protein produced from the deleted b1 gene.

In nature, the same b1 gene is sometimes deleted in mice. Surprisingly, this

naturally occurring deletion results in only a mild thalassemia, rather than the

lethal phenotype that results from the knockout. Shehee et al. (1993) hypothesized

that the locus control region normally regulates the b1 and b2 genes, but there is a

rate-limiting amount of promoter sequence neighboring each gene that the locus

control region can regulate. In the naturally occurring deletion associated with

nonlethal thalassemia the locus control region interacts with just the b2 gene (and

mediates a compensatory increase in b2-derived globin protein). However, in the

targeted mutant the locus control region regulates b2 and also interacts with two

more promoters: the inserted tk promoter driving the neo gene, and the promoter

of the deleted b1 gene. The three promoters compete for factors associated with

the locus control region, and so relatively little functional b2 mRNA is produced

and the phenotype is lethal instead of mild.

This example highlights the complexity of creating a null allele with an insertion

vector. Manyother strategies have been introduced (reviewed in van der Weyden et al.,

2002), including a variety of positive and negative selection markers, and the use of

replacement vectors instead of insertion vectors that leave behind no selectable mar-

kers (and thus are less likely to interfere with endogenous processes). Conditional

knockouts permit activation (for “gain-of-function”) or inactivation (for “loss-of-

function”) in vivo, and can be invoked at any time of development or, through the

use of tissue-specific promoters, in any region of the body. Conditional knockouts

can be used to study the effects of disrupting a genewhile avoiding embryonic lethality.

The National Institutes of Health initiated a Knockout Mouse Project (KOMP;

Austin et al., 2004). Its ultimate goal is to systematically knock out all mouse genes

using several approaches. It isproposed togeneratenull alleles, including a null-reporter

allele for each gene (such has b-galactosidase or green fluorescent protein). The

reporter allows the determination of the cell types that normally express that gene.

FIGURE 12.10. The Mouse
Genome Informatics (MGI) web-
site entry for the major beta
globin gene (Hbb-b1) summarizes
molecular data on that gene and
includes a phenotype category indi-
cating that three mutant alleles are
indexed.

The NIH Knockout Mouse

Project (KOMP) has websites at

Q http://www.nih.gov/science/
models/mouse/knockout/ and

Q http://www.genome.gov/
17515708. The data coordination

center website is Q http://www.

knockoutmouse.org. Currently,

about 9800 genes of the �25,000

mouse genes are on the KOMP

target list (February 2008).
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It is further proposed to make mutated alleles using gene targeting, gene trapping, and

RNA interference (discussed below). The KOMP uses mouse strain C57BL/6 because

it is widely used and was the first strain to have its genome sequenced. In addition to the

effort by KOMP, the European Conditional Mouse Mutagenesis Program

(EUCOMM), and the North American Conditional Mouse Mutagenesis Project

(NorCOMM) are making targeted conditional mutants. Cumulatively, the three con-

sortia anticipate generating over 18,000 targeted deletion and conditional embryonic

stem cell lines (International Mouse Knockout Consortium, 2007).

The Mouse Genome Informatics (MGI) website (Fig. 12.6) provides portals for

browsing available knockout resources. This includes Deltagen and Lexicon

Knockout Mice, and KOMP genes. As an example of a search for a specific gene,

enter “globin” into the main search box at the MGI website and follow the link to

FIGURE 12.11. The MGI descrip-
tion of beta globin mutants includes
phenotypic data such as the type of
mutation (e.g., targeted knockout
or conditional knock-in), the
observed phenotypes, the human
disease relevance, and the allelic
composition (genetic background).
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Hbb-b1 (the beta globin adult major chain on chromosome 7) (Fig. 12.10). This page

includes information about the gene, as well as a link to phenotypic alleles

(Fig. 12.11). Detailed phenotypic data are provided, such as the body weight and

the effects on the hematopoietic system.

Reverse Genetics: Knocking Out Genes in Yeast Using
Molecular Barcodes
Knockout studies in the yeast S. cerevisiae are far more straightforward and also quite

more sophisticated than in the mouse for several reasons. The yeast genome is

extremely compact, having very short noncoding regions and introns in fewer than

7% of its �6000 genes. Also, homologous recombination can be performed with

high efficiency. A consortium of researchers achieved the remarkable goal of creating

yeast strains representing the targeted deletion of virtually every known gene

(Winzeler et al., 1999; Giaever et al., 2002). The goals of this project were as follows:

† To create a yeast knockout collection in which all of the �6000 ORFs in the

S. cerevisiae genome are disrupted.

† To provide all nonessential genes (85% of the total) in four useful forms:

(1) diploids heterozygous for each yeast knockout (MATa and MATa strains),

(2) diploids homozygous for each yeast knockout, (3) a mating type (MATa

haploid), and (4) a-mating-type (MATa haploid). Knockouts of essential

genes are only viable in the heterozygous diploids.

† To provide all essential genes (15% of the total) as diploids heterozygous for

each yeast knockout.

Within five years of the creation of the knockout strains, more than 5000 genes

were associated with a phenotype based on three dozen publications (reviewed in

Scherens and Goffeau, 2004). The strategy employed for this project is gene

replacement by polymerase chain reaction (PCR), relying on the high rate of

homologous recombination that occurs in yeast (Fig. 12.12a). A short region

of DNA (about 50 bp), corresponding to the upstream and downstream portions

of each open reading frame, is placed on the end of a selectable marker

gene. Additionally, two “molecular barcodes,” an UPTAG and a DOWNTAG,

unique 20 bp oligonucleotide sequences, are included in each such deletion/

substitution strain. This feature allows thousands of deletion strains to be pooled

and assayed in parallel in a variety of growth conditions. The molecular barcode

approach is extremely powerful. One can grow a collection of thousands of yeast

knockouts in routine medium (Fig. 12.12b, unselected population) or in the pre-

sence of drug, temperature change, or other experimental condition (selected popu-

lation). Some of the strains in the selected population might grow slowly (or die), and

others might grow favorably. Genomic DNA is isolated, the TAGs (or molecular bar-

codes) are PCR amplified, labeled with Cy3 or Cy5 dyes (discussed in Chapters 8

and 9), and hybridized to a microarray that contains all 12,000 molecular barcodes

(20-mers) on its surface (Fig. 12.12c). Strains that are represented at high or low

levels relative to the unselected population are identified based on unequal Cy3/

Cy5 ratios on the microarray.

Giaever et al. (2002) used the yeast knockout collection to describe genes that are

necessary for optimal growth under six conditions: high salt, sorbitol, galactose,

Budding yeasts have two mating

types: MATa, and MATa. Haploid

MATa and MATa cells can mate

with each other to form diploid

MATaa cells. Both haploid and

diploid phases of the life cycle

grow mitotically.
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pH 8, minimal medium, and treatment with the antifungal drug nystatin. Among

their findings:

† About 19% of the yeast genes (1105) were essential for growth on rich glucose

medium. Only about half of these genes were previously known to be essential.

Beyond these 1105 genes, additional genes could be essential in other growth

conditions.

† Nonessential ORFs are more likely to encode yeast-specific proteins.

† Essential genes are more likely to have homologs in other organisms.

† Few of the essential genes are duplicated within the yeast genome (8.5% of the

nonessential genes have paralogs, while only 1% of the essential genes have

paralogs). This supports the hypothesis that duplicated genes have important

redundant functions (see Chapter 17).

The systematic deletion method offers a number of important advantages:

† All known genes in the S. cerevisiae genome are assayed.

† Each mutation is of a defined, uniform structure.

† Mutations are guaranteed to be null.

(a)

(b)

(c)

SSO1

KanR

KanR

unselected population selected population

Cy3 label Cy5 label

microarray

FIGURE 12.12. Targeted deletion
of virtually all S. cerevisiae genes.
(a) The strategy is to use gene
replacement by homologous recom-
bination. Each gene (e.g., SSO1) is
deleted and replaced by a KanR

gene, with unique UPTAG and
DOWNTAG primer sequences
located on either end. (b) A variety
of selection conditions can be used.
(c) Genomic DNA is isolated from
each condition, labeled with Cy3 or
Cy5, and hybridized to a microar-
ray. In this way, genes functionally
involved in each growth condition
can be identified.
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† Mutant knockout strains are recovered, banked, and made available to the

scientific community.

† Studies of multigene families are facilitated.

† Parallel phenotypic analyses are possible, and many different phenotypes can

be assayed.

† Once the strains have been generated, the labor requirement is low when a new

phenotype is assessed.

This method also has limitations:

† The labor investment to generate these knockouts was very large.

† For each gene, only null alleles were generated for study. (Additional alleles

may be available from other studies.)

† No new genes are discovered with this approach, in contrast to random trans-

poson insertion approaches (described below).

† All nonannotated ORFs are missed. In particular, short ORFs may not be

annotated.

† Deletions in overlapping genes may be difficult to interpret.

Since over 80% of the yeast genes are nonessential, this implies that yeast can

compensate for their loss through functional redundancy, perhaps by the presence

of paralogs (such as SSO1 and SSO2) in which the loss of one is compensated by

the presence of the other. A similar scenario explains why deletion of the b1 beta

globin gene in mouse results in a mild disease due to upregulation of the activity of

the paralogous b2 gene. Another possibility is that parallel pathways exist such

that if one is compromised the other can compensate; in this scenario, outlined in

Fig. 12.4c, the genes encoding members of each pathway need not be homologous.

Another idea is that nonessential genes do not have redundancy or compensatory

pathways but are functionally required only under highly specific circumstances;

thus under some experimental condition they would be found to be essential or at

least to confer improved fitness.

How can we determine the functions of nonessential genes in yeast? One

approach is to study synthetic lethality, in which a combination of two separate non-

lethal mutations causes inviability (reviewed in Ooi et al., 2006). A related concept is

synthetic fitness in which two non-lethal mutations combine to confer a growth

defect or other disruption that is more severe than that of either single mutation.

Tong et al. (2001) devised a high throughput strategy called synthetic genetic array

(SGA) analysis to generate haploid double mutants (reviewed in Tong and Boone,

2006). A “query” mutation is crossed to an array of �4700 “target” deletion

mutants, and double mutant meiotic progeny that are inviable indicate that the

two mutants are functionally related. Using 132 different query genes, Tong et al.

(2004) identified a genetic interaction network having �1000 genes and �4000

interactions. The queries included nonessential genes as well as conditional alleles

of essential genes. The results were consistent with the behavior of a “small world net-

work” in which immediate neighbors of a gene tend to interact together. In a related

TAG array-based approach, Jef Boeke and colleagues defined functionally related

networks of genes that are responsible for maintaining DNA integrity, the processes

by which cells protect themselves from chromosomal damage (Pan et al., 2006).
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They identified �5000 interactions involving 74 query genes. This illustrates how

functional pathways can be inferred using a genetic screen to identify modules of

interacting proteins.

Another approach to gene function based on the yeast knockout collection is

heterozygous diploid-based synthetic lethality by microarray analysis (dSLAM)

(Pan et al., 2007; reviewed in Ooi et al., 2006). In dSLAM, a “query” mutation is

introduced into a population of �6000 heterozygous diploid yeast “target” mutants.

The pool of double heterozygotes is then haploidized by sporulation and the haploids

are analyzed. A control pool consists of single target mutants, while the experimental

pool consists of double (query plus target) mutants. TAGs from these two pools are

labeled and analyzed on microarrays to define differential growth properties.

Advantages of dSLAM are its use of molecular barcodes to quantify synthetic

lethal relationships on microarrays, and its use of heterozygous diploid cells which

accumulate fewer suppressor mutations that can confound analysis. A concern for

all genetic interaction methods is that the false positive and false negative error

rates may vary according to many factors, including the nature of the particular query.

A practical approach to finding genetic relationships between yeast genes is to use

the SGD database. As shown for SEC1 in Fig. 12.2, five different types of genetic inter-

action were observed using a variety of genetic screens. (1) There were five dosage leth-

ality interactions. These involved SEC1, SEC4, SEC8, and SEC15 genes, and the

identification of additional SEC genes suggest that these genes all function in a

common pathway. In a dosage lethality experiment, overexpression of one gene

causes lethality in a strain that is mutated or deleted for another gene. (2) There were

13 dosage rescue interactions in which overexpression of one gene rescues the deleter-

ious phenotype (lethality or growth defect) caused by deletion of another gene. These

interactions included SEC3, SEC5, SEC10, and SEC15. (3) Therewere five phenotypic

suppression interactions in which mutation (or overexpression) of one gene suppresses

the phenotype (other than a lethality or growth defect) caused by mutation or overex-

pression of another gene. These interactors included both SEC genes (SEC6,

SEC14, SEC18) and SNC1 (Fig. 12.4). (4) Therewasone syntheticgrowth defect inter-

action, in which the expression of two mutant genes in a strain, each of which causes a

mild phenotype under some experimental condition, results in the phenotype of slow

growth. This occurred between SEC1 and SRO7. (5) There were 38 synthetic lethality

interactions that resulted in the phenotype of inviability. These synthetic lethals

included a range of genes, both in the SEC family and others.

Reverse Genetics: Random Insertional Mutagenesis
(Gene Trapping)
We have discussed targeted gene knockouts in mouse and yeast. Many other reverse

genetics techniques have been developed (summarized in Table 12.1). Another high

throughput approach to disrupting gene function is called gene trapping. When this

technique is applied to mouse, insertional mutations are introduced across the

genome in embryonic stem cells (reviewed in Stanford et al., 2006; Abuin et al.,

2007). Gene trapping is performed using vectors that insert into genomic DNA

leaving sequence tags that often include a reporter gene. In this way, mutagenesis

of a gene can be accomplished and the gene expression pattern of the mutated

gene can be visualized. When the random insertional mutagenesis technique is

applied to Arabidopsis, DNA is often introduced using the bacterium Agrobacterium

tumefaciens as a vector (Alonso et al., 2003; reviewed in Alonso and Ecker, 2006).
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Gene trap vectors are typically transfected into mouse embryonic stem cells

with subsequent expression of a selectable marker and resistance to antibiotics.

Figure 12.13 shows three strategies for using gene traps in mouse. Each gene

trap vector lacks an essential transcriptional component. An enhancer trap

includes a promoter, neomycin resistance (neo) gene, and polyadenylation signal

(Fig. 12.13a). It requires an endogenous enhancer to drive expression of the neo

mRNA. A promoter trap lacks a promoter (but includes a splice acceptor and a

selectable marker), and its expression is driven by the function of an endogenous pro-

moter (Fig. 12.13b). PolyA traps have their own promoter that drives expression of

neo, but they depend on external polyadenylation signals to successfully confer

drug resistance (Fig. 12.13c). These traps are useful to trap untranscribed genes

since they do not depend on activity of an endogenous promoter.

Gene trapping is a method of random mutagenesis and it is not used to target a

specific gene or locus. One strength of the method is that a single vector can be used

to both mutate and identify thousands of genes. Also, the technique has the potential

to trap genes that were not previously mapped; this contrasts with targeted

approaches that require prior knowledge of the gene sequence. A limitation is that

one cannot target specific genes of interest. Even a large-scale random mutagenesis

TABLE 12-1 Reverse GeneticsTechniques
Method Advantages Disadvantages Species Studied

Homologous
recombination
(e.g., gene
knockouts)

A targeted gene can
be replaced,
deleted, or
modified precisely

Low throughput Highly useful in
yeast; less in
mouse; least in
plants

Stable mutations are
produced

Low efficiency

Specific (no off-target
effects)

Gene silencing
(e.g., RNAi)

Can be high
throughput

Unpredictable degree
of gene silencing

Plants

Can be used to
generate an allelic
series

Phenotypes not stable

Can restrict
application to
specific tissues or
developmental
stages

Off-target effects are
possible

Insertional
mutagenesis

High throughput Plants (.500
publications)

Used for loss-of-
function and gain-
of-function studies

Random or
transposon-
mediated insertions
target only a subset
of the genome

Results in stable
mutations

Limited effectiveness
on tandemly
repeated genes

Limited usefulness for
essential genes

Ectopic expression Similar to gene
silencing

Similar to gene
silencing

Source: Modified from Alonso and Ecker (2006). Used with permission.
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experiment may fail to trap genes because of the nonrandom nature of the insertion

sites in the genome (Hansen et al., 2003).

There are several large-scale insertional mutagenesis projects. The International

Gene Trap Consortium (IGTC) manages a collection of �45,000 mouse embryonic

stem cell lines that represent �45% of known mouse genes (Skarnes et al., 2004;

Nord et al., 2006). The Mutagenic Insertion and Chromosome Engineering

Resource (MICER) includes �94,000 insertional targeting constructs that can be

used to inactivate genes with a high targeting efficiency (28%) (Adams et al.,

2004). You can view IGTC gene trap constructs at the UCSC Genome Browser,

and both MICER and IGTC resources are available as annotation tracks at the

Ensembl mouse genome browser (Fig. 12.14).

(a) Enhancer trap

(b) Promoter trap

(c) PolyA trap

enhancer

enhancer

enhancer

promoter

promoter promoter
polyA

stopATG

neo AAAAAAA

neo-polyA

SA-neo-polyA

polyA

stopATG

neo AAAAAAA

promoter

ATG

neo-SD

polyA

stop

neo AAAAAAA

FIGURE 12.13. Strategies for gene trap mutagenesis. (a) An enhancer traps consist of a vector
containing a promoter, a neo gene that confers antibiotic resistance (and thus allows for selection
of successfully integrated sequences), and a polyadenylation signal (polyA). This construct is
activated by an endogenous enhancer, and disrupts the function of the endogenous gene. The
endogenous gene is depicted with its own promoter, start codon (ATG), three exons in this sche-
matic example, a stop codon, and a polyadenylation signal. (b) A promoter trap lacks an exogen-
ous promoter and instead depends on an endogenous enhancer and promoter. It includes a splice
acceptor (SA), neo cassette, and polyadenylation site. Integration of this vector disrupts the
expression of an endogenous gene. (c) A poly(A) trap vector includes its own promoter and
neo cassette but depends on an endogenous polyadenylation signal for successful expression.
From Abuin et al. (2007). Used with permission.

The International Gene Trap

Consortium website is Q http://
www.genetrap.org. The Unitrap

resource (Roma et al., 2008) is at

Q http://unitrap.cbm.fvg.it.
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Reverse Genetics: Insertional Mutagenesis in Yeast
We will describe two powerful approaches to gene disruption in yeast, in addition

to homologous recombination: (1) genetic footprinting using transposons, and

(2) harnessing exogenous transposons.

Transposons are DNA elements that physically move from one physical location

to another in the genome (Chapter 16). They accomplish this either with an RNA

intermediate (retrotransposons) or without (DNA transposons). The Ty1 element

is a yeast retrotransposon that inserts randomly into the genome. Patrick Brown,

David Botstein, and colleagues developed a strategy in which populations of yeast

are grown under several different conditions (e.g., rich medium versus minimal

medium) and subjected to Ty1 transposon-mediated mutagenesis (Smith et al.,

1995, 1996) (Fig. 12.15). Following the insertion, PCR is performed using primers

that are specific to the gene and to the Ty1 element. This results in a series of DNA

products of various molecular weights. The premise of the approach is that an indi-

vidual gene (e.g., SSO1) might be important for growth under certain conditions.

There will be a loss of PCR products (a “genetic footprint”) that indicates the import-

ance of that gene for a particular condition.

This approach has several advantages:

† Any gene of interest can be assayed or genes can be selected randomly.

† Multiple mutations can be assayed for any given gene.

† It is possible to perform phenotypic analyses in parallel in a population.

† Many different phenotypes can be selected for analysis.

† The approach can succeed even for overlapping genes.

There are also several disadvantages:

† Mutant strains are not recovered.

† Multiple mutations (alleles) are generated, but they are all insertions (rather

than knockouts or other types of mutation).

FIGURE 12.14. Access to infor-
mation on gene trapped genes at
the Ensembl mouse genome brow-
ser. From the home page of
Ensembl (Q http://www.ensembl.
org) select mouse syntaxin 1a
(stx1a) then use the Distributed
Annotation System (DAS) pull-
down menu (arrow 1) to select
GeneTrap (arrow 2) and MICER
(arrow 3) data. One gene trap
clone is available (arrow 4;
sequence tag PST2461-NR) with
further links to acquiring this con-
struct. Similarly, several MICER
constructs are shown; these are vec-
tors that are useful for generating
knockout mice and for chromo-
some engineering.

1

2

3

4
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† The approach is labor intensive and entails a gene-by-gene analysis.

† The role of duplicated genes with overlapping functions may be missed.

Another mutagenesis approach involves the random insertion of reporter

genes and insertional tags into genes using bacterial or yeast transposons

(Ross-Macdonald et al., 1999) (Fig. 12.16). A minitransposon derived from a bac-

terial transposon Tn3 contains a lacZ reporter gene lacking an initiator methionine

or upstream promoter sequence. When randomly inserted into a protein-coding

gene, it is expected to be translated in-frame in one out of six cases. When this hap-

pens, the yeast will produce b-galactosidase, allowing the insertion event to be

detected. The construct includes loxP sites that allow a recombination event in

which the lacZ is removed and the target gene is tagged with only a short amount

of DNA encoding three copies of a hemagglutinin (HA) epitope tag.

This minitransposon construct allows a genomewide analysis of disruption

phenotypes, gene expression studies, and protein localization. Ross-Macdonald

et al. (1999) generated 11,000 yeast strains in which they characterized disruption

phenotypes under 20 different growth conditions. These studies resulted in the

identification of 300 previously nonannotated ORFs. Data from this study were

deposited in the TRIPLES database (Kumar et al., 2002). An example of a search

result from this database is shown for SSO2 (Fig. 12.17).

† Surprisingly, 480 expressed insertions were fused to an ORF but in the wrong

reading frame. This suggests that frame shifting may be a very common gene

expression mechanism.

unselected population selected population

single gene (e.g. SSO1)

gene-specific
primer

various sites of Ty1 insertion

(a)

(b)

(c)

unselected selected unselected selected

FIGURE 12.15. Genetic footprint-
ing. (a) A population of yeast is
selected, e.g., by changing the
medium or adding a drug. Some
genes will be unaffected by the selec-
tion process. (b) Random insertion
of a transposon allows gene-specific
PCR to be performed and (c) sub-
sequent visualization of DNA pro-
ducts electrophoresed on a gel.
Some genes will be unaffected by
the selection process (panel at
left). Other genes, tagged by the
transposition, will be associated
with a reduction in fitness. Less
PCR product will be observed (in
[c]), thus identifying this gene as
necessary for survival of yeast in
that selection condition.

An HA-tagged protein can be

localized within a cell using an

antibody specific to HA.

The TRIPLES database is avail-

able at Q http://ygac.med.yale.

edu/triples/. TRIPLES stands for

Transposon-Insertion

Phenotypes, Localization and

Expression in Saccharomyces.
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FIGURE 12.16. Transposon tag-
ging and gene disruption to assess
gene function in yeast. (Adapted
from Ross-Macdonald et al., 1999.)

loxP loxPlacZ AmpR LEU2 3XHA

single gene

minitransposon

mutagenize library (yeast genome)

generate lacZ-fusion protein strains
(study expression patterns and disruption phenotypes)

generate hemagglutin-tagged strains
(study localization)

FIGURE 12.17. (a) An example
of a search result of the TRIPLES
database for SSO2, (b) showing a
mutant with a transposon inser-
tion and a resultant phenotype.
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† There were 328 in-frame insertions to nonannotated ORFs (from 50 to 247

codons long). Thus, this method is useful to identify novel protein-coding genes.

† Fifty-two percent of these previously nonannotated ORFs are antisense to

a known ORF, and 15% overlap a known ORF in a different frame.

Thirty-three percent were intergenic. These findings are consistent with the

hypothesis that many small genes remain undiscovered.

This approach offers a variety of useful features:

† It includes data on expression levels and protein localization.

† New genes can be discovered, as described above.

† The analysis works for overlapping genes.

† Mutant strains can be recovered and banked. They are made available to the

scientific community through the TRIPLES database.

Problems are similar to those involved in genetic footprinting and include the

requirement for transposon site specificity, the missing of information on genes

with duplicated functions, and the labor-intensive nature of the project.

Reverse Genetics: Gene Silencing by Disrupting RNA
We have discussed reverse genetics approaches in which a gene is deleted by

homologous recombination. Another approach to identifying gene function is to dis-

rupt the messenger RNA rather than the genomic DNA. RNA interference (RNAi) is

a powerful, versatile, and relatively novel technique that allows genes to be silenced by

double-stranded RNA (reviewed in Lehner et al., 2004; Sachidanandam, 2004;

Martin and Caplen, 2007). In plants and animals small RNAs (21 to 23 nucleotides)

regulate the expression of target genes. The extent of inhibition of gene function may

be variable, in contrast to null alleles created by gene knockouts. Mechanistically,

RNAi is a form of posttranscriptional gene silencing that is mediated by double-

stranded RNA. It may function as a host defense system to protect against viruses,

and RNAi also may serve to regulate endogenous gene expression. When double-

stranded RNAs are introduced into Drosophila, nematode, plant, or human cells

they are processed by the endoribonuclease Dicer into small interfering RNAs

(siRNAs). These siRNAs cleave target messenger RNAs through the actions of an

RNA-induced silencing complex (RISC) composed of proteins (such as Argonaute

proteins) and RNA. The endogenous RNAi process seems to involve microRNAs

(described in Chapter 8) rather than double-stranded RNAs.

RNAi has been used in genome-wide screens to systematically survey the pheno-

typic consequence of disrupting almost every gene. In Drosophila, Boutros et al.

(2004) ascribed functions to 91% of all genes and reported 438 double-stranded

RNAs that inhibited the function of essential genes. A further extension of the

RNAi approach was provided by creating a transgenic RNAi library in Drosophila

that permits targeted, conditional gene inactivation in virtually any cell type at any

developmental stage. Dietzl et al. (2007) created an RNAi library that targets over

13,000 genes (97% of the predicted protein-coding genes in Drosophila). There are

many false negative results, based on comparisons to a positive control set consisting

of known phenotypes that are expected to occur based on previous classical genetics

studies. This may occur because the library was constructed by randomly inserting
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transgenes into the fly genome, and not all transgenes express at sufficiently

high levels. (The false negative rate for the library was �40% and for the genes

was �35%.) There were also false positive results; some could occur because of

off-target effects such as changes in the expression levels of genes flanking the

target. As an example of the usefulness of this approach, Dietzl et al. described

the use of a neuronal promoter to screen neuronal genes, and reported a lethal phe-

notype for many, including n-syb (a homolog of SNC1/synaptobrevin, Fig. 12.4),

Snap (a homolog of SEC17/aSNAP), and Syx5 (a homolog of SSO1/syntaxin).

While it is known that false positive results can occur, Ma et al. (2006) empha-

sized how extensive this problem can be. Off-target effects consist of RNAi constructs

that inhibit the expression of endogenous genes other than those that are targeted. It

is expected that sequences sharing a high degree of conservation to the small RNA

regulator over a span of 19 or more nucleotides will also be targeted. In RNAi studies

of Drosophila Ma et al. noted off-target effects mediated by short stretches of

double-stranded RNA. These false positives often contain tandem trinucleotide

repeats (CAN where N represents any of the four nucleotides, with especially

strong effects observed with CAA and CAG repeats). Such genes are overrepresented

in the results of published RNAi screens. Ma et al. propose that libraries should be

designed to avoid even short sequences present in multiple genes, and further that

identified phenotypic effects should be independently confirmed using more than

one nonoverlapping double-stranded RNA for each candidate.

RNAi screens have been performed in other organisms such as C. elegans (e.g.,

Kamath et al., 2003; Sönnichsen et al., 2005; Kim et al., 2005). Remarkably,

C.elegans can be fedbacteria that express double-strandedRNA to inhibit gene function

(Fraser et al., 2000). Kamath et al. performed a genome-wide RNAi screen and

described mutant phenotypes for �1500 genes, about two-thirds of which did not pre-

viously have an assigned phenotype. The most common RNAi phenotype they

observed is embryonic lethality, observed in over 900 strains. In human, Berns et al.

(2004) targeted �7900 genes using retroviral vectors that encode over 23,000 short

hairpin RNAs, and identified novel modulators of proliferation arrest dependent on

p53, a key tumor suppressor and regulator of the cell cycle. Brass et al. (2008) used

RNAi to systematically inhibit the function of human genes in a HeLa cell line trans-

fected with short interfering RNAs. They identified 273 messenger RNAs that are

required for human immunodeficiency virus (HIV) infection and replication in

human cells. These human genes and gene products are potential targets for antiviral

drugs. Unlike other antiretroviral drugs, potential drugs targeting these key human

host proteins would not be affected by the extraordinary diversity of HIV genotypes

(even withina single infected individual there may be one million variant HIV genomes)

nor by viral mutations that promote positive selection resulting in drug resistance.

There are several prominent database resources for RNAi data. (1) The

GenomeRNAi database integrates sequence data for RNAi reagents with phenotypic

data from RNAi screens, primarily in cultured Drosophila cells (Horn et al., 2007). A

search of the GenomeRNAi database with the query rop (a Drosophila homolog of

yeast SEC1) shows several RNAi probes (including the phenotype, the specificity,

the occurrence of off-target effects, and the efficiency), as well as a link to the

FlyBase gene entry. (2) FLIGHTalso provides data on high throughput RNAi screens

(Sims et al., 2006). Its scope and mission are comparable to the GenomeRNAi

database. Both include a blast server, and FLIGHT contains additional analysis

tools. (3) The RNAi Database is a similar database dedicated to C. elegans

(Gunsalus et al., 2004). A search for UNC-18, the C. elegans homolog of SEC1/

An HIV interaction database is

available at Q http://www.ncbi.

nlm.nih.gov/RefSeq/
HIVInteractions/. Currently it

lists �1500 human genes whose

products interact with HIV. We

discuss HIV in Chapter 14.

The GenomeRNAi database is

available at Q http://www.dkfz.

de/signaling2/rnai/ernai.html.

Currently it includes over 91,000

double-stranded RNAs and

�6100 phenotype records from 29
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rop/syntaxin-binding protein 1, shows a list of phenotypes observed in RNAi screens.

For example, RNAi of UNC-18 leads to resistance to the acetylcholinesterase inhibi-

tor aldicarb, a drug that induces paralysis by preventing the normal breakdown of the

neurotransmitter acetylcholine. This result is consistent with a functional role for

unc-18 in modulating the release of acetylcholine from vesicles in the presynaptic

terminal at the neuromuscular junction.

A second approach to disrupting RNA is to knock down gene expression using

morpholinos (Angerer and Angerer, 2004; Pickart et al., 2004). Morpholinos are a

form of antisense oligonucleotide consisting of a nucleic acid base with a morpholine

ring and a phosphorodiamidate linkage between residues. They specifically bind to

messenger RNAs (and microRNAs) and have been used to downregulate transcripts.

They have been used extensively in zebrafish, and the ZFIN database describes the

results of experiments using morpholinos. The Morpholino DataBase lists morpholi-

nos and their targets, and associated phenotypic data (Knowlton et al., 2008).

Forward Genetics: Chemical Mutagenesis
Forward genetics approaches are sometimes referred to as phenotype-driven screens.

They are commonly performed using N-ethyl-N-nitrosurea (ENU), a powerful chemi-

cal mutagen used to alter the male germline (O’Brien and Frankel, 2004; Clark et al.,

2004). ENU is more effective than x-irradiation, g-irradiation, or other chemical muta-

gens at inducingpointmutations inorganisms from mice toDrosophila toplants (Russell

et al., 1979). While the spontaneous mutation rate is about 5 to 10 � 1026 for the aver-

age locus, ENU treatment typically yields a mutation frequency of about 1 � 1023 per

locus. After ENU is administered to mice or other organisms, a phenotype of interest is

observed (such as failure of neurons to migrate to an appropriate position in the spinal

cord). Recombinant animals are created by inbreeding and the phenotype can then be

demonstrated to be heritable. The mutagenized gene is mapped by positional cloning

and identified by sequencing the genes in the mapped interval. In mice, ENU is used to

mutagenize either spermatogonia or embryonic stem cells. O’Brien and Frankel (2003)

reviewed the use of chemical mutagenesis in the mouse and emphasized the need for

phenotyping that is both expert and high capacity.

A major limitation of the ENU approach is that the gene(s) whose point mutations

are responsible for theobserved phenotypic changemust be identified without the benefit

of tags introduced into thegenomicDNA.Althoughpositional cloningused tobea labor-

ious process, the availability of complete genome sequences and dense maps of poly-

morphic markers has permitted relatively rapid identification of genes of interest.

The use of balancer chromosomes has facilitated the ENU approach (Hentges

and Justice, 2004). In a balancer chromosome, a phenotypically marked chromoso-

mal segment is inverted, and this facilitates mapping as well as maintenance of

mutations in the heterozygous state. This effect was first described by Hermann

Muller (1918). Monica Justice and colleagues used the strategy of a balancer chromo-

some to characterize dozens of novel recessive lethal mutations on mouse chromo-

some 11 (Kile et al., 2003). The balancer chromosome consists of mouse

chromosome 11 harboring a large inversion (34 megabases). Male mice are treated

with ENU, mated to females with the balancer chromosome, and through a strategy

of successive intercrosses mice that have a homozygous lethal mutation can be ident-

ified and the gene can be easily mapped.

Reverse and forward genetics approaches are both powerful. We can contrast and

compare several of their features.

large-scale Drosophila RNAi

studies (February 2008).

FLIGHT is online at Q http://
www.flight.licr.org/ and requires

registration for full access. The

RNAi Database (RNAiDB) is

available atQ http://www.rnai.org.

The Morpholino Database

(MODB) is available at Q http://
www.secretomes.umn.edu/
MODB/. It currently contains

over 700 morpholinos.
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† These approaches ask different questions. Reverse genetics asks “What is the

phenotype of this mutant?” Forward genetics asks “What mutants have this

particular phenotype?”

† Reverse genetics approaches attempt to generate null alleles as a primary strat-

egy (and conditional alleles in many cases). Forward genetics strategies such

as chemical mutagenesis are “blind” in that multiple mutant alleles are gener-

ated that affect a phenotype (Guénet, 2002). These alleles include hypo-

morphs (having reduced function), hypermorphs (having enhanced

function), and neomorphs (having novel function), as well as null alleles.

† We introduced techniques such as insertional mutagenesis (see above) as a

form of reverse genetics. However, insertional mutagenesis has also been

used in the context of forward genetics screens. In each case an attempt is

made to infer the function of a set of genes based on the phenotypic conse-

quence of disrupting the expression of a gene.

FUNCTIONAL GENOMICS AND THE CENTRAL DOGMA

We have discussed reverse and forward genetics approaches to gene function.

Another way to describe the scope of the field of functional genomics is to to consider

the central dogma that DNA is transcribed to RNA and translated to protein. These

levels of analysis are reflected in the organization of functional genomics projects at

the National Human Genome Research Institute (NHGRI) and elsewhere.

Functional Genomics and DNA: The ENCODE Project
Our understanding of the scope of functional genomics has been transformed

through large-scale sequencing efforts such as the ENCODE project. The goal of

this project is to define all the functional elements of genomic DNA. The initial

phase of the ENCODE project centered on studying about 1% of the human

genome in depth. Forty-four regions were selected, ranging from 0.5 to 1 megabase

in size, and including regions that have been well characterized (such as the globin

loci) as well as randomly selected regions having properties such as relatively high

or low gene density. Additionally, the ENCODE project involved the analysis of con-

served syntentic regions in a variety of other vertebrate organisms. There were four

major conclusions from the pilot phase of the ENCODE project (ENCODE

Project Consortium, 2007). (1) The genome is pervasively transcribed, a result we

discussed in Chapter 8. (2) Features of transcriptional regulation were elucidated,

including information about chromatin accessibility and histone modification.

(3) Chromatin structure was described in new detail. (4) Mechanistic insights

about genome evolution were obtained. We will introduce the ENCODE project in

Chapter 16 in our description of the eukaryotic chromosome.

Functional Genomics and RNA
Surveys of RNA transcript levels across different regions (for multicellular organ-

isms) and times of development provide fundamental information about an organ-

ism’s program of gene expression. (The term gene expression profiling is

commonly used, although more precisely it is steady-state mRNA levels that are

measured rather than the process of gene expression.) Many studies have surveyed

changes in RNA transcripts levels across developmental stages of organisms, or

See Q http://www.genome.gov/
10000612 for a description of the

NHGRI functional analysis

program.

The ENCODE website at the

UCSC Genome Bioinformatics

site is Q http://genome.ucsc.edu/
ENCODE/, and the ENCODE

homepage at NHGRI is Q http://
www.genome.gov/10005107.

492 FUNCTIONAL GENOMICS



across body regions. We introduced approaches and resources such as serial analysis

of gene expression (SAGE) and UniGene in Chapter 8. Microarrays have beenused to

measure gene expression patterns for thousands of Drosophila genes across many devel-

opmental stages (Arbeitman et al., 2002). Similar studies have been performed for the

mosquito (Koutsos et al., 2007), C. elegans (Kim et al., 2001), and other species.

The Saccharomyces Genome Database (SGD) offers many resources to describe

gene expression in yeast. For each gene, an expression summary plots the log2 ratio of

gene expression (x axis) versus the number of experiments (y axis) (Fig. 12.3, lower

right). That plot is clickable, so one can quickly identify experiments in which SEC1

RNA is dramatically up- or downregulated. Another resource is the Function

Junction, a resource that provides data on functional analyses for individual S. cerevisiae

loci from six separate sites, including one for SAGE data and a microarray viewer.

Functional Genomics and Protein
Classical biochemical approaches to protein function involve an assay for the func-

tion of a protein (such as its enzymatic activity or a bioassay for its influence on a

cellular process). This assay may be used as the basis of a purification scheme in

which the protein is purified to homogeneity. Thousands of proteins have been

studied individually with this approach. Each protein has its own personality in

terms of biochemical properties and its propensity to interact with a variety of

resins that separate proteins on the basis of size, charge, or hydrophobicity.

We described several techniques to study proteins in Chapter 10, including two-

dimensional gel electrophoresis and mass spectrometry.

In the remainder of this chapter we will introduce proteomics approaches to

functional genomics. We first describeprotein–protein interactions, and thenconclude

with a study of protein pathways. The functions of most proteins are unknown. Even

for relatively well-studied model organisms such as Escherichia coli and S. cerevisiae,

functions have been assigned to only perhaps two-thirds of all proteins, and the function

of the great majority of mouse or human proteins is unknown. The high throughput

proteomics projects attempt to assign function on a large scale, identifying the presence

of proteins in particular physiological conditions or identifying protein–protein

interaction partners.

PROTEOMICS APPROACHES TO FUNCTIONAL GENOMICS

We introduced proteins in Chapter 10 and discussed some of their basic features,

including posttranslational modifications, localization, and function. In addition to

the study of individual proteins, high throughput analyses of thousands of proteins

are possible (Molloy and Witzmann, 2002). We will describe three such approaches:

(1) identifying pairwise interactions between protein using the yeast two-hybrid

system and other techniques, (2) identifying protein complexes involving two or

more proteins using affinity chromatography with mass spectrometry, and (3) analyz-

ing protein pathways. While protein studies have been studied in depth in a variety of

model organisms, studies in S. cerevisieae are particularly advanced.

We have discussed forward genetics and reverse genetics approaches to gene func-

tion. A similar framework can be applied to proteomics (Palcy and Chevet, 2006).

Forward proteomics approaches correspond to the classical approach to protein

characterization (Fig. 12.18a). A biological system is selected, such as human cells

from individuals with or without a disease. Proteins are compared by techniques

Kim et al. (2001) introduced a

gene expression terrain map that

resembles a map of the mutation

landscape in cancer (see Fig.

20.15).
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such as mass spectrometry, differentially regulated proteins are identified, and from

this the function of these proteins and their possible roles in the disease state may

be inferred and further studied. In reverse proteomics, the starting point is the geno-

mic sequence, from which genes, RNA transcripts, and protein products can be

Biological system

Data analysis;
bioinformatics

(a) Forward proteomics (b) Reverse proteomics

Data analysis;
bioinformatics

Protein isolation

Sample preparation

Mass spectrometry

Identify proteins

Infer protein function

Cloning

Data analysis;
bioinformatics

Infer protein function

Functional assays

Expression

cDNA cloning

Repositories

Primer design

validation

E. coli

Mammals

Models

FIGURE 12.18. Forward and reverse proteomics. (a) Forward proteomics. An experimental
system is selected (such as a comparison of two developmental stages or normal versus diseased
tissue). Proteins are extracted in a manner depending on the biological question that is addressed
(e.g., selecting for membrane proteins or a subcellular organelle). Sample preparation may
include steps such as polyacrylamide gel electrophoresis or chromatography columns to separate
complex protein mixtures and reduce the complexity of the sample fractions being compared.
Proteins may be labeled with fluorescent dyes or a variety of other tags, then they are separated
and analyzed by techniques such as mass spectrometry (Chapter 10). Spectra are analyzed and
proteins are identified to identify differentially regulated proteins. These regulated proteins may
reflect functional differences in the comparison of the original samples. (b) Reverse proteomics. A
genome sequence of interest is analyzed, and genes, transcripts, and proteins are predicted based
on a combination of computational and experimental evidence (discussed in Chapter 16 for
eukaryotes). Complementary DNAs (cDNAs) are cloned based on information about open read-
ing frames available in repositories and based on appropriate primer design. cDNAs are vali-
dated by sequence analysis and are then expressed in systems such as E. coli (for the
production of recombinant proteins), mammalian cells, or other model organism systems.
Functional assays are performed in order to assess function; assays include the yeast two-
hybrid system or other protein interaction assays. Modified from Palcy and Chevet (2006).
Used with permission.

494 FUNCTIONAL GENOMICS



inferred (Fig. 12.18b). Complementary DNA (cDNA) clones can be obtained and

expressed in a variety of systems so that their function may be assessed in assays for

protein–protein interactions or other behaviors (cellular phenotypes).

Both forward and reverse proteomics approaches may be applied to discover

protein function. Both of these may involve high throughput techniques and large

numbers of samples and/or proteins are assayed. For example, in the forward proteo-

mics approach of “isobaric tags for relative and absolute quantitation” (iTRAQ;

Aggarwal et al., 2006), for four protein samples of interest, the identity and relative

quantity of 1000 proteins in each of these samples may be determined with high accu-

racy. Protein microarrays, analogous to DNA microarrays, consist of affinity reagents

(such as specific antibodies) that are attached to a solid support (MacBeath, 2002;

Chen and Zhu, 2006). Such technology has not yet reached widespread use because

of the inherent difficulty in maintaining the structure (and function) of immobilized

proteins. Tissue microarrays represent another high throughput approach that is

particularly well suited to molecular pathology studies (Kononen et al., 1998;

Kallioniemi et al., 2001). A tissue microarray typically consists of several hundred (or

thousand) tissue specimens immobilized on a slide in an orderly array. These samples

can be probed in parallel to detect and quantify DNA, RNA, or protein targets.

Protein–Protein Interactions
Proteins are responsible for a dazzling variety of functions, from serving as enzymes to

having structural roles. A consistent theme is that most proteins perform their

functions in networks associated with other proteins and other biomolecules. As a

basic approach to discerning protein function, pairwise interactions between proteins

can be characterized. Proteins often interact with partners with high affinity.

(The two main parameters of any binding interaction are the affinity, measured by

the dissociation constant KD, and the maximal number of binding sites, measured

by the Bmax). The interactions of two purified proteins can be measured with

dozens of techniques, such as the following:

† Co-immunoprecipitation, in which specific antibodies directed against a

protein of interest are used to precipate the protein to the bottom of a test

tube along with any associated binding proteins.

† Affinity chromatography, in which a cDNA construct is engineered that

encodes a protein of interest in frame with glutathione-S-transferase (GST)

or some other tag, such as polyhistidine. A resin to which glutathione is cova-

lently attached is incubated with a GST fusion protein, and it binds to the resin

along with any binding partners. Irrelevant proteins are eluted and then the

specific binding complex is eluted and its protein content is identified.

† Cross-linking with chemicals or ultraviolet radiation. A protein is allowed

to bind to its partners and then cross-linking is applied and the interactors

are identified.

† Surface plasmon resonance (with the BIAcore technology of GE Healthcare)

in which a protein is immobilized to a surface and kinetic binding properties of

interacting proteins are measured.

† Equilibrium dialysis and filter binding assays in which bound and free

ligands (that is, a protein with and without its interacting partner) are

separated and quantitated.
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† Fluorescent resonance energy transfer (FRET) in which two labeled

proteins yield a characteristic change in resonance energy upon sharing a

close physical interaction.

We can approach the general issues associated with protein–protein interactions

by considering the trafficking proteins shown in Fig. 12.4. Some interactions occur in

a pairwise fashion; for example, mammalian syntaxin binds to syntaxin-binding

protein 1 in a binary complex (Fig. 12.4d). Syntaxin is also a member of several

other complexes to the exclusion of syntaxin-binding protein; for example, syntaxin

1a, synaptobrevin-2/VAMP-2, and SNAP-25 (Fig. 12.4b) bind in a complex so

tightly that they are able to migrate together as a trimer even in the harsh condition

of polyacrylamide gel electrophoresis that denatures most proteins. If purified syn-

taxin is immobilized on a column and mixed with an extract of rat brain, it is likely

that two or more separate complexes will form, as depicted in Fig. 12.4d for Sso1p

and other yeast orthologs. It would be incorrect to infer a direct binding interaction

between syntaxin-binding protein and synaptobrevin or SNAP-25. At the same time,

it would be reasonable to conclude that all these proteins function as part of a

common pathway. Finding genetic interactions can provide even more information

about genes whose products function in a pathway or in parallel, related pathways

(Figs. 12.4c and e). Genetic interaction data give less information about which

particular proteins directly interact or which form protein complexes, but they may

provide more information than studies of protein partners and protein complexes

in terms of the members of protein pathways.

The Yeast Two-Hybrid System
The yeast two-hybrid system is a high throughput method used to identify protein–

protein interactions (Fields and Song, 1989). The assay is extremely versatile and has

been used to identify protein-binding partners in many species. It is based on the fact

that the yeast GAL4 transcriptional activator is composed of two independent acti-

vation and binding domains (see Box 12.2). The cDNA encoding a protein of interest

(the “bait”) is fused to the GAL4 DNA binding domain. A large collection of cDNAs

(a library consisting of various “prey”) is cloned into a vector containing the GAL4

activation domain. Alone, the GAL4 DNA binding domain does not activate tran-

scription. But when the bait binds to another fusion protein expressed from the

cDNA library, the proximity of the two proteins enables transcription of a GAL4

reporter gene. The name “two-hybrid” system refers to the use of two recombinant

proteins that must interact.

In addition to the strategy of using a bait protein to screen a library, the yeast

two-hybrid system has been used to measure the interaction of a known bait protein

with individual, cloned prey proteins. In this way a set of many protein–protein

interactions can be assayed. Compared to screening libraries, this approach has the

advantage of systematically testing a matrix of possible protein–protein interactions,

while it has the disadvantage of not allowing the discovery of novel interacting

partners that might be found in a complex cDNA library.

Yeast two-hybrid system technology has been applied to analyses of essentially all

possible pairwise protein–protein interactions in the yeast S. cerevisiae. Uetz et al.

(2000) described 957 interactions involving 1004 yeast proteins, while Ito et al.

(2001) identified 4549 interactions among 3278 proteins. These data sets are useful

to define possible pathways of interacting proteins. Surprisingly, only about 20% of
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BOX 12.2
Yeast Two-Hybrid System

The yeast two-hybrid system allows the identification of the binding partners of a

protein. A cDNA encoding a protein of interest (such as huntingtin, the protein

that is mutated in Huntington disease) is used as a “bait” to identify interacting

proteins in a library of cDNAs encoding human proteins expressed in brain

(“prey”). A construct containing huntingtin cDNA, fused to a DNA binding

domain (BD), is introduced into yeast cells. The BD interacts with a yeast

GAL1 upstream activating sequence (UAS), but in the absence of an

appropriate activator domain (AD) a lacZ reporter gene is not activated [see (a)

below]. A library of thousands of cDNAs is created, each fused to an activation

sequence, but these alone are also unable to activate a reporter gene [see (b)].

When a clone from the library (AD fused to prey 1) binds to the bait/DNA

BD construct, the activator domain is able to activate transcription of the lacZ

reporter gene (c). This reporter allows identification of plasmid DNA from

these yeast cells, and the prey 1 cDNA is sequenced. There may be many

different binding partners identified from a yeast two-hybrid library. In one

application of this technology, X. J. Li et al. (1995) identified huntingtin-

associated protein (HAP-1), a protein enriched in brain that may affect the

selective neuropathology of expanded polyglutamine repeats in Huntington

disease.

bait

DNA BD

GAL1 UAS Promoter lacZ reporter gene

GAL1 UAS

prey 1

AD

Promoter lacZ reporter gene

GAL1 UAS Promoter lacZ reporter gene

prey 1

AD

bait

DNA BD

prey 2

AD

prey 2

AD

active transcription

prey 3

AD

prey 3

AD

(a)

(b)

(c)
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these two data sets overlap. The lack of concordance between these data sets may be

due to differences in the physiological conditions in the studies, or to different

sources of false positive and false negative errors (discussed below). Other high

throughput yeast two-hybrid assays have been applied to Drosophila and other organ-

isms (Giot et al., 2003).

This experimental strategy entails a number of assumptions, including reasons

for false positive results (biologically nonsignificant interactions) and false negative

results (missed biological interactions) (Schächter, 2002). False negative results

may occur for the following reasons:

† The bait that is introduced into yeast cells must be localized to the nucleus. If

the bait targets its native location, this could explain why some previously

known interactions were not observed.

† The fusion protein construct must not interfere with the function of the bait

protein.

† Transient protein interactions may be missed.

† Some protein complexes require highly specific physiological conditions in

which to form and thus may be missed. Some interactions may fail in the

specialized environment of the yeast nucleus.

† There may be a bias against hydrophobic proteins and low molecular weight

proteins.

False-positive results may also occur for a variety of reasons. Some proteins may

be inherently susceptible to nonspecific binding interactions (i.e., they are “sticky”

and activate many bait proteins). Proteins that are denatured may bind nonspecifi-

cally. A bait protein may autoactivate a reporter gene. Careful analysis of two-

hybrid results allows these sources of false positive and false negative results to be

reduced, for example by identifying promiscuous binding proteins.

Information about yeast two-hybrid data is available in several databases. The

Saccharomyces Genome Database includes a link to physical interaction data, includ-

ing interactions from two-hybrid screens (Fig. 12.3, upper left). A search for Sec1p

reveals several interaction partners, including Sso2p and Mso1p. (When Mso1p was

used as a bait in a reciprocal fashion, it was again found to bind to Sec1p.) Another

database of two-hybrid data is the MPact data set, a protein interaction and complex

database from the Munich Information Center for Protein Sequences (MIPS)

(Güldener et al., 2006). MPact includes manually curated data that integrate differ-

ent sources of high throughput results and includes data on protein–protein inter-

actions taken from the literature by expert curators. MPact follows the HUPO PSI

standards for reporting protein–protein interaction data (Hermjakob et al., 2004).

A search for sec1 shows a variety of genetic and physical interactions.

Protein Complexes: Affinity Chromatography
and Mass Spectrometry
Affinity chromatography is a technique in which a ligand such as a protein is

chemically immobilized to a matrix on a column. A major difference between

the yeast two-hybrid strategy and the affinity chromatography approach is that the

yeast two-hybrid system is only used to detect pairwise interactions between proteins.

MPact is available at Q http://
mips.gsf.de/genre/proj/mpact/.

The MIPS Comprehensive Yeast

Genome Database (CYGD) is at

Q http://mips.gsf.de/genre/proj/
yeast/ and is comparable to SGD.
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In contrast, an affinity chromatography approach allows subunits consisting of many

proteins to be isolated and identified.

Several groups employed a strategy of identifying thousands of multiprotein

complexes in the yeast S. cerevisiae (Gavin et al., 2002; Ho et al., 2002; Gavin

et al., 2006; Krogan et al., 2006). Each group selected large numbers of “bait”

proteins containing a tag that allowed each bait to be introduced into yeast, where

they could form native protein complexes. After complexes were allowed to form

under physiologically relevant conditions, the bait was extracted, copurifying

associated proteins. These protein complexes were resolved by one-dimensional

SDS-PAGE. Thousands of individual protein gel bands (from experiments with

many different bait proteins) were excised from the gel with a razor, digested with

trypsin to form relatively small protein fragments, and identified by MALDI-TOF

mass spectrometry (Chapter 10).

Employing this strategy, Gavin et al. (2002) obtained 1167 yeast strains expres-

sing tagged proteins, from which they purified 589 tagged proteins and identified 232

protein complexes. Ho et al. (2002) selected 725 bait proteins and also detected

thousands of protein–protein associations. In each case, a large number of the protein

complexes that were identified included proteins of previously unknown function,

highlighting the strength of these large-scale approaches. Gavin et al. (2006) per-

formed a more comprehensive screen using tandem affinity purification coupled to

mass spectrometry (TAP-MS) to create �2000 TAP-fusion proteins. Of these,

88% interacted with at least one partner, and the abundance of the identified binding

partners ranged from 32 to 500,000 copies per cell. Gavin et al. developed a “socio-

affinity” index measuring the log odds of the number of times two proteins are

observed interacting divided by the expected occurrence based on the frequency in

the data set. Krogan et al. (2006) also used TAP-MS and reported over 7000

protein–protein interactions involving�2700 proteins. Employing a clustering algor-

ithm they defined�550 protein complexes averaging 4.9 subunits percomplex. There

was a large number of complexes with few members (two to four proteins), and few

complexes with many members. Each of these various studies reported many com-

plexes that were absent from the MIPS database, and they also revealed new members

of previously characterized complexes. Krogan et al. reported enhanced coverage and

accuracy because of technical improvements such as (1) avoiding artifacts associated

with protein overproduction, (2) systematically tagging and purifying both interacting

partners, (3) using two methods of sample preparation and two methods of mass spec-

trometry, and (4) assigning confidence values to protein interaction predictions.

Data from Gavin et al. (2006) and many other interaction experiments are

available in the IntAct database (Kerrien et al., 2007). A search for sec1 shows

16 interactors (although not Sso1p homologs as recorded for yeast two-hybrid

screens). The Krogan et al. (2006) data are also available online.

Basic questions about complexes include the stoichiometry (the number of

various subunits), the subunit interactions, and the organization. Conventional bio-

chemical techniques can be used to approach all these questions, and in some cases

electron microscopy can reveal structural organization. Hernández et al. (2006)

applied TAP-MS to several well-characterized complexes: the scavenger decapping

and nuclear cap-binding complexes as well as the exosome which contains ten

different subunits. They could distinguish dimers from trimers and reveal subunit

interactions that were not apparent using the yeast two-hybrid approach.

As for the yeast two-hybrid screens, this approach yields false positive and false

negative results for reasons similar to those presented above. While many complexes

IntAct is available at the European

Bioinformatics Institute (Q http//
www.ebi.ac.uk/intact). Currently

it contains �65,000 proteins,

�105,000 interactions and com-

plexes, and �162,000 binary or

higher-order interactions

(February 2008). The main

species covered in IntAct are S.

cerevisiae, human, Drosophila, E.

coli strain K12, C. elegans, mouse,

and Arabidopsis. The Krogan et al.

(2006) data are available at

Q http://tap.med.utoronto.ca.
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are identified repeatedly within a given experiment, indicating that saturation has

been reached, this does not mean that those complexes are biologically real. Also,

when a protein is identified by mass spectrometry it is usually accompanied by a con-

fidence score. Peptides that are identified multiple times are associated with high con-

fidence identifications, while “one hit wonders” that are identified by one peptide

observed in a single run are by definition present in low abundance and are more

likely to be spurious or misidentified.

The Rosetta Stone Approach
Several groups have adopted a computational approach to protein function

prediction. Marcotte and colleagues (1999a, b) as well as Enright et al. (1999)

hypothesized that some pairs of interacting proteins are encoded by two distinct

genes in one genome that have fused into a single gene in another genome

(Fig. 12.19). Marcotte et al. scanned multiple genomes and identified 6809 such

cases in E. coli and 45,502 in S. cerevisiae. This domain function analysis has been

called the Rosetta Stone approach. The Rosetta Stone approach makes the prediction

that protein pairs generated from gene fusions have related biological functions. For

example, they may function in the same protein complex, pathway, or biological

FIGURE 12.19. The Rosetta Stone method has been used to predict functional interactions
between proteins based on analysis of genomic DNA sequences. Genome sequences are scanned
for the presence of independent genes from one organism (e.g., E. coli gyrases A and B) that occur
in orthologs as part of a single open reading frame. The presence of such a fusion event is inter-
preted as evidence that the two proteins are part of a functionally related pathway. For the organ-
ism that has fused the two genes, an evolutionary advantage could be conferred by the usefulness
of co-regulating expression of the two functional units, and/or there may be entropic benefit from
the presence of high local concentrations of both proteins. Here, the result of a blastp search is
shown. The query was Saccharomyces cerevisiae Top2p (topoisomerase II; NP_014311), and
the output was restricted to RefSeq proteins from E. coli strain K12. Note that the query matches
to two separate bacterial proteins, gyrase A and gyrase B.
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process. The approach also predicts possible protein–protein interactions. An

organism that has fused two genes encoding biologically related proteins may benefit

from an entropic contribution afforded by increased effective concentrations of the

two proteins in a local environment.

Kuriyan and Eisenberg (2007) discussed the basis of protein–protein inter-

actions in terms of the law of mass action (which states that molecules will tend to

bind as their concentrations increase) and the role of colocalization, for which gene

fusions represent one possible mechanism. It is also possible that domain fusion

does not involve functionally related proteins but occurs for other reasons.

The Protein Link EXplorer (PLEX) is a web resource that includes Rosetta

Stone predictions (Date and Marcotte, 2005).

Protein–Protein Interaction Databases
Many prominent databases store information on protein–protein interactions as well

as protein complexes (e.g. Breitkrutz et al., 2008; Ruepp et al., 2008; Sprinzak et al.,

2006). Several of these are listed in Table 12.2. Mathivanan et al. (2006) compared

the content of eight major databases that include information on human protein–

protein interactions. They emphasized the dramatic differences in their content,

including the number of reported interactions, the total number of proteins, the cura-

tion methodology, and the methods of detecting protein–protein interactions.

TABLE 12-2 Protein^Protein Interaction Databases
Database Comment URL

BioGrid Repository for interaction
data sets

Q http://www.thebiogrid.
org/

Biomolecular Object
Network Databank
(BIND)

Requires log-in; formerly
BIND

Q http://bond.
unleashedinformatics.
com/

Comprehensive Yeast
Genome Database
(CYGD)

From the Munich
Information Center for
Protein Sequences
(MIPS)

Q http://mips.gsf.de/
genre/proj/yeast/

Database of Interacting
Proteins (DIP)

From UCLA Q http://dip.doe-mbi.ucla.
edu/

Human Protein Reference
Database (HPRD)

From Akhilesh Pandey’s
group at Johns Hopkins

Q http://www.hprd.org/

IntAct At the European
Bioinformatics Institute

Q http://www.ebi.ac.uk/
intact/

Molecular Interactions
(MINT) Database

Rome Q http://mint.bio.
uniroma2.it/mint/

PDZBase Database of PDZ domains Q http://icb.med.cornell.
edu/services/pdz/start

Reactome Curated resource of core
human pathways and
reactions

Q http://reactome.org/

Search Tool for the Retrival
of Interacting Genes/
Proteins (STRING)

Database of known and
predicted protein–protein
interactions

Q http://string.embl.de/

Rosetta Stone refers to the ancient

tablet that contains a “fusion” of

three distinct scripts (hiero-

glyphic, demotic Greek, and clas-

sical Greek); the hieroglyphics

could be deciphered once all three

were discovered together.

PLEX is available at Q http://
bioinformatics.icmb.utexas.edu/
plex.
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Protein Networks
A typical mammalian genome has �20,000 to 25,000 protein-coding genes, a subset

of which (perhaps 10,000 to 15,000) is expressed in any given cell type. These pro-

teins are localized to particular compartments (or are secreted) where many of them

interact as part of their function. Some, such as the carrier proteins hemoglobin,

myoglobin, retinol-binding protein, and odorant–binding protein, do not rely on

protein–protein interactions but instead bind to a ligand (such as oxygen or vitamin

A or odorants) and transport it across a compartment by facilitated diffusion. Other

proteins function through binary interactions; the majority function via protein

complexes. In some cases, these complexes are spatially arranged in what

Robinson et al. (2007) call the “molecular sociology of the cell.” These authors

describe some of the techniques used to determine the structures of complexes,

and they further describe the architecture of multisubunit structures such as the

nuclear pore complex and the 26S proteasome.

Information about the roles of many proteins in a cell can be integrated in

databases and visualized with protein network maps (Schächter, 2002; Bader

et al., 2003; Sharom et al., 2004). A pathway is a linked set of biochemical reactions

(Karp, 2001). The motivation behind making pathway maps is to visualize complex

biological processes, that is, to use high throughput data on protein interactions to

generate a model of all functional pathways that is as complete as possible. There

are unusual challenges associated with defining protein networks.

(1) One of the basic issues associated with a prediction is the assessment of its

accuracy. How likely is it that a false positive or false negative error has occurred?

To assess this, benchmark (“gold standard”) data sets are required that consist of

trustworthy pathways. One can then test whether a particular approach to predicting

or reconstructing pathways is specific and sensitive. Unfortunately relatively few

interaction networks have been characterized in great detail, and there are no

accepted benchmark data sets comparable to those available for fields such as

sequence alignment and structural biology. There is little concordance between

major benchmark sets such as MIPS, Gene Ontology designations, and KEGG

(introduced below) (Bork et al., 2004).

(2) A related issue is that the choice of data is critical. Many researchers integrate

data from genomic sequences, expression of RNA transcripts, and protein measure-

ments. It can be challenging to perform this integration since RNA and protein levels

are often shown to be poorly correlated. Considering just protein–protein interaction

data, for all high throughput techniques the false positive and false negative error

rates can be extremely high, as we have seen for example with yeast two-hybrid

system data. Nonetheless many projects have proceeded to integrate the largest

available datasets, including ones with millions of predicted protein interactions

and also interactions as reported in thousands of literature references. For any

study, it is essential to carefully evaluate the sources of error and the sensitivity and

specificity of the assigned pathways.

(3) The choice of experimental organism is important. Among the eukaryotes, S.

cerevisiae is the best characterized. Its genome encodes a relatively small number of

genes, a tremendous amount of information is known about genes and gene pro-

ducts, and as a unicellular fungus it is simple compared to multicellular metazoans.

In considering the use of different organisms to model pathways, a caveat is that even

when orthologs of members of a particular pathway are identified, the function of

homologs is not necessarily conserved across species. (When a protein has an
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established function in one species, an ortholog in a different species is often assigned

the same function as a transitive property, and when these orthologs actually do not

share the same function this situation has been called “transitive catastrophe.”) Mika

and Rost (2006) analyzed high throughput data sets from human, Drosophila, C. ele-

gans, and S. cerevisiae. They introduced two metrics: an identity-based overlap

measure that describes the overlap between two different data sets in the IntAct data-

base within a single organism, and a homology-based measure that can be used to

compare results from data sets in two different organisms. Their unexpected finding

was that for all organisms analyzed and at almost all levels of sequence similarity,

inference of protein–protein interactions based on homology was dramatically

more accurate for pairs of homologs from the same organism than for homologs

between different organisms. One significant aspect of this result is that if two

proteins are shown to interact in yeast, they do not necessarily interact in animals.

Mika and Rost provide examples of protein sequences in Drosophila that have

different binding partners than in yeast.

(4) In attempting to reconstruct networks on a global scale another consideration

is the great variation in the composition and behavior of different pathways. Some,

such as the tricarboxylic acid (Krebs) cycle or urea cycle have been examined in

depth for many decades; for example, extremely detailed maps of metabolic pathways

are available at the ExPASy and KEGG websites. Other pathways are hypothetical or

very poorly characterized. Some are constitutive, while others form transiently under

particular physiological conditions or developmental stages. Some complexes are

highly abundant, while others (such as the exocyst complex) appear to exist in

vanishingly small quantities. For others, such as the vault complex (van Zon et al.,

2003), the function remains entirely obscure even after extensive studies.

(5) There are different categories of network or pathway maps. These include

maps based on metabolic pathways, physical and/or genetic interaction data, sum-

maries of the scientific literature, or signalling pathways. For some screens (including

the yeast two-hybrid system), information may be accumulated about the interactions

of particular domain(s) within a protein that are responsible for interactions in

addition to information about the interactions of full-length proteins. Some maps

are based on experimental data, while others mix computationally derived results

(such as transfers of information from orthologous networks) with experimental data.

We can describe the properties of protein networks. In graphical representations

of such complexes, nodes typically represent proteins while edges represent

interactions. Most nodes are sparsely connected, while a few nodes are highly

connected. Barabási and Albert (1999) suggested that most networks (including

biological networks, social networks, and the World Wide Web) follow a scale-free

power law distribution:

P(k) � k�g (12:1)

where P(k) is the probability that a node in the network interacts with k other nodes,

and P(k) decays following the constant g. As a consequence, large networks self-

organize into a scale-free state. According to this model, this power law distribution

is a consequence of the continuous growth of networks, and for the propensity of new

nodes to attach preferentially to sites (nodes; here, proteins) that are already well con-

nected. Two basic models that have emerged to describe protein complexes are a

“spoke” model, in which a protein bait interacts with multiple partners like the

spokes on a wheel, and a “matrix” model in which all proteins are connected

(Bader and Hogue, 2002). Either of these models can encompass scale-free

The ExPASy website (Chapter 10)

includes detailed maps for meta-

bolic pathways and for cellular and

molecular processes (Q http://
www.expasy.org/cgi-bin/search-

biochem-index).
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properties, although an analysis by Bader and Hogue indicates that a spoke model is

more accurate. In reviewing eight databases of human protein interactions,

Mathivanan et al. (2006) noted that the Human Protein Reference Database

(HPRD) and Reactome databases include a large number of hub proteins that

have many binary (direct) protein interactions. (The Reactome database assumes a

matrix model with all proteins interconnected within a complex.) A similar finding

applies to yeast; as described above, Krogan et al. (2006) described �550 protein

complexes of which about two dozen complexes have ten or more members, while

the majority had two to four members. A property of networks having hub proteins

is that random disruption of individual nodes (e.g., through mutation) is likely to be

well tolerated, although the entire system is vulnerable to some failures at highly con-

nected nodes (Albert et al., 2000).

Many aspects of network properties have been further studied, such as the per-

formance of different ways of creating and assessing confidence scores assigned to

particular edges (interactions) (Suthram et al., 2006). Assigning confidence scores

requires a benchmark (for example, STRING relies on KEGG, described below)

although it is challenging to define adequate benchmarks. Another aspect of protein

networks is the nature of hub proteins. Haynes et al. (2006) showed that hub proteins

(defined as having ten or more interacting partners) have more intrinsic disorder than

do end proteins (those with one interacting partner) in worm, fly, and human. We

described intrinsic disorder in Chapter 11. Yet another feature of networks is their

modularity (Sharom et al., 2004). One example of modularity is vesicle-mediated

exocytosis of neurotransmitter in the mammalian nerve terminal (Fig. 12.4b). The

components required for neurotransmitter release function autonomously at a great

distance from the cell body, and respond to the arrival of an action potential (an elec-

trical signal) in a local fashion by releasing neurotransmitters. This signaling system

has a modular nature. D. Li et al. (2006) estimated the modularity as well as the clus-

tering exponent g for protein interaction networks in yeast, C. elegans, and Drosophila,

reporting that all three have a scale-free nature and varying degrees of modularity.

There is a variety of database resources for global interaction networks.

PathGuide is a website that lists 240 biological pathway resources (Bader et al.,

2006). These are organized into categories such as protein–protein interactions,

metabolic pathways, signaling pathways, pathway diagrams, and genetic interaction

networks. For S. cerevisiae, the BioGRID database (Reguly et al., 2006) provides

manual curation of �32,000 publications describing physical and genetic inter-

actions. It is available online at its own site and through the SGD (see Fig. 12.2,

lower right side). In an effort to standardize the way various database projects present

information, the Biological Pathway Exchange (BioPAX) consortium provides a data

exchange ontology for biological pathway integration.

Several web servers provide pathway maps. MetaCyc is a database of metabolic

pathways (Caspi et al., 2008). It includes experimentally verified enzyme and

pathway information, with links from pathways to genes, proteins, reactions, and

metabolites. The SGD offers similar metabolic pathway maps for yeast, including

data derived from MetaCyc (Fig. 12.20).

A major pathway database is offered by the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa et al., 2008) (Fig. 12.21). The KEGG atlas contains

a detailed map of metabolism based on 120 metabolic pathways, with links to various

organisms. KEGG pathways are a collection of manually drawn maps in six areas

(metabolism, genetic information processing, environmental information proces-

sing, cellular processes, human diseases, and drug development). An example of a

PathGuide is at Q http://www.

pathguide.org/. BioGRID is

available at Q http://www.

thebiogrid.org. SGD is at

Q http://www.yeastgenome.org.

BioPAX is online at Q http://
www.biopax.org/.

MetaCyc is available at Q http://
metacyc.org/index.shtml. There

are currently over 1000 pathways,

4000 genes, 1000 organisms, and

15,000 citations in the database

(February 2008).

KEGG is available at Q http://
www.genome.ad.jp/kegg/.

Release 45 (2008) includes about

2.9 million genes from 55 eukar-

yotes, 584 bacteria, and 49

archaea, and over 71,000 path-

ways from 356 reference pathways.
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FIGURE 12.20. The
Saccharomyces Genome Database
includes metabolic pathway maps,
some of which use data from
MetaCyc. See Q http://pathway.
yeastgenome.org/biocyc/.

FIGURE 12.21. The KEGG data-
base includes pathway maps and
data for a broad range of organ-
isms (Q http://www.genome.jp/
kegg/).

PROTEOMICS APPROACHES TO FUNCTIONAL GENOMICS 505



pathway map is shown for vesicular transport (Fig. 12.22); by choosing S. cerevisiae

from a menu of organisms, clicking on a box such as syntaxin links to an entry on

yeast Sso1p. Related maps can be derived from other databases such as GeneGo

(Fig. 12.23). For all these pathway maps, the information obtained from biochemical

studies is far richer and more accurate in terms of the identities of genes and gene pro-

ducts, their correct subcellular distributions, and the details of their interactions with

partner proteins.

As another example of a KEGG pathway, by selecting human neurodegenerative

disorders, one can find a pathway description of amyotrophic lateral sclerosis (ALS;

Lou Gehrig’s disease) (Fig. 12.24). Mutations in the superoxide dismutase gene,

SOD1, are a common cause of this debilitating disease. SOD1 is an enzyme that

normally converts the toxic oxygen metabolite superoxide (O�2 ) into hydrogen per-

oxide and water. As shown in the KEGG pathway map, SOD1 has been shown to

interact directly and indirectly with a variety of other proteins, such as those involved

in apoptosis (programmed cell death). Clicking on SOD1, one finds an entry describ-

ing the protein and nucleotide sequence, as well as several external links, such as

the Enzyme Commission number and protein structure links, Pfam, Prosite, the

Human Protein Reference Database, and Online Mendelian Inheritance in Man

(OMIM; Chapter 20).

This example of SOD1 highlights a strength of KEGG: its coverage of a broad

range of proteins and cellular processes is comprehensive. The example also serves

to show that some processes described in KEGG are likely to be organism specific.

FIGURE 12.22. KEGG pathway
map for vesicular transport inclu-
des a variety of syntaxin and synap-
tobrevin homologs (but does not
include nerve terminal proteins
nor Sec1p homologs).
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KEGG is based primarily on data generated from bacterial genomes, and pathways

described in bacteria are not always applicable to eukaryotic organisms.

PERSPECTIVE

Many thousands of genomes have now been sequenced (including viral and

organellar genomes). For the genomes of prominent organisms such as human,

worms, flies, plants, and yeast, we are acquiring catalogs of the genes and gene
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FIGURE 12.24. KEGG includes
pathways for diseases. A pathway
for amyotrophic lateral sclerosis
(ALS; Lou Gehrig’s disease) is
shown. Proteins in boxes link to
detailed entries.

FIGURE 12.23. Software for path-
way maps. The GeneGo commer-
cial product includes a Java
module allowing over 500 premade
pathway maps to be viewed, or new
maps to be created. Mapped objects
include genes, proteins, or various
compounds. Interactions are depi-
cted such as binding (e.g., between
syntaxin, indicated with an arrow,
and MUNC18) or complexes (e.g.,
syntaxin, SNAP-25, synaptotag-
min, and VAMP2 form a complex,
indicated by Cf). Some labels
were redrawn for clarity. From
Q http://www.genego.com.
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products encoded by each genome. Defining the genes and the complete struc-

ture of the genome are challenging problems that we will address in the last

third of this book. We are already beginning to confront a problem that is perhaps

even harder than identifying genes: that is identifying their function. Function has

many definitions, as we discussed for proteins in Chapter 10. In this chapter we

have described many innovative, high throughput functional genomics approaches

to defining gene function. The field of functional genomics is broad, and can be

considered using many different categories. (1) What type of organism do we

wish to study? We highlighted eight model organisms, although many other

models are commonly used. (2) What type of questions do we want to address:

natural variation or experimental manipulations used to elucidate gene function?

(3) What type of experimental approach do we wish to apply, such as forward

versus reverse genetics. (4) What type of molecules do we wish to study, from

genomic DNA to RNA to protein or metabolites. (5) What types of biological

questions are we trying to address? For many investigators interested in human

diseases or the function of human genes, there are yeast orthologs (see

Chapters 17 and 20). If a yeast ortholog is identified then genetic screens can

suggest many potential interacting partners that may elucidate the function of

the human gene.

PITFALLS

We have described a range of approaches to assessing gene function, includ-

ing analyses at the levels of genes (e.g., creating null alleles or otherwise

interfering with gene function), RNA, and proteins. The following caveats should

be noted.

† Every method produces false negatives and false positives. It is important

to estimate these rates, although it can be difficult to acquire trusted (“gold

standard”) data sets with which to measure sensitivity and specificity.

† Many methods seem to work well with “knowns” but work much less well

with unknown genes. Reasons may include functional redundancy, complex,

multiple functions or functions not evident under lab conditions.

† Combinatorial informatic approaches need weighting to help evaluate

strength of “links” between genes. Also, any single set of gene “links” is

incomplete.

† What is needed to have a better success rate at functional prediction is fewer

links of low quality and more links of high quality.

DISCUSSION QUESTIONS

[12-1] Define a functional genomics question. (For example, how

can we predict the functions of genes that currently lack

functional annotation?) How does the choice of exper-

imental organism affect the approaches you might take to

answer the question?

[12-2] Consider a human disease for a gene has been implicated

(such as b-globin in sickle cell anemia) and for which an

animal model is available. How can forward genetics

approaches be used to study this disease? How can reverse

genetics approaches be used? What are some of the differ-

ences in the kinds of information these two approaches can

provide?
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PROBLEMS/COMPUTER LABORATORY

SELF-TEST QUIZ

[12-1] While there are many definitions of “functional genomics,”

select the best of these choices:

(a) The assignment of function to genes based primarily on

genomewide gene expression data using techniques such

as microarrays or SAGE

(b) The assignment of function to genes based primarily on

comprehensive surveys of protein–protein interactions

and protein networks

(c) The combined use of genetic, biochemical, and cell biological

approaches to study the function of a particular gene, its

mRNA product, and its corresponding protein product

(d) The assignment of function to genes and proteins using

genomewide screens and analyses

[12-2] Reverse genetics approaches involve

(a) Systematically inhibiting the functions of one or many

genes (or gene products), and measuring the phenotypic

consequences correctly.

(b) Measuring a phenotype of interest (such as cell growth),

applying an intervention (such as radiation exposure) to

generate a large collection of mutants, and identifying

changes to the phenotype of interest.

(c) Treating an organism with a chemical mutagen or other

agent to induce mutations, observing a phenotype of inter-

est, and mapping the gene(s) responsible for the phenotype.

(d) All of the above.

[12-3] The “YKO” project is an effort to systematically knock out all

yeast ORFs. A potential limitation of this approach is:

(a) Molecular barcodes may sometimes be toxic for yeast

genes.

(b) This approach is not suited to finding new genes but

instead focuses on already known genes.

(c) Mutant knockout strains cannot be banked for later study

by other investigators.

(d) Mutations may not be null.

[12-4] A major advantage of genetic footprinting using transposons is:

(a) The approach is technically easy and can be scaled up to

study the function of many genes.

(b) Both insertion alleles and knockout alleles can be studied.

(c) Any known gene of interest can be studied with this approach.

(d) Mutant strains can be banked for later study by other

researchers.

[12-5] Forward genetics screens have become increasingly powerful.

However, a major limitation is that

(a) Mutations that are introduced through the use of mutagens or

radiation do not leave molecular “tags” or barcodes in the

genomic DNA, thus adding to the challenge of identifying

DNA changes that are responsible for particular phenotypes

correctly.

(b) Mutant alleles tend to be null rather than having a broad

range of phenotypes.

(c) These screens often involve morpholinos, but these com-

pounds are effective in only a limited number of organisms.

(d) There is no universally preferred method to systematically

inhibit the function of each gene in a genome.

[12-6] High throughput screens such as the yeast two-hybrid system

and affinity purification experiments can have false positive

results because:

(a) Some proteins are inherently sticky.

(b) Some bait proteins that are introduced into cells become

mislocalized.

(c) Some protein complexes form only very transiently.

(d) Affinity tags or epitope tags can interfere with protein–

protein interactions.

(e) All of the above.

[12-7] Problems in determining protein networks include all of the

following EXCEPT which one?

(a) Few benchmark data sets are available with which to assess

false positive and false negative results.

(b) False positive and negative error rates tend to be very

high.

(c) There is tremendous heterogeneity in the types of protein

complexes that form.

(d) Experimental data have been generated for prokaryotes

and single-celled eukaryotes such as the yeast S. cerevisiae,

but it has not yet been possible to obtain high throughput

data for organisms such as Drosophila and human.

[12-8] Hub proteins are

(a) Proteins that occur at nodes that are highly connected

within a protein network.

(b) Proteins that occur at edges that are highly connected

within a protein network.

[12-1] Suppose you did not know anything about the function of

hemoglobin but wanted to use bioinformatics resources to

learn about its role in mouse and zebrafish. What information

can you find?

[12-2] Select a yeast gene such as SEC1. Is it an essential gene? What

proteins does it interact with based on physical (biochemical)

or genetic assays? Are the interactions observed in yeast also

found in mammalian systems?
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(c) Proteins that occur at nodes that are sparsely connected

within a protein network.

(d) Proteins that occur at edges that are sparsely connected

within a protein network.

[12-9] Which of the following best describes a major problem in eval-

uating large-scale cellular pathway diagrams?

(a) The direction of the biochemical pathways is not usually

known.

(b) The pathway maps do not employ Gene Ontology

nomenclature.

(c) The pathway maps often depend on the correct identifi-

cation of orthologs, but this can be problematic.

(d) The pathway maps tend to be derived from prokaryotes,

but only limited information is available on eukaryotes.
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Part III

Genome Analysis



The tree of life from Ernst Haeckel (1879). The figure shows mammals (with humans at the top shown ascending from apes), ver-
tebrates, invertebrates, and primitive animals at the bottom, including Monera (bacteria). (Reproduced with permission of the
Institute of the History of Medicine, The Johns Hopkins University.)



13

Completed Genomes

The affinities of all the beings of the same class have sometimes been represented by a great

tree. I believe this simile largely speaks the truth. The green and budding twigs may represent

existing species; and those produced during each former year may represent the long succes-

sion of extinct species. . . . The limbs divided into great branches, and these into lesser and

lesser branches, were themselves once, when the tree was small, budding twigs; and this con-

nexion of the former and present buds by ramifying branches may well represent the classifi-

cation of all extinct and living species in groups subordinate to groups. . . . From the first

growth of the tree, many a limb and branch has decayed and dropped off, and these lost

branches of various sizes may represent those whole orders, families, and genera which have

now no living representatives, and which are known to us only from having been found in a

fossil state. . . . As buds give rise by growth to fresh buds, and these, if vigorous, branch out

and overtop on all a feebler branch, so by generation I believe it has been with the Tree of

Life, which fills with its dead and broken branches the crust of the earth, and covers the surface

with its ever branching and beautiful ramifications.

—Charles Darwin, The Origin of Species (1859)

INTRODUCTION

A genome is the collection of DNA that comprises an organism. Each individual

organism’s genome contains the genes and other DNA elements that ultimately
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define its identity. Genomes range in size from the smallest viruses, which encode

fewer than 10 genes, to eukaryotes such as humans that have billions of base pairs

of DNA encoding tens of thousands of genes.

The recent sequencing of genomes from all branches of life—including viruses,

prokaryotes, fungi, nematodes, plants, and humans—presents us with an extraordi-

nary moment in the history of biology. By analogy, this situation resembles the com-

pletion of the periodic table of the elements in the nineteenth century. As it became

clear that the periodic table could be arranged in rows and columns, it became

possible to predict the properties of individual elements. A logic emerged to explain

the properties of the elements. But it still took another century to grasp the signifi-

cance of the elements and to realize the potential of the organization inherent in

the periodic table.

Today we have sequenced the DNA from hundreds of genomes, and we are now

searching for a logic to explain their organization and function. This process will take

decades. A variety of tools must be applied, including bioinformatics approaches,

biochemistry, genetics, and cell biology.

This chapter introduces the tree of life and the sequencing of genomes. We will

then proceed to assess the progress in studying the genomes of viruses (Chapter 14);

prokaryotes (bacteria and archaea) (Chapter 15); the eukaryotic chromosome

(Chapter 16); fungi, including the yeast Saccharomyces cerevisiae (Chapter 17); an

assortment of eukaryotes from parasites to primates (Chapter 18); and finally the

human genome (Chapters 19 and 20). For definitions of several key terms related

to the tree of life, see Table 13.1.

TABLE 13-1 Nomenclature forTree of Life
Namea Synonym(s) Definition

Archaea (singular:
archaeon)

Archaebacteria One of the three “urkingdoms” or
“domains” of life

Bacteria Eubacteria; Monera
(obsolete name)

One of the three “urkingdoms” or
“domains” of life; unicellular organisms
characterized by lack of a nuclear
membrane

Eukaryotes Eucarya One of the three “urkingdoms” or
“domains” of life; cells characterized by
a nuclear membrane

Microbe — Microorganisms that cause disease in
humans; microbes include bacteria and
eukaryotes such protozoa and fungi

Microorganism — Unicellular life forms of microscopic size,
including bacteria, archaea, and some
eukaryotes

Progenote Last universal common
ancestor

The ancient, unicellular life form from
which the three domains of life are
descended

Prokaryotes Prokaryotes; formerly
synonymous with
bacteria

Organism lacking a nuclear membrane;
bacteria and archaea

aName refers to the name adopted in this book. See Woese et al. (1990).
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Five Perspectives on Genomics
The field of genomics can be surveyed from many perspectives, including the follow-

ing five:

Perspective 1: Catalog genomic information. What are the basic features of each

genome? These include its size; the number of chromosomes; the guanine plus cyto-

sine (GC) content; the presence of isochores (described in Chapter 16); the number

of genes, both coding and noncoding; repetitive DNA; and unique features of each

genome. The techniques used to answer these questions include topics we introduce

in this chapter: genomic DNA sequencing, assembly, and genome annotation

including gene prediction. Genome browsers represent a major resource to access

catalogs of genomic information, organized into categories such as raw underlying

DNA data, as well as models of genes, regulatory elements, and other features of

the genomic landscape.

Perspective 2: Catalog comparative genomic information. Our understanding

of any genome is dramatically enhanced through comparisons to related genomes

(Miller et al., 2004). When did a given species diverge from its relatives? Which

genes or other DNA elements are orthologous, or share conserved synteny

(Chapter 16)? To what extent did lateral gene transfer occur in each genome?

Techniques of comparative genomics used to address these issues include whole

genome alignment and analyses with databases such as the UCSC Genome

Browser (Karolchik et al., 2007) and Clusters of Orthologous Groups of Proteins

(COGs, Chapter 15). This approach also includes phylogenetic reconstruction

(Chapter 7).

Perspective 3: Biological principles. For each genome, what are the functions

of the organism (e.g., with respect to development, metabolism, and behavior) and

how are they served by the genome? What are the mechanisms of evolution of the

genome? This includes consideration of how genome size is regulated, whether

there is polyploidization (Chapter 16), how the birth and death of genes occurs,

and what forces operate on DNA whether they involve positive or negative selection

or neutral evolution. What forces shape speciation? What is the role of epigenetics

(Chapter 16)? Some of the many techniques used to address these issues include

molecular phylogeny (Chapter 7) and BLASTor related tools (Chapters 4 and 5).

Perspective 4: Human disease relevance. What are the mechanisms by which organ-

isms such as viruses or protozoan pathogens cause disease in humans or plants? What

are the types of genomic responses and defenses that organisms have to prevent or

adapt to avoid becoming subject to disease? What is the genetic basis of autism or

arthritis? A variety of techniques are applied to these questions, including the study

of single nucleotide polymorphisms (SNPs, Chapter 16) and linkage and association

studies (Chapter 20).

Perspective 5: Bioinformatics aspects. What are some of the key databases and web-

sites associated with each genome, and what algorithms have been developed to facili-

tate the analysis and visualization of data? The functionality of genome browsers has

been greatly enhanced in recent years, providing a system with which to store, ana-

lyze, and interpret hundreds of categories of genomic data.

For a course on genomics that I teach, we discuss genomes across the tree of life

from these five perspectives. Each student selects any genome of interest and writes a

report describing the genome according to these approaches. Students may identify

an outstanding research problem and describe how genomics approaches are being

Web document 13.1 at Q http://
www.bioinfbook.org/chapter13

presents a table of these perspec-

tives on genomics, and web docu-

ment 13.2 outlines the details of a

project to analyze a gene in depth

from a genomics perspective.
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applied to solve it. A related project is to select a single gene of interest and analyze it

in depth, again following these five areas.

Brief History of Systematics
Throughout recorded history, philosophers and scientists have grappled with ques-

tions regarding the diversity of life on Earth (Mayr, 1982). Aristotle (384–322

B.C.E.) was an active biologist, describing over 500 species in his zoological

works. He did not create a general classification scheme for life, but he did describe

animals as “blooded” or “bloodless” in his Historia animalium. (Eventually, Lamarck

[1744–1829] renamed these categories “vertebrates” and “invertebrates.”)

Aristotle’s division of animals into genera and species provides the origin of the taxo-

nomic system we use today.

The greatest advocate of this binomial nomenclature system of genus and species

for each organism was the Swedish naturalist Carl Linnaeus (1707–1778). Linnaeus

also introduced the notion of the three kingdoms, Animaliae, Plantae, and

Mineraliae; in his hierarchical system the four levels were class, order, genus, and

species. Ernst Haeckel (1834–1919), who described over 4000 new species, enlarged

this system. He described life as a continuum from mere complex molecules to plants

and animals, and he described the Moner as formless clumps of life. The monera

were later named bacteria, and in 1937 Edouard Chatton made the distinction

between prokaryotes (bacteria that lack nuclei) and eukaryotes (organisms with

cells that have nuclei). By the end of the 1960s the work of Haeckel (1879),

Copeland, Whittaker (1969), and many others led to the standard five-kingdom

system of life: animals, plants, single-celled protists, fungi, and monera.

Whittaker’s 1969 scheme shows monera at the base of the tree representing the pro-

karyotes, and then eukaryotes (either unicellular or multicellular) represented by the

Protista, Plantae, Fungi, and Animalia. An example of the tree of life, from an 1879

book by Haeckel, is shown in the frontis to this chapter.

The tree of life was rewritten in the 1970s and 1980s by Carl Woese and col-

leagues (Fox et al., 1980; Woese, 1998; Woese et al., 1990). They studied a group

of prokaryotes that were presumed to be bacteria because they were single-celled

life forms that lack a nucleus. The researchers sequenced small-subunit ribosomal

RNAs (SSU rRNA) and performed phylogenetic analyses. This revealed that archaea

are as closely related to eukaryotes as they are to bacteria. A phylogenetic analysis of

SSU rRNA sequences, which are present in all known life forms, provides one version

of the tree of life (Fig. 13.1). There are three main branches. While the exact root of

the tree is not known, the deepest branching bacteria and archaea are thermophiles,

suggesting that life may have originated in a hot environment.

Many groups have reconstructed the tree of life using large number of taxa

and/or concatenations of large numbers of protein (or DNA or RNA) sequences

(e.g., Driskell et al., 2004; Ciccarelli et al., 2006). While the tree of life provides

an appealing metaphor, there are other global descriptions of life forms such as a

bush or reticulated tree (Doolittle, 1999) or a ring of life (Rivera and Lake, 2004).

These alternate metaphors attempt to account for the lateral transfer of genetic

material between organisms (discussed in Chapter 15) as well as the fusion of ancient

genomes.

Viruses do not meet the definition of living organisms, and thus they are excluded

from most trees of life. Although they replicate and evolve, viruses only survive by

commandeering the cell of a living organism (see Chapter 14).

A species is a group of similar

organisms that only breed with

one another, under normal con-

ditions. A genus may consist of

between one and hundreds of

species.

The remarkable tree of life by

Ciccarelli et al. (2006), from the

group of Peer Bork, is available

online at the Interactive Tree of

Life webpage at Q http://itol.

embl.de/ (see Letunic and Bork,

2007). Another extraordinary tree

based on ribosomal RNA from

about 3000 species is available

from David Hillis and James

Bull at Q http://www.zo.utexas.

edu/faculty/antisense/
DownloadfilesToL.html.
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History of Life on Earth
Our recent view of the tree of life (Fig. 13.1) is accompanied by new interpretations of

the history of life on Earth. All life forms share a common origin and are part of the

tree of life. A species has an average half-life of 1 to 10 million years (Graur and Li,

2000), and more than 99% of all species that ever lived are now extinct (Wilson,

1992). In principle, there is one single tree of life that accurately describes the evol-

ution of species. The object of phylogeny is to try to deduce the correct trees both for

species and for homologous families of genes and proteins. Another object of phylo-

geny is to infer the time of divergence between organisms since the time they last

shared a common ancestor.

An overview of the history of life is shown in Fig. 13.2. The earliest evidence of

life is from about 4 billion years ago (BYA), just 0.5 billion years after the formation of
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Earth. This earliest life was centered on RNA (rather than DNA or protein; reviewed

in Joyce, 2002). Earth’s atmosphere was anaerobic throughout much of early evol-

ution, and this early life form was presumably a unicellular prokaryote. The first

fossil evidence of life is dated about 3.5 to 3.8 BYA (e.g., Allwood et al., 2006).

The last common ancestor of life, predating the divergence of the lineage that

leads to modern bacteria and modern archaea, was probably a hyperthermophile.

This is suggested by the deepest branching organisms of trees (see Fig. 13.1), such

as the bacterium Aquifex and the hyperthermophilic crenarcheota (Chapter 15).

Eukaryotes appeared between 2 and 3 BYA and remained unicellular until almost

1 BYA. Approximately 1.5 BYA, plants and animals diverged, as did fungi from

the lineage that gave rise to metazoans (animals) (see Fig. 18.11). The most recent

billion years of life has seen the evolution of an enormous variety of multicellular

organisms. The so-called Cambrian explosion of 550 million years ago (MYA)

FIGURE 13.2. History of life
on the planet. Sources include
Kumar and Hedges (1998),
Hedges et al. (2001), and Benton
and Ayala (2003).
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Multicellular organisms evolved

independently many times. A

variety of multicellular bacteria

evolved several billion years ago,

allowing selective benefits in

feeding and in dispersion from

predators (Kaiser, 2001).
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witnessed a tremendous increase in the diversity of animal life forms. In the past 250

million years, the continents coalesced into a giant continent, Pangaea (Fig. 13.3).

When Pangaea separated into northern and southern supercontinents (Laurasia

and Gondwana), this created natural barriers to reproduction and influenced sub-

sequent evolution of life. By 60 MYA, the dinosaurs were extinct, and the mamma-

lian radiation was well underway.

The lines leading to modern Homo sapiens, chimpanzees, and bonobos diverged

about 5 MYA (Chapter 18). The earliest human ancestors include “Lucy,” the early

Australepithecus, and early hominids used stone tools over 2 MYA. Further features of

recent historical interest are indicated in Fig. 13.2.

Molecular Sequences as the Basis of the Tree of Life
In past decades and centuries, the basis for proposing models of the tree of life was

primarily morphology. Thus, Linnaeus divided animals into six classes (mammals,
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FIGURE 13.2. (Continued)
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birds, fish, insects, reptiles, and worms), subdividing mammals according to features

of their teeth, fish according to their fins, and insects by their wings. Early micro-

scopic studies revealed that bacteria lack nuclei, allowing a fundamental separation

of bacteria from the four other kingdoms of life. Bacteria could be classified based

on biochemical properties (e.g., by Albert Jan Kluyver [1888–1956]), and from a

morphological perspective bacteria can be classified into several major groups.

However, such criteria are insufficient to appreciate the dazzling diversity of millions

of microbial species. Thus, physical criteria were unavailable by which to discover

archaea as a distinct branch of life.

The advent of molecular sequence data has transformed our approach to the

study of life. Such data were generated beginning in the 1950s and 1960s, and by

1978 Dayhoff ’s Atlas used several hundred protein sequences as the basis for PAM

matrices (Chapter 3). With the rapid rise in available DNA sequences of the past sev-

eral years, phylogenetic analyses are now possible based on both phenotypic charac-

ters and gene sequences. The most widely used sequences are SSU rRNA molecules,

which are present across virtually all extant life forms. The slow rate of evolution of

SSU rRNAs and their convenient size makes them appropriate for phylogenetic ana-

lyses. Genome-sequencing efforts are now reshaping the field of evolutionary studies,

providing thousands of DNA and protein sequences for phylogenetic trees.

Over 1000 prokaryotic genomes have now been sequenced (see below and

Chapter 15). We are now beginning to appreciate lateral gene transfer (Chapter

15), a phenomenon in which a species does not acquire a particular gene by descent

from an ancestor. Instead, it acquires the gene horizontally (or laterally) from another

unrelated species. Thus, genes can be exchanged between species (Eisen, 2000). As a

consequence, the use of different individual genes in molecular phylogeny often

results in distinctly different tree topologies. Because of the phenomena of lateral

gene transfer and gene loss, it might never be possible to construct a single tree of

life that reflects the evolution of life on the planet (Wolf et al., 2002).

Role of Bioinformatics in Taxonomy
The field of bioinformatics is concerned with the use of computer algorithms

and computer databases to elucidate the principles of biology. The domain of

FIGURE 13.3. Geological history
of the earth from 225 MYA. At
that time, there was one superconti-
nent, Pangaea. By 165 MYA,
Pangaea had separated into
Laurasia (modern Asia and
North America) and Gondwana
(modern Africa and South
America). At 125 MYA Laurasia
and Gondwana had both begun
separations that led to the present
divisions among continents.

225 MYA 165 MYA

present125 MYA

25 MYA 65 MYA

present125 MYA

The European Ribosomal RNA

Database (Wuyts et al., 2004)

(Q http://bioinformatics.psb.

ugent.be/webtools/rRNA/),

although no longer updated, con-

tains over 20,000 SSU and large

subunit rRNA sequences (as of

2007). About 600 are archaeal

species, 12,000 bacteria, and 6500

eukaryotes. You can use sequences

from this database to generate

phylogenetic trees or view trees at

the website.
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bioinformatics includes the study of genes, proteins, and cells in the context of

organisms across the tree of life. Some have advocated a web-based taxonomy

intended to catalog an inventory of life (Blackmore, 2002; Pennisi, 2001). Several

projects attempt to create a tree of life (see sidebar). Others suggest that although

web-based initiatives are useful, the current system is adequate: zoological, botanical,

or other specimens are collected, named, and studied according to guidelines

established by international conventions (Knapp et al., 2002).

GENOME-SEQUENCING PROJECTS: OVERVIEW

The advent of DNA-sequencing technologies in the 1970s, including Frederick

Sanger’s dideoxynucleotide methodology, enabled large-scale sequencing projects

to be performed. This chapter provides a brief history of genome-sequencing pro-

jects, including the completion of the genomic sequence of the first free-living organ-

ism in 1995, Haemophilus influenzae. By 2001, a draft sequence of the human genome

was reported by two groups. The most remarkable feature of current efforts to deter-

mine the sequence of complete genomes is the dramatic increase in data that are col-

lected each year (Fig. 2.1). The ability to sequence first millions and now billions of

nucleotides of genomic DNA presents the scientific community with unprecedented

opportunities and challenges.

Several themes have emerged in the past several years:

† The amount of sequence data that are generated continues to accelerate

rapidly.

† For many genomes, even unfinished genomic sequence data—that is, versions

of genomic sequence that include considerable gaps and sequencing errors—

are immediately available and useful to the scientific community. We will also

see that a finished sequence (defined below) provides substantially better

descriptions of genome features than does an unfinished sequence.

† The value of comparative genome analysis is now appreciated for solving pro-

blems such as identifying protein-coding genes in human and mouse or differ-

ences in virulent and nonvirulent strains of pathogens (Miller et al., 2004).

Comparative analyses will also be useful to define gene regulatory regions

and the evolutionary history of species through the analysis of conserved

DNA elements.

Four Prominent Web Resources
We will introduce four main web resources for the study of genomes in this and the

following chapters. (1) The European Bioinformatics Institute (EBI) offers a variety

of genome databases (some of which are listed in Table 13.2). (2) The genomes sec-

tion of Entrez at the National Center for Biotechnology Information (NCBI) is orga-

nized with a search feature on the top bar, links to eukaryotes, bacteria, archaea, and

viruses on the left bar, and a variety of specialized genomics resources on the right

sidebar (Fig. 13.4). The current NCBI holdings include over 1800 eukaryotic, bac-

terial, and archaeal genomes, of which 620 have been completely sequenced

(Table 13.3). There are an additional 1400 completely sequenced organellar gen-

omes (discussed below). (3) The Comprehensive Microbial Resource (CMR)

focuses on prokaryotic projects (see Chapter 15). (4) The genome browser at the

The Convention on Biological

Diversity (Q http://www.biodiv.

org/) and the Global Biodiversity

Information Facility (Q http://
www.gbif.net/) are examples of

organizations that address issues

of global biodiversity. The Tree of

Life is at Q http://www.

panspermia.org/tree.htm and the

Tree of Life Web Project (created

by David R. Maddison) is at

Q http://tolweb.org/tree/
phylogeny.html.

You can access the NCBI

Genomes page at NCBI via

Q http://www.ncbi.nlm.nih.gov/
Genomes/, or from the home page

of NCBI click All Databases then

Genomes. The CMR, formerly of

the Institute for Genomic

Research (TIGR) and now of the

J. Craig Venter Institute, is at

Q http://cmr.jcvi.org/. The

UCSC Genome Browser and

Table Browser are at Q http://
genome.ucsc.edu.

GENOME-SEQUENCING PROJECTS: OVERVIEW 525



University of California, Santa Cruz has a particular emphasis on vertebrate genomes

(see Chapters 16 and 18).

Brief Chronology
The progress in completing many hundreds of genome-sequencing projects has been

rapid, and we can expect the pace to accelerate in the future. In the following sections

we present a chronological overview to provide a framework for these events. When

the sequencing of the first bacterial genomes was completed in 1995, there were

FIGURE 13.4. The Entrez
Genome site of NCBI includes
links to molecular sequence data
from over 200,000 species (left side-
bar). Related resources for selected
organisms are also provided as well
as tools for genome analysis (right
sidebar). The nucleotide sequence
is available for thousands of gen-
omes. This page is accessible from
Q http://www.ncbi.nlm.nih.gov/
Entrez/.

TABLE 13-2 EBI Genome Projects
Ensembl Genome browser for �24

mammalian genomes and
many nonmammalian
metazoan genomes

Q http://www.ebi.ac.uk/ensembl/
or Q http://www.ensembl.org

Genome Reviews Database of annotated complete
genomes (emphasis on archaea
and bacteria)

Q http://www.ebi.ac.uk/
GenomeReviews/

Genomes Server Gateway to completed genomes Q http://www.ebi.ac.uk/genomes/

Integr8 Proteome analysis Q http://www.ebi.ac.uk/integr8/
EBI-Integr8-HomePage.do or
Q http://www.ebi.ac.uk/proteome
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relatively few other genome sequences available for comparison. Now with over 2000

completed genomes available (including organellar genomes) we are better able to

annotate and interpret the significance of genome sequences.

First Bacteriophage and Viral Genomes (1976–1978)
Bacteriophage are viruses that infect bacteria. Fiers et al. (1976) reported the first

complete bacteriophage genome, MS2. This genome of 3569 base pairs encodes

just four genes. The next complete virus genome was Simian virus 40 (SV40) by

Fiers et al. (1978). That genome contains 5224 base pairs and contains eight genes

(seven of which encode proteins).

Frederick Sanger and colleagues also sequenced the genome of bacteriophage

vX174 (Sanger et al., 1977a). They developed several DNA-sequencing techniques,

including the dideoxynucleotide chain termination procedure discussed below.

Bacteriophage vX174 is 5386 base pairs (bp) encoding 11 genes (see GenBank

accession J02482). A graphical depiction of a portion of this viral genome is shown

in Fig. 13.5. At the time, the most surprising result was the unexpected presence

of overlapping genes that are transcribed on different reading frames.

First Eukaryotic Organellar Genome (1981)
The first complete organellar genome to be sequenced was the human mitochon-

drion (Anderson et al., 1996). The genome is characterized by extremely little

TABLE 13-3 Summary of Currently Sequenced Genomes (Excluding Viruses and Organellar Genomes)

Organism Complete
Draft

Assembly
In

Progress Total

Prokaryotes 597 397 492 1,486
Archaea 47 3 30 80
Bacteria 550 394 462 1406

Eukaryotes 23 131 184 338
Animals 4 54 89 147

Mammals 2 22 25 49
Birds 1 2 3
Fishes 3 6 9
Insects 1 19 20 40
Flatworms 1 3 4
Roundworms 1 3 13 17
Amphibians 2 2
Reptiles 2 2
Other animals 6 19 25

Plants 3 3 34 40
Land plants 2 2 27 31
Green algae 1 1 7 9

Fungi 10 53 30 93
Ascomycetes 8 46 21 75
Basidiomycetes 1 5 5 11
Other fungi 1 2 4 7

Protists 6 19 27 52
Apicomplexans 1 10 6 17
Kinetoplasts 1 2 6 9
Other protists 4 7 14 25

Total 620 528 676 1,824

Source: Entrez Genome at NCBI (Q http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html),
November 2007.

The bacteriophage MS2 genome

has RefSeq accession

NC_001417. The SV40 RefSeq

accession is NC_001669.
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noncoding DNA. The great majority of metazoan (i.e., multicellular animal) mito-

chondrial genomes are about 15 to 20 kb (kilobase) circular genomes. The human

mitochrondrial genome is 16,568 bp (base pairs) and encodes 13 proteins, 2 riboso-

mal RNAs, and 22 transfer RNAs. It can be accessed through the NCBI Entrez

genome site (Fig. 13.6). This circular diagram is clickable, allowing you to access

the individual genes. Thus, the DNA and corresponding protein sequences of all

the mitochondrial genes are easily accessible.

Today, there are over over 1500 completed mitochondrial genome sequences.

Several of these are listed in Table 13.4. This table also lists several exceptionally

large cases. While the largest sequenced mitochrondrial genome is that of the thale

cress Arabidopsis thaliana (367 kb), several plants reportedly have even larger mito-

chondrial genomes. Thus, there is a tremendous diversity of mitochondrial genomes

(Lang et al., 1999). Molecular phylogenetic approaches suggest that mitochondria

are descendants of an endosymbiotic a-proteobacterium, although it is possible

that the origin of mitochondria in eukaryotes was coincident with the evolution of

the nuclear genome (Lang et al., 1999).

First Chloroplast Genomes (1986)
The first chloroplast genomes were reported (Nicotiana tabacum; Shinozaki et al.,

1986), followed by the liverwort Marchantia polymorpha (Ohyama et al., 1986).

FIGURE 13.5. Portion of the
Entrez nucleotide record for bac-
teriophage vX174. This format
was obtained by viewing the entry
for accession J02482 in the
graphics display format. This pro-
vides an overview of the predicted
open reading frames (ORFs). A
portion of the nucleotide sequence
and corresponding predicted pro-
teins is shown at the bottom.

Information on organellar gen-

omes is available at Q http://www.

ncbi.nlm.nih.gov/genomes/
ORGANELLES/organelles.html.
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Most plant chloroplast genomes are 120,000 to 200,000 bp in size. There are other

chloroplast-like organelles in eukaryotic organisms. Unicellular protozoan parasites

of the phylum Apicomplexa, such as Toxoplasma gondii (Table 13.5), have smaller

plastid genomes.

First Eukaryotic Chromosome (1992)
The first eukaryotic chromosome was sequenced in 1992: chromosome III of the

budding yeast S. cerevisiae (Oliver et al., 1992). There were 182 predicted open

FIGURE 13.6. NCBI entry for the
human mitochondrial genome
(NC_001807; 16,568 bp). (a)
Detailed information is available
by clicking on a specific gene (e.g.,
COX1). (b) A link from the
Entrez Genome entry for the mito-
chondrial genome page provides a
list of all mitochondrial protein-
coding genes.

We will discuss chloroplasts and

other plastids in the plant section

of Chapter 18.
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reading frames (for proteins larger than 100 amino acids), and the size of the

sequenced DNA was 315 kb. Of the 182 open reading frames that were identified,

only 37 corresponded to previously known genes, and 29 showed similarity to

known genes. We will explore this genome in Chapter 17.

Complete Genome of Free-Living Organism (1995)
The first genome of a free-living organism to be completed was the bacterium

H. influenzae Rd (Fleischmann et al., 1995). Its size is 1,830,138 bp (i.e., 1.8 Mb

TABLE 13-4 Selected Mitochondrial Genomes Arranged by Size
Kingdom Species Accession Size (bp)

Eukaryote Plasmodium falciparum
(malaria parasite)

NC_002375 5,967

Metazoa (Bilateria) Caenorhabditis elegans (worm) NC_001328 13,794

Plant (Chlorophyta) Chlamydomonas reinhardtii
(green alga)

NC_001638 15,758

Metazoa (Bilateria) Mus musculus NC_001569 16,295

Pan troglodytes (chimpanzee) NC_001643 16,554

Metazoa Homo sapiens NC_001807 16,568

Metazoa (Cnidaria) Metridium senile (sea anenome) NC_000933 17,443

Metazoa (Bilateria) Drosophila melanogaster NC_001709 19,517

Fungi (Ascomycota) Schizosaccharomyces pombe NC_001326 19,431

Fungi Candida albicans NC_002653 40,420

Eukaryote
(stramenopiles)

Pylaiella littoralis (brown alga) NC_003055 58,507

Fungi
(Chytridiomycota)

Rhizophydium sp. 136 NC_003053 68,834

Eukaryote Reclinomonas americana
(protist)

NC_001823 69,034

Fungi (Ascomycota) Saccharomyces cerevisiae NC_001224 85,779

Plant (Streptophyta) Arabidopsis thaliana NC_001284 366,923

Plant (Streptophyta) Zea mays (corn) NC_008332 680,603

Plant (Streptophyta) Tripsacum dactyloides NC_008362 704,100

Cucumis melo — 2,400,000

Source: As of November 2007, 1127 metazoan (multicellular animal) organellar genomes have been
sequenced, 50 fungi, and 27 plants (see Q http://www.ncbi.nlm.nih.gov/Genomes/). For the size esti-
mate of the muskmelon C. melo, see Lilly and Havey (2002)

TABLE 13-5 Selected Chloroplast Genomes
Species Common Name Accession Size (bp)

Arabidopsis thaliana Thale cress NC_000932 154,478

Guillardia theta Red alga NC_000926 121,524

Marchantia polymorpha Liverwort; moss NC_001319 121,024

Nicotiana tabacum Tobacco NC_001879 155,939

Oryza sativa Rice NC_001320 134,525

Porphyra purpurea Red alga NC_000925 191,028

Toxoplasma gondii Apicomplexan parasite NC_001799 34,996

Zea mays corn NC_001666 140,384

We describe this bacterial genome

as derived from a “free-living

organism” to distinguish it from a

viral genome or an organellar

genome. Viruses (Chapter 14)

exist on the borderline of the

definition of life, and organellar

genomes are usually derived from

bacteria that are no longer capable

of independent life.
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[megabase pairs]). This organism was sequenced at the Institute for Genomic Research

using the whole-genome shotgun sequencing and assembly strategy (see below).

To study this genome in NCBI, go to Entrez, click “genome,” and then click

“bacteria genome” from the left sidebar. Note that there are over 100 complete bac-

terial genomes listed; scroll down to H. influenzae and click on the accession number.

(Note that you can also see the RefSeq accession number, NC_000907; the genome

size [1,830,138 bp]; and the date entered, July 25 1995.) The page for this organism

contains a wealth of information on the genes and encoded proteins as well as the

predicted functional classification of the proteins (Fig. 13.7). This classification

scheme, Clusters of Orthologous Groups (COG), will be discussed in Chapter 15.

The lineage (Fig. 13.7, top) shows you that this is a bacterium in the gamma division.

As with the mitochondrial genome (Fig. 13.6), the circular diagram of the

H. influenzae genome is clickable to allow a detailed study of its genes and proteins.

By the end of 1995 (Table 13.6), the complete DNA sequence of a second

bacterial genome had been obtained, Mycoplasma genitalium. Notably, this is one

of the smallest known genomes of any free-living organism.

FIGURE 13.7. Entrez Genome record for H. influenzae Rd, the first free-living organism for
which the complete genomic sequence was determined. This record is obtained from the
Entrez Genome resource by clicking “bacteria” on the left sidebar. The top of this entry includes
information such as the accession number and the size of the genome. The entire nucleotide
sequence is downloadable here. At top right are several resources for studying the 1657 proteins
encoded by this genome. An H. influenzae-specific BLAST search is available here. At bottom
right the entry includes a color-coded circular representation of the genome, along with a func-
tional classification based on COG (Chapter 15). The circular map is clickable, showing detailed
information on the genes and proteins in this genome. The record also contains literature refer-
ences, including the initial report of this genomic sequence by Fleischmann et al. (1995) at the
Institute for Genomic Research.

TABLE 13-6 Genome-Sequencing Projects Completed in 1995
Organism Size (bp) Accession Reference

Haemophilus influenzae Rd 1,830,138 NC_000907 Fleischmann et al., 1995

Mycoplasma genitalium 580,074 NC_000908 Fraser et al., 1995
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First Eukaryotic Genome (1996)
The complete genome of the first eukaryote, S. cerevisiae (a yeast; Chapter 17)

(Goffeau et al., 1996), was sequenced by 1996 (Table 13.7). This was accomplished

by a collaboration of over 600 researchers in 100 laboratories spread across Europe,

North America, and Japan. To find information about this completed genome, go to

Entrez genomes, then use the left sidebar to click “eukaryota.”

In 1996, TIGR researchers reported the first complete genome sequence for an

archaeon, Methanococcus jannaschii (Bult et al., 1996). This offered the first oppor-

tunity to compare the three main divisions of life, including the overall metabolic

capacity of bacteria, archaea, and eukaryotes.

Escherichia coli (1997)
In 1997, the complete genomic sequences of two archaea were reported (Table 13.8).

Of the five bacterial genomes that were reported, the most well known is that of

Escherichia coli (Blattner et al., 1997; Koonin, 1997), which has served as a model

organism in bacteriology for decades. Its 4.6 Mb genome encodes over 4200 pro-

teins, of which 38% had no identified function at the time. We will explore this further

in Chapter 15.

First Genome of Multicellular Organism (1998)
The nematode Caenorhabditis elegans was the first multicellular organism to have its

genome sequenced—although technically, the sequencing is still not complete

TABLE 13-7 Genome-Sequencing Projects Completed in 1996
Organism Size Accession Reference

Methanococcus
jannaschii (A)

1,664,976 bpa NC_000909 Bult et al., 1996

Mycoplasma
pneumoniae (B)

816,394 bp NC_000912 Himmelreich et al., 1996; see
Dandekar et al., 2000

Synechocystis
PCC6803 (B)

3,573,470 bp NC_000911 Kaneko et al., 1996

Saccharomyces
cerevisiae (E)

12,068 kb Various, for each
chromosome

Goffeau et al., 1996

Abbreviations: A, archaeon; B, bacterium; E, eukaryote.
aThe size does not include extrachromosomal elements (for M. jannaschii).

TABLE 13-8 Genome-Sequencing Projects Completed in 1997
Organism Size (bp) Accession Reference

Archaeoglobus fulgidus (A) 2,178,400 NC_000917 Klenk et al., 1997

Methanobacterium
thermoautotrophicum (A)

1,751,377 NC_000916 Smith et al., 1997

Bacillus subtilis (B) 4,214,814 NC_000964 Kunst et al., 1997

Borrelia burgdorferi (B) 910,724 NC_001318 Fraser et al., 1997; Casjens
et al., 2000

Escherichia coli (B) 4,639,221 NC_000913 Blattner et al., 1997

Helicobacter pylori 26695 (B) 1,667,867 NC_000915 Tomb et al., 1997; see Alm
et al., 1999

Abbreviations: A, archaeon; B, bacterium.
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(because of the presence of repetitive DNA elements that have been difficult to

resolve). The sequence spans 97 Mb and is predicted to encode over 19,000 genes

(C. elegans Sequencing Consortium, 1998).

Two more archaea brought the total to four sequenced genomes by 1998

(Table 13.9). Six more bacterial genomes were also sequenced. The genome of

sequence of Rickettsia prowazekii, the a-proteobacterium that causes typhus and

was responsible for tens of millions of deaths in the twentieth century, is very closely

related to the eukaryotic mitochondrial genome (Andersson et al., 1998).

Human Chromosome (1999)
In 1999, the sequence of the euchromatic portion of human chromosome 22 was

published (Table 13.10) (Dunham et al., 1999). This was the first human

TABLE 13-9 Genome-Sequencing Projects Completed in 1998
Organism Size Accession Reference

Pyrococcus horikoshii OT3 (A) 1,738,505 bp NC_000961 Kawarabayasi et al., 1998

Aquifex aeolicus (B) 1,551,335 bp NC_000918 Deckert et al., 1998

Chlamydia trachomatis (B) 1,042,519 bp NC_000117 Stephens et al., 1998

Chlamydophila pneumoniae (B) 1,230,230 bp NC_000922

Mycobacterium tuberculosis (B) 4,411,529 bp NC_000962 Cole et al., 1998

Rickettsia prowazekii (B) 1,111,523 bp NC_000963 Andersson et al., 1998

Treponema pallidum (B) 1,138,011 bp NC_000919 Fraser et al., 1998

Caenorhabditis elegans (E) 97 Mb AE000001 C. elegans Sequencing
Consortium, 1998

AE000002

AE000003

AE000004

AE000005

AE000006

Abbreviations: A, archaeon; B, bacterium; E, eukaryote.

TABLE 13-10 Genome-Sequencing Projects Completed in 1999
Organism Size (bp) Accession Reference

Aeropyrum pernix (A) 1,669,695 NC_000854 Kawarabayasi
et al., 1999

Thermoplasma volvanium GSS1 (A) 1,584,804 NC_002689 Kawashima et al.,
1999

Chlamydia pneumoniae (B) 1,229,858 NC_002179 Kalman et al.,
1999

Deinococcus radiodurans (B) 2,648,638 NC_001263 White et al., 1999

412,348 NC_001264 White et al., 1999

Helicobacter pylori J99 (B) 1,643,831 NC_000921 Alm et al., 1999;
see Tomb et al.,
1997

Thermotoga maritima (B) 1,860,725 NC_000853 Nelson et al., 1999

Homo sapiens chromosome 22 (E) 33,792,315 NT_001454, 10
other contigs

Dunham et al.,
1999

Abbreviations: A, archaeon; B, bacterium; E, eukaryote.
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chromosome to be essentially completely sequenced. We will describe the human

genome in Chapter 19.

Fly, Plant, and Human Chromosome 21 (2000)
In this year, the completed genome sequences of the fruit fly Drosophila melanogaster

and the plant A. thaliana were reported, bringing the number of eukaryotic genomes

to four (with a yeast and a worm) (Table 13.11). The Drosophila sequence was

obtained by scientists at Celera Genomics and the Berkeley Drosophila Genome

Project (BDGP) (Adams et al., 2000). There are approximately 13,500 annotated

TABLE 13-11 Genome-Sequencing Projects Completed in 2000
Organism Size Accession Reference

Halobacterium sp. NRC-1 (A) 2,014,239 bp NC_002607 Ng et al., 2000

Thermoplasma acidophilum (A) 1,564,906 bp NC_002578 Ruepp et al., 2000

Bacillus halodurans (B) 4,202,353 bp BA000004 Takami et al., 2000

Buchnera sp. APS (B) 640,681 bp NC_002528

Campylobacter jejuni (B) 1,641,481 bp NC_002163 Parkhill et al., 2000a

Chlamydia muridarum (B) 1,069,412 bp NC_002178 Read et al., 2000

1,228,267 bp NC_002491

Chlamydia pneumoniae AR39 (B) 1,229,853 bp NC_002179 Read et al., 2000

Chlamydia trachomatis (B) 1,069,412 bp NC_000117 Read et al., 2000; see
Stephens et al., 1998

Neisseria meningitidis MC58 (B) 2,272,351 bp NC_002183 Tettelin et al., 2000

Neisseria meningitidis Z2491 (B) 2,184,406 bp NC_002203 Parkhill et al., 2000b

Pseudomonas aeruginosa (B) 6,264,403 bp NC_002516 Stover et al., 2000

Ureaplasma urealyticum (B) 751,719 bp NC_002162 Glass et al., 2000

Vibrio cholerae (B) 2,961,149 bp NC_002505 Heidelberg et al., 2000

1,072,315 bp NC_002506 Heidelberg et al., 2000

Xylella fastidiosa (B) 2,679,306 bp NC_002488 Simpson et al., 2000

Drosophila melanogaster (E) 137 Mb NC_004354 Adams et al., 2000

NT_003779

NT_003778

NT_037436

NT_033777

NC_004353

Arabidopsis thaliana (E) 125 Mb NC_003070 Arabidopsis Genome
Initiative, 2000

NC_003071

NC_003074

NC_003075

NC_003076

Homo sapiens chromosome 21 (E) 33.8 Mb NT_002836 Hattori et al., 2000

NT_002835

NT_003545

NT_001715

NT_001035

Abbreviations: A, archaeon; B, bacterium; E, eukaryote.

We describe these and other

eukaryotic genomes in Chapter

18.
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genes. Arabidopsis is a thale cress of the mustard family. Its compact genome serves as

a model for plant genomics.

Also in the year 2000, human chromosome 21 was the second human chromo-

some sequence to be reported (Hattori et al., 2000). This is the smallest of the human

autosomes. An extra copy of this chromosome causes Down syndrome, the most

common inherited form of mental retardation.

Meanwhile, bacterial genomes continued to be sequenced, and many surprising

properties emerged. The genome of Neisseria meningitidis, which causes bacterial

meningitis, contains hundreds of repetitive elements. Such repeats are more typically

associated with eukaryotes. The Pseudomonas aeruginosa genome is 6.3 Mb, making it

the largest of the sequenced bacterial genomes at that time (Stover et al., 2000).

Among the archaea, the genome of Thermoplasma acidophilum was sequenced

(Ruepp et al., 2000). This organism thrives at 598C and pH 2. Remarkably, it has

undergone extensive lateral gene transfer with Sulfolobus solfataricus, an archaeon

that is distantly related from a phylogenetic perspective but occupies the same

ecological niche as coal heaps.

Draft Sequences of Human Genome (2001)
Two groups published the completion of a draft version of the human genome. This

was accomplished by the International Human Genome Sequencing Consortium

(2001) and by a consortium led by Celera Genomics (Table 13.12) (Venter et al.,

2001). The reports both arrive at the conclusion that there are about 30,000 to

40,000 protein-coding genes in the genome, an unexpectedly small number.

Subsequently the number of human genes has been estimated to be 20,000 to

25,000 (International Human Genome Sequencing Consortium, 2004). Analysis

of the human genome sequence will have vast implications for all aspects of human

biology (see Chapter 19).

The bacterial genomes that are sequenced continue to have interesting features.

Mycoplasma pulmonis has one of the lowest guanine–cytosine (GC) contents that

have been described, 26.6% (Chambaud et al., 2001). The genome of

Mycobacterium leprae, the bacterium that causes leprosy, has undergone massive

gene decay, with only half the genome coding for genes (Cole et al., 2001).

Analysis of the Pasteurella multocida genome suggests that the radiation of the g sub-

division of proteobacteria, which includes H. influenzae and E. coli and other patho-

genic gram-negative bacteria, occurred about 680 MYA (May et al., 2001). The

Sinorhizobium meliloti genome consists of a circular chromosome and two additional

megaplasmids (Galibert et al., 2001). Together, these three elements total 6.7 Mb,

expanding our view of the diversity of bacterial genome organization.

Cryptomonads are a type of algae that contain one distinct eukaryotic cell (a red

alga, with a nucleus) nested inside another cell (see Fig. 18.9). This unique arrange-

ment derives from an ancient evolutionary fusion of two organisms. That red algal

nucleus, termed a nucleomorph, is the most gene-dense eukaryotic genome

known. Its genome was sequenced (Douglas et al., 2001) and found to be dense

(1 gene per 977 bp) with ultrashort noncoding regions.

Continuing Rise in Completed Genomes (2002)
In the year 2002, dozens more microbial genomes were sequenced. Of the eukaryotes

(Table 13.13), the fission yeast Schizosaccharomyces pombe was found to have the smal-

lest number of protein-coding genes (4824) (Wood et al., 2002). The genomes of both

We discuss lateral gene transfer in

Chapter 15.
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the malaria parasite Plasmodium falciparum and its host, the mosquito Anopheles

gambiae, were reported (Holt et al., 2002). Additionally, the genome of the rodent

malaria parasite Plasmodium yoelii yoelii was determined and compared to that of

P. falciparum (Carlton et al., 2002). These projects are described in Chapter 18.

Expansion of Genome Projects (2003–2009)
In recent years, the number of completed eukaryotic, archaeal, and bacterial gen-

omes has continued to increase, with a particularly large number of genome projects

that are currently in the assembly phase (near completion) or otherwise in progress.

TABLE 13-12 Genome-Sequencing Projects Completed in 2001
Organism Size Accession Reference

Pyrococcus abyssi (A) 1,765,118 bp NC_000868 R. Heilig, 2001

Sulfolobus solfataricus (A) 2,992,245 bp NC_002754 She et al., 2001

Sulfolobus tokodaii (A) 2,694,765 bp NC_003106 Kawarabayasi et al.,
2001

Caulobacter crescentus (B) 4,016,942 bp NC_002696 Nierman et al., 2001

Escherichia coli 0157:H7 (B) 5,498,450 bp NC_002695 Perna et al., 2001;
Hayashi et al., 2001;
see Blattner et al.,
1997

5,528,970 bp AE005174 Perna et al., 2001

Mycobacterium leprae (B) 3,268,203 bp NC_002677 Cole et al., 2001

Mycoplasma pulmonis (B) 963,879 bp NC_002771 Chambaud et al., 2001

Pasteurella multocida (B) 2,257,487 bp AE004439 May et al., 2001

Sinorhizobium meliloti (B) 6.7 Mb NC_003047 Galibert et al., 2001

Streptococcus pneumoniae (B) 2,160,837 AE005672 Tettelin et al., 2001

Streptococcus pyogenes (B) 1,852,442 bp AE004092 Ferretti et al., 2001

Encephalitozoon cuniculi (E) 2.5 Mb AL391737 and
AL590442
to
AL590451

Katinka et al., 2001

Guillardia theta nucleomorph
genome (E)

551,264 bp NC_002751 Douglas et al., 2001

Homo sapiens (E) 3,300 Mb Various International Human
Genome Sequencing
Consortium, 2001;
Venter et al., 2001

Abbreviations: A, archeon; B, bacterium; E, eukaryote.

TABLE 13-13 Eukaryotic Genome-Sequencing Projects Completed in 2002
Organism Size Accession Reference

Anopheles gambiae (E) 278 Mb AAAB00000000 Holt et al., 2002

Plasmodium falciparum (E) 22.8 Mb NC_002375 Gardner et al., 2002

Plasmodium yoelii yoelii (E) 23.1 Mb AABL00000000 Carlton et al., 2002

Schizosaccharomyces pombe (E) 13.8 Mb NC_003424 Wood et al., 2002

NC_003423

NC_003421

Abbreviation: E, eukaryote.
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Table 13.14 summarizes 2700 such projects, excluding thousands of ongoing and

completed viral and organellar genome projects. Several trends contribute to the

rapid development of this field. (1) In sequencing a genome of interest, the availability

of completed genomes of closely related organisms greatly aids the assembly and anno-

tation process. For example, the assembly of the chimpanzee genome relied heavily on

using the very closely related human reference genome as a template (Chapter 18).

(2) Sequencing technologies have continuously improved. An entire bacterial

genome can be sequenced in just four hours using the 454 Life Sciences technology

described below. (3) There has been progress in selecting, obtaining, and preparing

genomic DNA from a spectacular range of biological sources. This has led to the cre-

ation of the new discipline of the genomics of ancient, extinct organisms (e.g., the

Neanderthal genome was deciphered in 2007) to metagenomics projects that define

the community of organisms living in sites such as the oceans or the human gut.

GENOME ANALYSIS PROJECTS

We have surveyed completed genome projects from a chronological point of view.

There are many questions associated with genome sequencing. Which genomes

are sequenced? How is it accomplished? How big are genomes? When genomic

DNA is sequenced, what are its main features (e.g., genes, regulatory regions, repeti-

tive elements) and how are they determined? Even the goals of sequence analysis are

evolving as we learn what questions to ask and what tools are available to address

those questions.

TABLE 13-14 Completed Genome Projects (1995^2008)
Year Eukaryotes Archaea Bacteria

1995 0 0 3

1996 1 1 2

1997 0 2 4

1998 2 1 5

1999 1 2 5

2000 2 3 14

2001 1 3 22

2002 2 4 26

2003 1 1 47

2004 7 3 63

2005 3 4 77

2006 2 8 138

2007 2 17 173

2008 0 6 172

Total complete 23 48 551

In progress or assembly (2008) 491 41 1364

Grand total 514 96 2130

Note: The number of complete eukaryotic projects is greater than the cumulative total because not all pro-
jects were annotated with a release date. In progress eukaryotic genomes include those in the assembly
phase.

Source: Entrez Genome Projects at NCBI, January 2009 (Q http://www.ncbi.nlm.nih.gov/sites/
entrez?db ¼ genome).
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Four main types of genome analysis projects are outlined in Table 13.15. (1) De

novo sequencing involves determining the DNA sequence of an organism as

completely as possible, as described chronologically in the sections above. While

many more de novo genome sequencing projects are underway, two recently devel-

oped, specialized categories are the sequencing of ancient DNA (from extinct organ-

isms) and metagenomics (sampling the genomes of many organisms from a

particular environmental site such as the human gut or an ocean region).

(2) Resequencing a genome permits the variation between individuals to be assessed.

For example, the genomic sequences of James Watson (a co-discoverer of the double

helical nature of DNA) and J. Craig Venter (a pioneer in genome sequencing) have

been determined. Applications of resequencing include the assessment of genomic

changes in disease-associated regions, the sequencing of all human exons in multiple

individuals, or the sequencing of large sets of genes associated with cancer. (3) While

we introduced microarray-based gene expression profiling in Chapters 8 and 9, a

sequencing-based approach is also possible. Total RNA can be isolated, converted

to complementary DNA, packaged into libraries, and then exhaustively

sequenced to determine the quantities of RNA transcripts. This strategy can also

be applied to serial analysis of gene expression (SAGE; Chapter 8). (4)

Epigenetics refers to heritable changes other than those involving the four DNA

sequence per se. Such epigenetic changes include the modification of DNA or chro-

matin through DNA methylation (the addition of methyl groups to cytosine residues

in CpG dinucleotides) and/or through the posttranslational modification of histones.

High throughput sequencing can be used to assess the methylation status of a genome

(Callinan and Feinberg, 2006).

We will discuss these types of projects, and the sequencing technologies that

enable them. We will also examine the process of sequencing a genome in a

number of distinct phases, from the selection of an appropriate genome to sequen-

cing the DNA to genome annotation (Fig. 13.8).

Criteria for Selection of Genomes for Sequencing
The choice of which genome to sequence depends on several main factors. The

selection criteria change over time as technological advances reduce costs and as

TABLE 13-15 Applications of Genome Sequencing
Purpose Template Example

De novo sequencing Genome sequencing Sequencing .1000 influenza genomes
Ancient DNA Extinct Neanderthal genome
Metagenomics Human gut

Resequencing Whole genomes Individual humans
Genomic regions Assessment of genomic rearrangements

or disease-associated regions
Somatic mutations Sequencing mutations in cancer

Transcriptome Full-length transcripts Defining regulated messenger RNA
transcripts

Serial Analysis of Gene
Expression (SAGE)

Noncoding RNAs Identifying and quantifying microRNAs
in samples

Epigenetics Methylation changes Measuring methylation changes in
cancer
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genome-sequencing centers gain experience in this new endeavor. One set of criteria

is offered by the National Human Genome Research Institute (NHGRI) at the

National Institutes of Health. These include projects to study comparative genome

evolution, to survey human structural variation, to annotate the human genome,

and to perform medical sequencing. The process of selecting sequencing targets

includes the submission of proposals (“white papers” that are available on the

NHGRI website) as well as working groups that help to set priorities.

Genome Size
For a microbial genome, the size is typically several megabases (millions of base

pairs), and a single center often has the resources to complete the entire project.

For larger (typically eukaryotic) genomes, international collaborations are often

established to share the effort (see Chapter 18). For the Human Genome Project

(Chapter 19), about 1000 bp were sequenced per second, 24 hours a day, up to

the 2003 announcements of completed draft sequences.

A graphical overview of the sizes of various genomes is presented in Fig. 13.9.

Viral genomes range from 1 to 350 kb (Chapter 14). In haploid genomes such as bac-

teria (Chapter 15), the genome size (or C value) is the total amount of DNA in the

genome. In diploid or polyploid organisms, the genome size is the amount of

DNA in the unreplicated haploid genome (such as the sperm cell nucleus).

Bacterial genomes vary in size over about a 22-fold range from about 500,000 bp

(M. genitalium) to 13 Mb (currently the largest sequenced prokaryotic genome,

Streptomyces coelicolor, is 8.7 Mb).

select
genome

to sequence

genome 
sequencing

centers

whole
genome
shotgun

hierarchical
shotgun

sequencing

draft sequence

finished 
sequence

archiving 
sequence

genome annotation

DNA protein pathways
genome
analysis

(a)

(b)

(c)

FIGURE 13.8. Overview of the
process of sequencing and analyz-
ing a genome. (a) The selection of
which genome to sequence involves
decisions about cost, relevance to
biological principles, and relevance
to disease. (b) A variety of genome-
sequencing centers perform
genome sequencing by approaches
such as whole genome shotgun
(WGS) sequencing, hierarchical
WGS, or both. This DNA sequen-
cing is performed in stages, includ-
ing draft and finished sequencing,
and the results are archived. (c)
The completed sequence is anno-
tated at the level of DNA (e.g., to
identify repetitive elements, nucleo-
tide composition, and protein-
coding genes), at the level of pre-
dicted proteins, and at the level of
predicted cellular pathways.
Additionally, a variety of genome-
wide analyses may be performed,
such as comparisons between gen-
omes or phylogenomics (see below).

The NHGRI large-scale genome

sequencing program is described

at Q http://www.genome.gov/
10001691. A list of white papers

and sequencing targets is online at

Q http://www.genome.gov/
10002154.
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Among eukaryotes, there is about a 75,000-fold range in genome sizes from 8

Mb for some fungi to 686 Gb (gigabases) for some amoebae. The so-called

C value paradox is that some organisms with extremely large C values are morpho-

logically simple and appear to have a modest number of protein-coding genes. We

will explore this paradox in Chapter 16.

Cost
The total worldwide cost of producing a draft sequence of the human genome by a

public consortium was about $300 million (or $3 billion including development

costs). In contrast, completion of a draft sequence of another primate, the rhesus

macaque, cost $22 million in 2006. Currently, the cost of sequencing a human

genome by Sanger technology is approximately $1 million to $10 million, although

Venter’s sequence cost �$70 million. A stated goal of the NHGRI is to promote the

development of technology to reduce the cost of sequencing a human genome to

$100,000 and then to $1000.

FIGURE 13.9. Comparison of the
sizes of various genomes. Each
graph represents a 10-fold change
in scale. For bacterial genomes,
the genome size ranges from a
mere 580,000 bp (M. genitalium,
with 470 protein-coding genes is
among the smallest sequenced
genomes) to cyanobacteria with
genome sizes of 13 Mb. This is a
22-fold range. For eukaryotic
genomes, the range is from the
8 Mb of some fungi to 686 Gb for
some amoebae. This range is over
75,000-fold and has been called
the C value paradox (see Chapter
16). The C value is the total
amount of DNA in the genome,
and the paradox is the relation
between complexity of a eukaryote
and its amount of genomic DNA.
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As of November 2008, the

Wellcome Trust Sanger Institute

(Q http://www.wellcome.ac.uk/)

has supported the sequencing of

68 Gb of DNA from several dozen

organisms (Q http://www.sanger.

ac.uk/Info/Statistics/).

You can read about the NHGRI

Genome Technology Program at

Q http://www.genome.gov/
10000368.
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One measure of cost is the number of dollars per Q20 bases, that is, high quality

base reads (defined below). In fiscal year 2006, the NHGRI budget was $130 million,

which enabled the sequencing of 150 billion raw Q20 base pairs per year. Funds were

distributed to a variety of sequencing centers. Novel high throughput technologies

such as pyrosequencing (introduced below) can be more than 10 times less expensive

than conventional sequencing, and technological innovations are certain to continue

lowering the cost of genome sequencing.

Relevance to Human Disease
All genome projects have yielded information about how an organism causes disease

and/or is susceptible to disease. For example, by sequencing the chimpanzee

genome, we may learn why these animals are not susceptible to diseases that afflict

humans, such as malaria and AIDS. We discuss genomics aspects of human disease

in Chapter 20 and we will consider the disease relevance of all parts of the tree of life

in Chapters 14 to 18.

Relevance to Basic Biological Questions
Each genome is unique and its analysis enables basic questions about evolution and

genome organization to be addressed. As an example, the chicken provides a non-

mammalian vertebrate system that is widely used in the study of development. The

analysis of protozoan genomes can illustrate the evolutionary history of the

eukaryotes.

Relevance to Agriculture
Analyses of the chicken, cow, and honeybee genome sequences are expected to

benefit agriculture in a variety of ways, such as leading to strategies to protect these

organisms from disease. By 2050, 90% of the world’s population will live in develop-

ing countries where agriculture is the most important activity. Raven et al. (2006)

thus suggest this should guide the choice of genome projects towards those that

may benefit resource-poor farmers.

Should an Individual from a Species, Several Individuals,
or Many Individuals Be Sequenced?
Ultimately, it will be important to determine the entire genomic sequence from mul-

tiple individuals of a species in order to correlate the genotype with the phenotype. In

the case of humans (Chapter 19), the public consortium’s Human Genome Project

initially involved the sequencing and analysis of genomic DNA from individuals from

many ethnic backgrounds, both male and female.

For viruses such as human immunodeficiency virus (HIV-1 and HIV-2), the

virus rapidly undergoes enormous numbers of DNA changes, making it necessary

to sequence many thousands of independent isolates (Chapter 14). This is practical

to achieve because the genome is extremely small (,10 kb). In some cases, compari-

son of different bacterial strains reveals why one is harmless to humans while another

is highly pathogenic (see Table 15.10). Such a comparison has been performed for a

strain of E. coli that normally inhabits the human gut and another strain that causes

severe, sometimes fatal disease (Chapter 15).
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Resequencing Projects
In studying genomic variation between individual humans, one approach is to rese-

quence the entire human genome (reviewed in Bentley, 2006). This was accom-

plished recently for two individuals, and plans are underway to sequence

thousands more. One goal of such an endeavor is to use genomic information to

guide medical decisions. Asanalternative strategy itmay becost effective to resequence

portions of the genome that are of particular interest, such as globin loci in patients with

thalassemia. Another approach is to sequence all human exons, since this focuses on

protein coding regions rather than the �98% of the genome composed of noncoding

regions (including introns, intergenic regions, and large expanses of repetitive DNA).

Hodges et al. (2007), Albert et al. (2007), and Porreca et al. (2007) independently

reported methodology to capture (isolate) from 10,000 to 200,000 protein-coding

exons using high-density microarrays. In the Porreca et al., strategy, 55,000 oligonu-

cleotides were synthesized, each of which includes portions that hybridize to genomic

loci immediately upstream and downstream of a given small exon of interest. After

hybridization of the oligonucleotides to genomic DNA the intervening exon sequence

can be amplified and then sequenced. While the cost of sequencing a human genome

currently remains in the tens of millions of dollars, the cost of sequencing all exons

may be one thousand-fold less expensive.

Ancient DNA Projects
The study of ancient DNA presents a fascinating glimpse into the history of life on

earth. It is now possible to isolate genomic and/or mitochondrial DNA from

museum specimens, fossils, and other sources of organisms that are now extinct.

Svante Pääbo is a pioneer in this field. There are special challenges encountered in

these studies (Pääbo et al., 2004; Willerslev and Cooper, 2005):

† Ancient DNA is often degraded by nucleases. Thus, the size fragments of

ancient DNA are often small (100 to 500 base pairs), and the nucleotides are

often damaged by strand breaks (induced by microorganisms or endogenous

nucleases), oxidation (resulting in fragmentation of bases and/or deoxyribose

groups), cross-linking of nucleotides, or deamination. There are many strategies

available to address these issues, including performing multiple independent

polymerase chain reactions (PCR) or sequencing reactions from ancient DNA

extracts. C to T and G to A substitutions are particularly prevalent, as shown

for example in studies of 11 European cave bears (Hofreiter et al., 2001).

† The majority of DNA isolated from ancient samples derives from unrelated

organisms such as bacteria that invaded the specimen after death.

† Much DNA isolated from ancient specimens is contaminated by modern

human DNA. Extraordinary measures must be taken to minimize laboratory

or other sources of human contamination.

† A large number of criteria must be applied to demonstrate authenticity of

ancient DNA samples. These include the use of appropriate control extracts

and negative controls; analysis of multiple extracts independently isolated

from each specimen; quantitation of the number of amplifiable molecules;

inverse correlation between amplification efficiency and the length of ampli-

fication which is expected to occur because of the fragmented nature of

ancient DNA.
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Despite the considerable technical challenges, dramatic progress has been made

in the field of ancient DNA analysis. An example is the Neanderthals, who were

hominids that thrived from about 400,000 years ago until 30,000 years ago, and

who represent the closest known relative of modern humans. Mitochondrial DNA

has been extracted and sequenced from approximately one dozen Neanderthal fos-

sils. Green et al. (2006) isolated genomic DNA from the 38,000-year-old fossil of

a Neanderthal bone found in modern Croatia. They performed 454 sequencing

(described below) and identified over 15,000 sequences of primate origin. Their

analysis allowed them to compare patterns of nucleotide substitution between

Neanderthals and modern humans and to date the species’ divergence to approxi-

mately 500,000 years ago.

Other ancient DNA projects include the sequencing of mitochondrial

genomes from the moa (flightless birds from New Zealand; Cooper et al., 2001),

cave bear (Noonan et al., 2005), and woolly mammoth (Krause et al., 2006), and

more recently from hair shafts of the Siberian mammoth Mammuthus primigenius

(Gilbert et al., 2007). A list of DNA sequences available from extinct organisms is

available at the NCBI website. While ancient DNA can be extracted, ancient RNA

and proteins have not been extracted. As a notable exception, Schweitzer et al.

(2007) found evidence of collagen in the extracellular matrix of bone from a

Tyrannosaurus rex fossil based on immunohistochemistry (with antisera developed

against avian collagen) and mass spectrometry.

Metagenomics Projects
The great majority of organisms on the planet are viruses and the prokaryotes (bac-

teria and archaea). Of these various organisms, most (probably .99%) are not cul-

tivatable, making them extremely difficult to study. Metagenomics is the functional

and sequence-based analysis of microorganisms that occur in an environmental

sample (Riesenfeld et al., 2004). Genomic sequencing efforts have been directed

to a variety of environmental samples. In some cases the goal has been to perform

the polymerase chain reaction to amplify ribosomal RNA genes. More recently,

high throughput sequencing technologies have been applied to more broadly

sample DNA (and genes in particular) in environmental samples.

Metagenomics projects may be grouped into two broad areas: environmental

(also called ecological) and organismal (Table 13.16). Environmental projects

address the genomic community in an ecological site such as a hot spring, an

ocean, sludge, or soil. As an example of an environmental project, Robert Edwards

and colleagues (2006) obtained over 70 million base pairs of sequence data (from

over 700,000 sequences) sampled from two neighboring sites of an iron-rich mine

in Minnesota. The samples were characterized by unexpectedly distinct sets of

bacterial microorganisms, based principally on the analysis of 16S ribosomal

DNA sequences.

Organismal metagenomics projects include such sites as human or mouse gut,

feces, or lung. For example, it is estimated that the human intestinal tract contains

on the order of 1013 to 1014 microorganisms (Gill et al., 2006). Collectively, these

bacteria, archaea, and viruses contain 100 times as many genes as the human

genome. Gill et al. sequenced 78 million base pairs of DNA from human fecal

samples to assess the diversity of microorganisms living in the human gut.

Two primary sources of information on metagenomics projects are the NCBI

website and the Genomes Online Database (Liolios et al., 2008).

To see DNA entries from extinct

organisms, visit the Taxonomy

home at Q http://www.ncbi.nlm.

nih.gov/Taxonomy/
taxonomyhome.html/ then follow

the link to extinct organisms.

Currently (January 2009) there

are data available from 46 mam-

mals, 32 birds, and assorted

plants, lizards, insects, and

amphibians.

NCBI summarizes current meta-

genomics projects, including links

to project homepages, GenBank

entries and literature, at Q http://
www.ncbi.nlm.nih.gov/genomes/
lenvs.cgi. The Genomes Online

(GOLD) database is available at

Q http://www.genomesonline.

org. The homepage for the

Human Gut Microbiome

Initiative (HGMI) is Q http://
genome.wustl.edu/hgm/HGM_

frontpage.cgi. For the Global

Ocean Sampling expedition of

J. Craig Venter and colleagues, the

key website is the Community

Cyberinfrastructure for Advanced

Marine Microbial Ecology

Research and Analysis

(CAMERA; (Q http://camera.

calit2.net).
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DNA SEQUENCING TECHNOLOGIES

Nucleic acids were discovered by Johann Friedrich Miescher (1844–1895) in 1869.

He called them “nucleins” because they were present in all cell nuclei. The first com-

plete nucleic acid sequence of a molecule (an alanine tRNA from yeast) was accom-

plished by Holley et al. (1965), who purified tRNAs then treated them with a series of

ribonucleases. Another milestone was reached in 1970 when Ray Wu developed a

primer extension strategy to sequence nucleotides of DNA; this became the basis

of Sanger sequencing. Wu determined the sequence of the two cohesive ends of

lambda phage DNA in 1971 (Wu, 1970; Wu and Taylor, 1971).

Sanger Sequencing
Sanger and colleagues (1977b) introduced the most commonly used technique for

sequencing DNA, now called Sanger sequencing or dideoxy sequencing. The prin-

ciple is to obtain a template of interest (such as a fragment of genomic DNA or comp-

lementary DNA), denature it to yield single-stranded DNA, and add to it an

olignonucleotide primer (typically about 20 nucleotides in length and complemen-

tary to the strand being sequenced). In the presence of DNA polymerase I

(Klenow fragment) and the four 20-deoxynucleotides (dNTPs), a second strand is

synthesized. This synthesis can be inhibited by the further addition of a dideoxynu-

cleotide such as 20,20-dideoxythymidine triphosphate (ddTTP). Separate reactions

include ddATP, ddGTP, or ddCTP accompanying the four dNTPs. Each dideoxy-

nucleotide lacks a 30 hydroxyl group and so serves as a chain terminator, preventing

any further extension. The reaction with ddTTP contains a series of extended frag-

ments, each sharing the same 50 end but terminating at various positions having a T

residue. Four reactions are performed, each having a trace amount of radioactivity.

Upon electrophoresis of the four reactions through an acrylamide gel to separate

TABLE 13-16 Metagenomics Projects: Selected Examples
Type Project Source GenBank Accession Publication

Environmental Global Ocean
Sampling
Expedition
Metagenome

Marine AACY000000000 Rusch et al.
(2007)

Soudan Mine Red
Sample

Mine
drainage

— Edwards et al.
(2006)

Enhanced
biological
phosphorus
removal (EBPR)
sludge
community

Sludge AATO00000000 Garcı́a Martı́n
et al. (2006)

Organismal Termite Gut
Metagenome

Termite gut — Warnecke et al.
(2007)

Uncultured
Human Fecal
Virus
Metagenome

Human gut AAMG00000000
AAMH00000000
AAMI00000000

Zhang et al.
(2006)

Human Distal Gut
Biome

Human gut AAQK00000000
AAQL00000000

Gill et al.
(2006)

Source: Q http://www.ncbi.nlm.nih.gov/genomes/lenvs.cgi (November 2007).
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the DNA based on size, a ladder of nested fragments was visualized using film to

detect the radioactivity in a pattern that corresponds to the DNA sequence. In

their 1977 paper, Sanger et al. reported that they could read as many as 300 bases

in a set of reactions.

The Sanger method has been modified to improve its efficiency (Metzker, 2005).

Fluorescently labeled analogs are spiked into the experiment instead of radioactive

nucleotides. Samples travel by capillary electrophoresis to a detection area within a

DNA sequencing machine where a laser excites the fluorophores producing fluor-

escence emissions that correspond to the base calls. Recent improvements include

better microfluidic separation devices and superior fluorescence detection.

In recent decades, Sanger sequencing has been the dominant method for

genome sequencing. A typical sequencing facility can produce very high quality

reads (having an error rate of less than 1% per base; see below). Most large

genome sequencing centers rely on high throughput Sanger sequencing.

Pyrosequencing
Pyrosequencing is one of the powerful new alternative technologies that is gaining

prominence. First introduced by Hyman (1988), it forms the core of the 454 Life

Sciences Corp. technology that has produced dramatic genome sequencing results

(Margulies et al., 2005). That group sequenced and assembled the entire

Mycoplasma gentialium genome (580,069 bases) with 96% coverage and at 99.96%

accuracy with a single run of a sequencing machine.

A key feature of pyrosequencing is that only one dNTP is added into the reaction

at a time. The principle is outlined in Fig. 13.10. DNA is immobilized on beads that

capture (on average) one single-stranded template that is amplified using PCR. The

template is placed in small (picoliter volume) wells, with 1.6 million wells per plate,

and one dNTP is added to the wells per cycle. The reaction mixture contains the tem-

plate DNA, a sequencing primer, four enzymes (DNA polymerase I, ATP sulfury-

lase, luciferase, and apyrase) as well as the substrates adenosine 50-phosphosulfate

(APS) and luciferin (Fig. 13.10a). In each cycle a single dNTP is added and is incor-

porated into the nascent strand until a different dNTP is required (Fig. 13.10b).

Upon incorporation of each dNTP, an equimolar amount of pyrophosphate (PPi)

is generated. This PPi is converted to ATP by ATP sulfurylase (Fig. 13.10c) and

the ATP promotes the luciferase-mediated conversion of luciferin to oxyluciferin

with the generation of light (Fig. 13.10d). The emitted light is detected with a

charge coupled device (CCD) camera. The amount of light is measured over time

(Fig. 13.10e) to indicate at which position a nucleotide was incorporated; because

of the quantitative nature of this process, the incorporation of two nucleotides creates

twice the light output. Apyrase degrades both unincorporated dNTPs and excess

ATP, clearing the system for repeated cycles with low background noise (Fig.

13.10f). In this process dNTPs are systematically added across different cycles,

but dATPaS is used in place of the usual dATP because it is efficiently used by

DNA polymerase I but is not a substrate for luciferase. A schematic of the output,

showing a sequencing read of GACCGTTC, is shown in Fig. 13.10g.

Pyrosequencing offers many advantages. (1) It is very fast and the cost per base is

low relative to Sanger sequencing. (2) One experiment can generate up to 40 mega-

bases of raw nucleotide sequence data, a massive amount. (3) DNA molecules are

amplified without the need for bacterial cloning; this is especially helpful for metage-

nomics and ancient genomics projects. (4) The accuracy of the reads is very high.

You can read about a standard

Sanger sequencing machine, the

Applied Biosystems 3730, at

Q http://www.3700.com.

The 454 Life Sciences Corp.

website is Q http://www.454.

com/.

DNA SEQUENCING TECHNOLOGIES 545
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sequencing primer hybridized to 
single stranded DNA template  

5′ ...GGACATATCG 3′ (primer) 
3′ ...GGACATATCCCTGGCAAG... 5′ 

enzymes:  DNA polymerase 
  ATP sulfurylase 
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  apyrase 

substrates: adenosine 5′ phosphosulfate (APS) 
  luciferin 

(DNA)  + dNTP

DNA 
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n 

ATP 
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PPi + APS                                    ATP 
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luciferin + ATP
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dNDP + dNMP + phosphatedNTP
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of light 
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(DNA)n+1 + PPi
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C

FIGURE 13.10. Pyrosequencing. (a) A single-stranded DNA template is immobilized on a bead
and amplified by PCR. After transfer to a small well, primer is added as well as additional
enzymes and substrates and one of the four deoxynucleotides (dGTP, dCTP, dTTP, or in
place of dATP the modified nucleotide dATPaS). (b) DNA polymerase I catalyzes the addition
of a single deoxynucleotide, releasing pyrophosphate (PPi). If there is a sequence of n nucleotides
in a row in the template DNA, an equimolar amount of PPi will be released. (c) ATP sulfurylase
converts a substrate (APS) and PPi to adenosine triphosphate (ATP). (d) Luciferase, in the pre-
sence of its substrate luciferin and the ATP, produces a product (oxyluciferin) and light. (e) A
charge coupled camera detects the light and provides an intensity measurement over time. The
y axis is proportional to the amount of deoxynucleotide that was incorporated, thus specifying
whether zero, one, two, or more dNTPs occur in the template DNA in that position.
(f) Apyrase cleaves ATP, thus clearing the system for successive cycles. (g) The light patterns
emitted from a series of cycles allow the DNA sequence of the template to be read. Typical
reads with current technology are near 100 bases. Because of the massively parallel nature of
this process, tens of millions of base pairs of high quality sequence can be generated with this
technology.
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There are also several major disadvantages of pyrosequencing technology. The

sequencing reads are short (several hundred base pairs), making whole genome

assembly extremely challenging. It is anticipated that this technology will soon

permit reads over 400 base pairs and generation of 1 billion base pairs of sequence

per 8 hour day per machine. Another disadvantage is that the machine has difficulty

in sequencing homopolymers (e.g., a string of 10 identical nucleotides). Huse et al.

(2007) compared about 340,000 sequencing reads to reference templates of known

sequence and determined the error rates. Errors involved homopolymer effects,

insertions, deletions, and mismatches. While these errors were distributed along

the length of each read, they found that 82% of all the reads had no errors, while

only a small percent had a disproportionately large number of errors. By identifying

and removing such low quality reads they could improve the overall accuracy of the

dataset from 99.5% to 99.75% or higher.

Recent applications of 454 technology include some of the ancient DNA and

metagenomics sequencing projects described above, such as the sequencing of the

Neanderthal genome, and identifying the microbial community in parts of a mine

in Minnesota (Edwards et al., 2006).

Cyclic Reversible Termination: Solexa
The Illumina Genome Analyzer (also called the Solexa system) offers another

advanced technology that can generate one billion bases of DNA sequence data in

a single run. It works on the principle of cycle reversible termination (CRT) which

functions as follows. (1) DNA is randomly fragmented and adapters are attached

to both ends. (2) Single-stranded DNA fragments are covalently attached to the sur-

face of flow cell channels. (3) The addition of DNA polymerase and unlabeled deox-

ynucleotides creates solid-phase “bridge amplification” in which the template DNA

makes U-shaped loops with both ends attached to the surface of the channel.

(4) Double-stranded bridges are formed. The double-stranded molecules are

denatured and then amplified to generate dense clusters of template DNA. (5)

Four labeled reversible terminators are added (with primer and DNA polymerase).

Only a single reversible terminator will be added to each template in a given cycle.

As with Sanger sequencing, chain termination will occur at specific bases that

cannot elongate. (6) Following laser excitation, the identity of the first base is

recorded. (7) For the second cycle, the reversible terminators are removed (by depro-

tection). All four labeled reversible terminators and the polymerase are again added

to the flow cell. The cycles are repeated.

The Solexa system is very fast and generates massive amounts of sequence data.

Its read lengths are typically only 30 to 50 bases, making it particularly appropriate

for resequencing projects (Bentley, 2006). The main advantages of this approach

relative to Sanger sequencing are its scalability and the elimination of the need for

gel electrophoresis. The main advantanges relative to pyrosequencing are that all

four bases are present at each cycle, and the sequential addition of dNTPs allows

homopolymer tracts to be accurately read.

THE PROCESS OF GENOME SEQUENCING

Genome-Sequencing Centers
Large-scale sequencing projects are conducted at centers around the world. Twenty

sequencing centers contributed to the production of a draft version of the human

You can learn more about the

Solexa system at Q http://www.

solexa.com/.
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genome (2001) (see Table 19.6). These centers were also supported by the NIH and

the EBI. All of these centers have also been involved in sequencing the genomes of

other organisms as well. Table 13.17 provides links to seven of the major sequencing

centers currently in operation.

Sequencing and Assembling Genomes: Strategies
There are two main approaches to sequencing genomes. The first is whole-genome

shotgun (WGS) sequencing. Frederick Sanger first applied this approach in the

sequencing of bacteriophage vX174: randomly selected fragments of genomic

DNA were isolated, sequenced, and then assembled to derive a complete sequence.

The application of this approach to an entire organismal genome was pioneered by

Hamilton O. Smith of Johns Hopkins and J. Craig Venter of the J. Craig Venter

Institute who used this strategy to sequence H. influenzae (Fleischmann et al., 1995).

The WGS method has been used successfully for most small genomes (i.e.,

viruses, bacteria and archaea, and eukaryotic genomes that lack large portions of

repetitive DNA). Genomic DNA is isolated from an organism and mechanically

sheared (or digested with restriction enzymes). The fragments are subcloned into

small-insert libraries (e.g., 2 kb fragments), and large-insert libraries (e.g., 10 to

20 kb). Clones are sequenced from both ends (i.e., both “top” strand and

“bottom” strand), and then the sequences are assembled. A typical sequencing reac-

tion generates about 500 to 800 bp of sequence data. These small amounts of

sequence are assembled into contiguous transcripts (“contigs”) and then into a

map of the complete genome. This strategy is employed in the majority of the bac-

terial and archaeal sequencing projects. Table 13.18 introduces some of the terminol-

ogy associated with genome sequencing.

A second, related approach is “hierarchical shotgun sequencing” (Fig. 13.11).

Genomic DNA is digested and subcloned into bacterial artificial chromosome

(BAC) libraries. These libraries contain large inserts (100 to 500 kb). Alternatively,

smaller cosmid libraries (with insert sizes of about 50 kb) or plasmid libraries (2 to

10 kb inserts) are generated. Unlike WGS sequencing, this hierarchical strategy

employs clones (contigs) that are mapped to known chromosomal locations. Thus,

sequence assembly is focused on a small region of the genome. This approach has

been taken for many large, eukaryotic genomes, including the public consortium’s

version of the Human Genome Project (International Human Genome Sequence

Consortium, 2001).

The WGS approach requires the computationally difficult task of fitting contigs

together, regardless of which chromosomal region they are derived from. It was

TABLE 13-17 Major Genome-Sequencing Centers
Center URL

Baylor College of Medicine Human Genome
Sequencing Center

Q http://www.hgsc.bcm.tmc.edu/

Beijing Genomics Institute Q http://www.genomics.org.cn/

The Broad Institute Q http://www.broad.mit.edu/

Genoscope Q http://www.cns.fr/

U.S. Department of Energy Joint Genome Institute Q http://www.jgi.doe.gov/

Washington University Genome Sequencing Center Q http://genome.wustl.edu/

The Wellcome Trust Sanger Institute Q http://www.sanger.ac.uk/

A list of genome-sequencing

centers is offered at the NCBI

(Q http://www.ncbi.nlm.nih.gov/
genomes/static/lcenters.html).
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thought by some that this approach could not be practically applied to large

eukaryotic genomes. However, it was successfully applied to the 120 Mb

D. melanogaster genome (Adams et al., 2000) in combination with a hierarchical

approach and to the human genome (Weber and Myers, 1997; Venter et al.,

2001). The WGS data are processed at GenBank but are not distributed with

GenBank releases. Instead, beginning with GenBank release 129 in 2002, WGS

entries have been available from GenBank on a per-project basis (and are searchable

by BLAST). Release 162 (October 2007) contained over 100 billion base pairs, sur-

passing the 80 billion base pairs in the corresponding traditional GenBank release.

Genomic Sequence Data: From Unfinished to Finished
Raw DNA sequence data are deposited in databases such as the Trace Archives at

NCBI and EBI (see below). The raw DNA data are typically read by software such

as Phred. This program interprets which bases are sequenced by a DNA sequencing

machine and further estimates the quality of each read. Phred then writes the

sequences in a format such as FASTA (see Fig. 2.10) for further analysis.

At NCBI, raw genomic DNA data are made available through the high through-

put genomic (HTG) sequence division. Accession numbers are assigned to each

entry. The HTG database contains sequence data in four phases (Table 13.19).

TABLE 13-18 Terminology Used in Genome-Sequencing Projects
Term Definition

BAC end sequence The ends of a bacterial artificial chromosome (BAC) have been
sequenced and submitted to GenBank; the internal BAC
sequence may not be available. When both end sequences from
the same BAC are available, this information can be used to order
contigs into scaffolds.

Contig A set of overlapping clones or sequences from which a sequence can
be obtained. NCBI contig records represent contiguous
sequences constructed from many clone sequences. These
records may include draft and finished sequences and may contain
sequence gaps (within a clone) or gaps between clones when the
gap is spanned by another clone that is not sequenced.

Draft sequence At least three- to fourfold of the estimated clone insert is covered in
Phred Q20 bases in the shotgun sequencing stage, as defined for
the human genome sequencing project. Note that the exact
definition of “draft” may be different for other genome projects.
Clone sequence may contain several pieces of the sequence
separated by gaps. The true order and orientation of these pieces
may not be known.

Finished sequence The clone insert is contiguously sequenced with a high-quality
standard of error rate of 0.01%. There are usually no gaps in the
sequence.

Fragment A contiguous stretch of a sequence within a clone sequence that does
not contain a gap, vector, or other contaminating sequence.

Meld When two or more fragments overlap in the entire alignable region,
these sequences are merged together to make a single longer
sequence.

Order and orientation Sequence overlap information is used to order and orient (ONO)
fragments within a large clone sequence.

Scaffold Ordered set of contigs placed on the chromosome.

Source: Adapted from Q http://www.ncbi.nlm.nih.gov/genome/guide/build.html and Q http://www.
ncbi.nlm.nih.gov/genome/guide/glossary.htm.

Regions of heterochromatin con-

tain large segments of highly

repetitive DNA (Chapter 16), and

in some cases cannot be effectively

sequenced using WGS or hier-

archical approaches. Skaletsky

et al. (2003) applied an alternative

technique of iterative mapping

and sequencing to determine the

extremely repetitive sequence of

the human Y chromosome.
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Phase 0 data are typically sequences derived from a single cosmid or BAC. They are

likely to have sequencing errors and gaps of indeterminate size. However, the data

may still have tremendous usefulness to the scientific community even in this form.

For example, if you are performing BLAST searches and are looking for novel homo-

logs to your query, the HTG division may contain useful information. Phase 1 data

may consist of sequencing reads from contigs derived from a larger clone (e.g., a BAC

clone) in which the order of the contigs is unknown and their orientation (top strand

or bottom strand) is also unknown. The sequence is defined as unfinished, and it still

contains gaps.

FIGURE 13.11. Schematic of the
hierarchical shotgun sequencing
strategy. Genomic DNA is isolated
from an organism of interest, frag-
mented, and inserted into a BAC
library. Each BAC clone is 100 to
500 Kb. BACs are ordered
(mapped). Individual BAC clones
are fragmented into smaller
cDNA clones and sequenced.
Individual sequencing reactions
are typically 300 to 700 nucleo-
tides. These “shotgun sequences”
are assembled. This process is
further illustrated in Fig. 19.8.
Modified from the International
Human Genome Sequencing
Consortium (2001, p. 863). Used
with permission.

genomic DNA

BAC library

mapped BAC clones

individual BAC clone

shotgun clones
(derived from BAC)

shotgun sequence

assembled DNA sequence

ATGGACCAGTAGCACTATACCTAA
CTATACCTAATCACCAGCTACACGT

ATGGACCAGTAGCACTATACCTAATCACCAGCTACACGT

TABLE 13-19 HighThroughput Genomic Records at GenBank Defined in Four Phases
Status Location Definition

Phase 0 HTG division Single–few pass reads of a single clone (not contigs)

Phase 1 HTG division Unfinished, may be unordered, unoriented contigs, with gaps

Phase 2 HTG division Unfinished, ordered, oriented contigs, with or without gaps

Phase 3 Primary division Finished, no gaps (with or without annotations)

Source: From Q http://www.ncbi.nlm.nih.gov/HTGS/.
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In the finished state (phase 2), the contigs are ordered and oriented properly, and

the error rate must be 10–4 or less.

The assembly process involves the collection of individual sequences (phase 0),

the closing of gaps, and the lowering of the error rate. This process can be performed

using a variety of software packages, such as Phrap (and its graphical viewer,

Consed), Assembler, and Sequencher. For either the whole-genome sequencing or

the hierarchical approach, after the shotgun phase is complete, the next step is to

assemble contigs. This is accomplished in a process called finishing. The goal of fin-

ishing is to identify gaps in the tile path and to close them. Ideally, this process results

in a single contiguous DNA sequence that spans all the contigs. The finishing process

can be performed manually by experts or in an automated fashion with a program

such as Autofinish (Gordon et al., 2001).

Genomic sequencing projects often rely heavily on expressed sequence tags

(ESTs) to help define the protein-coding genes. Transcripts that are expressed

(i.e., RNA molecules) are converted to cDNA, incorporated into libraries, and

sequenced. Such cDNAs are ESTs. While they do not reveal some information

about the corresponding genomic DNA, such as the sequence of introns, they are

invaluable in identifying expressed genes (see below).

Finishing: When Has a Genome Been Fully Sequenced?
Typically, a genome is sequenced with 5- to 10-fold coverage to maximize the likeli-

hood that it has been completely sequenced. The greatest technical challenge is to

resolve the sequences of the long regions of repetitive DNA found in eukaryotic

and some prokaryotic genomes (see below). To date, the human genome is one of

the few for which large regions of repetitive DNA sequence are being carefully

sequenced. For BAC-based assemblies gaps can be caused by low representation

of genomic loci in the BAC library.

It is possible to estimate the amount of DNA that is sequenced as a function of

fold coverage (Table 13.20). The probability a base is not sequenced was derived by

TABLE 13-20 ProbabilityThat a Base Is Sequenced AccordingTo Equation 13.1
Fold Coverage P0 Percent Not Sequenced Percent Sequenced

0.25 e –0.25 ¼ 0.78 78 22

0.5 e –0.5 ¼ 0.61 61 39

0.75 e –0.75 ¼ 0.47 47 53

1 e –1 ¼ 0.37 37 63

2 e –2 ¼ 0.135 13.5 87.5

3 e –3 ¼ 0.05 5 95

4 e –4 ¼ 0.018 1.8 98.2

5 e –5 ¼ 0.0067 0.6 99.4

6 e –6 ¼ 0.0025 0.25 99.75

7 e –7 ¼ 0.0009 0.09 99.91

8 e –8 ¼ 0.0003 0.03 99.97

9 e –9 ¼ 0.0001 0.01 99.99

10 e –10 ¼ 0.000045 0.005 99.995

Source: Adapted from Q http://www.genome.ou.edu/poisson_calc.html and Lander and Waterman
(1988).

For examples of phases 1, 2, and 3

sequences in GenBank, see

Q http://www.ncbi.nlm.nih.gov/
HTGS/examples.html.

Phred and Phrap (see below) are

available at Q http://www.phrap.

org/. They operate on UNIX-

based systems. Many other

assembly software programs are

available, including Arachne from

the Broad Institute (Q http://
www.broad.mit.edu/wga/).
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Lander and Waterman (1988) and is given by

P0 ¼ e�c (13:1)

where c is the fold coverage and is given by

c ¼ LN

G
(13:2)

and where LN is the number of bases sequenced, L being the read length and N the

number of reads, G is the target sequence length, and e is the constant �2.718. These

results show that to achieve an error rate of 1 in 10,000 (0.01%), it is theoretically

necessary to obtain ninefold coverage of the genome. With fivefold coverage, an

error rate of 0.6% is expected.

Some regions of genomic DNA yield ambiguous sequencing results. This can

occur in regions of extremely high or low GC content or unusual secondary structure.

These areas are routinely resolved (“finished”) by directed sequencing of the region

in question with specific oligonucleotide primers (Tettelin et al., 1999). The sequen-

cing of the malaria parasite P. falciparum was especially difficult to achieve because

adenine and thymine comprise about 80% of the genome (Gardner et al., 2002).

For this reason, a chromosome-based approach was needed to sequence this 23-

Mb genome (Chapter 18).

Repository for Genome Sequence Data
Raw sequence data for the genome-sequencing projects of several organisms have

been deposited in the Trace Archive located at both NCBI and Ensembl/EBI. All

entries in this archive are given a Trace Identifier (Ti) number. The archive can be

searched by several criteria (such as query by Ti or sequencing center or by BLAST).

Search the trace archive with human beta globin and the output contains several

Ti matches (Fig. 13.12a). By clicking on the link to a Ti record, the sequence data

can be obtained in the FASTA format or as a trace of the dye termination reaction

used to sequence the DNA (Fig. 13.12b).

Table 13.21 summarizes several principal organisms for which trace archive data

are available. In an innovative approach to using these raw data, Salzberg et al. (2005)

studied the genomic DNA records from Drosophila ananassae, D. simulans, and

D. mojavensis and searched for matches to bacterial species that might colonize

these fruitflies. They identified three new species of the bacterial endosymbiont

Wolbachia pipientis and were able to assemble sequences that covered substantial

portions of the genomes.

Role of Comparative Genomics
Comparative genomics involves the comparison of genome sequences from multiple

species, or in some cases from individuals within a species. Miller et al. (2004) have

reviewed this discipline and described how genome comparisons have aided the

annotation of genomes (discussed below), particularly for the prediction of genes

and conserved regulatory elements. They also discuss the impact on evolutionary

analysis and function: through comparative analyses we can define DNA segments

that are under positive or negative selection (Chapter 7).

The use of whole genome comparisons at various evolutionary distances pro-

vides a powerful technique for applying many genomic analyses (Fig. 13.13, adapted

from Miller et al., 2004). Phylogenetic footprinting refers to comparisons of genomic

The NHGRI offers standard

finishing practices for the human

genome. See Q http://www.

genome.gov/10001812.

The trace server at Ensembl is at

Q http://trace.ensembl.org/, and

the NCBI trace archive is at

Q http://www.ncbi.nlm.nih.gov/
Traces/. A specialized Trace

Archive BLAST server is available

at Q http://www.ncbi.nlm.nih.

gov/blast/Blast.cgi. The Short

Read Archive contains next-

generation sequencing data.
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sequences from distantly related organisms, such as humans relative to fish, chicken,

dog, and rodents. This is especially useful to identify conserved elements (under

negative selection), emphasizing the relatively rare coding and noncoding segments

of the genome that remain shared even after hundreds of millions of years since

species such as human and fish diverged. Phylogenetic shadowing permits compari-

sons of more closely related species such as humans and chimpanzees that diverged

about 5 million years ago. These comparisons between closely related species allow

the identification of regions that are different between the two, such as genes

under positive selection. Population shadowing refers to sampling multiple genomes

from one species (as discussed above for resequencing the human genome from many

individuals). We will adopt a comparative genomic approach throughout our explora-

tion of the tree of life in Chapters 14 to 19.

(a) 

(b) 

(c) 

FIGURE 13.12. The trace archive
is a repository of raw data from
genome-sequencing projects. It is
accessed from the front page of
NCBI (Q http://www.ncbi.nlm.
nih.gov/Traces/trace.cgi?) or
from the Trace Server at EBI
(Q http://trace.ensembl.org/).
(a) A blastn search of the human
whole genome shotgun (WGS)
sequences of the trace archive,
using human beta globin
(NM_000518) as a query, results
in several dozen trace archive
matches. The pattern of hits (sev-
eral to the 30 end of the query and
several others to the 50 end) occurs
because the query is an expressed
transcript, and there are introns
corresponding to position �350
and �140 (arrows). Clicking on
the first database match (ti
328428) provides access to (b) the
sequence in FASTA format or (c)
the trace from the DNA-sequencing
reaction. This trace allows you to
evaluate the quality of the raw
data that underlie a genomic
DNA record. In some cases, the
dye termination reaction (or alter-
nate DNA-sequencing technology)
yields ambiguous results, and
access to the raw data allows the
user to make an informed decision
about the quality of the sequence
call.
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TABLE 13-21 Current Contents of Trace Archives of Sequence Data for Organisms Having the Most
Traces
Organism Common Name Number of Traces

Mus musculus Mouse 206,364,140

Homo sapiens Human 110,941,459

Rattus norvegicus Rat 51,810,253

Pan troglodytes Chimpanzee 45,992,278

Danio rerio Zebrafish 43,454,015

Canis familiaris Dog 43,096,145

Monodelphis domestica Gray short-tailed opossum 41,581,643

Bos taurus Cow 36,203,128

Equus caballus Horse 31,548,760

Macaca mulatta Rhesus monkey 31,146,365

Zea mays Maize 29,978,391

Ornithorhynchus anatinus Platypus 29,761,138

Callithrix jacchus White-tufted-ear marmoset 28,287,429

Loxodonta africana African savanna elephant 27,895,646

Cavia porcellus Domestic guinea pig 26,942,120

The trace archives contain data from WGS, EST, and BAC-based projects.
Source: From the Ensembl trace server (Q http://trace.ensembl.org/), November 2007.

FIGURE 13.13. Comparative
genomics allows the comparison of
a genome (such as human) to
other genomes of varying evol-
utionary distance. In phylogenetic
footprinting, this includes genomes
from organisms that diverged a
relatively long time ago, such as
fish (Fugu rubripes, Tetraodon
nigoviridis that diverged from the
human lineage .400 million
years ago), chicken (Gallus
gallus), dog (Canis familiaris),
rat and mouse (Rattus norvegicus
and Mus musculus that diverged
from the human lineage �80 to
100 million years ago). In phyloge-
netic shadowing, more closely
related genomes are compared
(e.g., the chimpanzee Pan troglo-
dytes). In population shadowing,
multiple genomes from one species
are compared, permitting analyses
of genotype–phenotype corre-
lations. Redrawn from Miller
et al. (2004). Used with
permission.

Phylogenetic footprinting

Phylogenetic shadowing

Population shadowing

Fugu rubripes

Tetraodon nigroviridis

Gallus gallus

Canis familiaris

Rattus norvegicus

Mus musculus

Pan troglodytes

Homo sapiens
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GENOME ANNOTATION: FEATURES OF GENOMIC DNA

When a genome is sequenced, we learn its exact size and we obtain the complete (or

nearly complete) nucleotide sequence. Genome annotation is the process by which

the landscape of genomic DNA is surveyed, and key features of the DNA

are described. An example of an automated pipeline for genome annotation

from the Ensembl server is outlined in Fig. 13.14 (see Curwen et al., 2004; Potter

et al., 2004).

Three fundamental questions may be asked about the nature of this sequence:

1. What is the overall GC content or other nucleotide composition? Many

eukaryotic genomes are characterized by a GC content of about 35% to

45%, while bacteria display a far wider range (Fig. 13.15).

2. What are the repetitive DNA sequences and where are they? Programs such as

RepeatMasker can identify and mask repetitive elements such as Alu repeats.

We will discuss these repeats in Chapters 16 to 19. Programs such as

GLIMMER and GRAIL (see below) incorporate algorithms that identify

repetitive elements in genomic DNA.

DNA data 
collected
worldwide
(e.g. HGP
consortium)

DNA data
collected at
the Sanger Centre

analysis pipeline

Map

SNP

Ensembl
database

DNA sequence data
deposited in GenBank,
EMBL, DDBJ

World Wide Web interface
(http://www.ensembl.org)

Annotation
 Predicted genes (Genscan)
 DNA features (SNPs, repeats)
 Regions of homology
Identifiers
 ENSG00000XXXX for genes
 ENST00000XXXX for transcripts

Access to Ensembl:
 BLAST
 Browse by chromsome
 Ensembl identifier
 Known gene name
 OMIM entry
 Text search of InterPro, SWISS-PROT,
  OMIM annotation

FIGURE 13.14. Overview of the
Ensembl annotation pipeline.
Ensembl is a joint EBI-EMBL
and Sanger Institute project that
automatically tracks and anno-
tates DNA sequence data from the
Human Genome Project and
other sequencing projects (e.g.,
mouse, rat zebrafish, fugu, mos-
quito, fruitfly, and nematodes).
(See Q http://www.ensembl.org/
info/data/docs/genome_
annotation.html.)

We will show examples of repeti-

tive DNA, and the software used

to identify and mask it, in Chapter

16.
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3. How many genes (protein-coding sequences) are present? Genes may be

identified by a number of features, including:

† Gene-specific codon bias

† Absence of repetitive DNA sequences

† Presence of signals such as promoter region-specific motifs

These features of genomic DNA are substantially different between prokaryotes

and eukaryotes. We will thus consider them in more detail in Chapters 15 (on bac-

teria and archaea) and 16 to 19 (on eukaryotes).

Annotation of Genes in Prokaryotes
Bacterial and archaeal genomes have both genes and additional, relatively small inter-

genic regions. Typically, these genomes are circular, and there is about one gene in

each kilobase of genomic DNA. For prokaryotes, genes are most simply identified

by the presence of long open reading frames (ORFs) that are greater in length than

some cutoff value such as 90 nucleotides (30 amino acids; a protein of about 3 kilo-

daltons). Programs such as GLIMMER and GenMark efficiently locate genes in bac-

terial genomic sequence (reviewed in Baytaluk et al., 2002) (Table 13.22).

GLIMMER is a program for the identification of genes in prokaryotic DNA. The

program requires two inputs: a genomic DNA sequence file (in FASTA format) and a

set of Markov models for genes. We will examine a sample GLIMMER output (see

Fig. 15.7).
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FIGURE 13.15. Guanine plus cytosine (GC) content of prokaryotes, protists, invertebrates, and
vertebrates. Note that most eukaryotic genomes have 40% to 45% G þ C content, while bacteria
and archaea have a far wider range. This figure is adapted from Bernardi and Bernardi (1990)
based on studies in the 1970s and 1980s. Recent eukaryotic genome sequencing projects
(described in Chapter 18) reveal that GC content for various organisms includes 19.4% (P. fal-
ciparum), 22.2% (the slime mold Dictyostelium discoideum), 34.9% (A. thaliana), 36% (C. ele-
gans), 38.3% (S. cerevisiae), 41.1% (human), 42% (M. musculus), and 43.3% (O. sativa). For
sequenced prokaryotes, GC content values range from 26% (Ureaplasma urealyticum parvum)
to 72% (Streptomyces coelicolor). Used with permission.
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TABLE 13-22 Gene-Finding Programs for Prokaryotes
Resource Source/Description URL

GeneMark Provides several gene prediction
programs in prokaryotes,
eukaryotes, and viruses

Q http://opal.biology.gatech.edu/
GeneMark/

GeneScan Identification of complete gene
structures in vertebrate genomic
DNA

Q http://genes.mit.edu/GENSCAN.
html

GLIMMER A system for finding genes in
microbial DNA

Q http://cbcb.umd.edu/software/
glimmer or Q http://www.ncbi.nlm.
nih.gov/genomes/MICROBES/
glimmer_3.cgi

genomic
DNA

nuclear
RNA transcript

mature mRNA

protein

AAAAAA

activity or function
of protein

exon intron exon
noncoding region

(may be regulatory)
noncoding region

(may be regulatory)

exon intron exon

transcription

spliceosome;
polyadenylation;
export

translation

approach #1

approach #2

approach #3

FIGURE 13.16. There are three
principal approaches to finding
protein-coding genes in genomic
DNA. (1) In homology-based (or
extrinsic) gene finding, genomic
DNA is compared to ESTs. ESTs
are cDNAs that are generated
from the RNA of an organism,
and thousands to millions of ESTs
are available for various organ-
isms. When an EST sequence
matches a region of genomic
DNA, this provides strong evidence
that a protein-coding gene has been
identified. (2) In algorithm-based
(or intrinsic) gene finding, the
nucleotide composition of the geno-
mic DNA is analyzed for features
such as the presence of a long
open reading frame, that is, a
start codon followed by a threshold
such as at least 300 nucleotides
before a stop codon is encountered.
The presence of introns (usually in
eukaryotic genomes) complicates
this analysis. The base composition
of coding regions often differs dra-
matically from noncoding regions,
and this also serves as the basis
for gene-finding algorithms using
the second approach. (3) In a
third approach, comparative geno-
mics is used to guide annotation
by aligning conserved segments
between two genomes, including
genes previously annotated in the
reference genome.

GENOME ANNOTATION: FEATURES OF GENOMIC DNA 557



Annotation of Genes in Eukaryotes
In contrast to bacterial genomes, eukaryotic genomes contain both genes and large

amounts of noncoding DNA. This noncoding material includes repetitive DNA,

genes that have regulatory functions, and introns that interrupt exons and are

removed from mature RNA transcripts. A major focus of genome-sequencing pro-

jects is to identify all the genes in a genome. However, it is necessary to define the

variety of genes and the criteria for identifying them. This includes protein-coding

genes, pseudogenes, and a variety of RNA genes. We will discuss these in Chapters

17 (on fungi) and 19 (on human), with a particular emphasis on gene finding in

Chapter 16 (on eukaryotic chromosomes). There, we will discuss three principal

approaches to gene identification in eukaryotic genomic DNA (Fig. 13.16). The

first approach is based on aligning expressed sequences (ESTs or cDNAs) to geno-

mic DNA. Since the ESTs are obtained independently of the genomic DNA

sequence, this approach is called “extrinsic.” The availability of a full-length

cDNA is invaluable in defining the extent of the exons in a gene based on experimen-

tal evidence. Second, an “intrinsic” approach is to predict gene structures (exons and

introns) solely through analysis of genomic DNA, searching for features such as

ORFs, exon/intron boundaries, start and stop codons, and codon usage typical of

coding regions. Third, a comparative genomic approach relies on mapping genes

from one organism to conserved syntenic regions of a closely related organism

whose genome has previously been sequenced. Examples of gene prediction software

are presented in Table 13.23 and in Figs. 16.12 to 16.18.

Summary: Questions from Genome-Sequencing Projects
A series of basic questions are associated with virtually all genome sequencing

projects:

† Can we identify both protein-coding genes and RNA-coding genes?

† Can we assign a function to these genes?

TABLE 13-23 Gene-Finding Programs for Eukaryotes
Resource Source/Description URL

GeneMark Provides several gene prediction
programs in prokaryotes,
eukaryotes, and viruses

Q http://opal.biology.gatech.edu/
GeneMark/

GeneScan Identification of complete gene
structures in vertebrate genomic
DNA

Q http://genes.mit.edu/GENSCAN.
html

GLIMMER A system for finding genes in
microbial DNA

Q http://cbcb.umd.edu/software/
glimmer or Q http://www.ncbi.nlm.
nih.gov/genomes/MICROBES/
glimmer_3.cgi

GRAIL Gene Recognition and Assembly
Internet Link

Q http://compbio.ornl.gov/Grail-bin/
EmptyGrailForm

ORF Finder Open reading frame finder Q http://www.ncbi.nlm.nih.gov/gorf/
gorf.html

Procrustes Gene recognition via spliced
alignment

Q http://www-hto.usc.edu/software/
procrustes/
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† Can we determine (or predict) the structure of all the gene products?

† Can we reconstruct transcriptional networks and metabolic signaling path-

ways associated with each gene product?

† Can we link genotypes to phenotypes? Thus, for example, can we explain why

humans vary greatly in their susceptibility to the same disease-causing organ-

ism or environmental toxin? Can we explain why two strains of anthrax or

herpesvirus vary in their pathogenicity?

† Can we define the evolutionary history of life? This may be accomplished in

part through molecular phylogenetic studies and comparative genomics.

This approach has been called phylogenomics (Eisen and Hanawalt, 1999;

Eisen and Fraser, 2003).

PERSPECTIVE

Beginning in 1995, we have entered an era in which the completed genome

sequence has been determined for many dozens of organisms. Thousands of com-

plete genome sequences are now available. Since the completion of the human

genome sequencing in the year 2003, some call the present state of biology the

“postgenomic era.”

A major consequence of genome-sequencing projects is that molecular phylo-

geny has been revolutionized. The present version of the tree of life includes three

main branches (bacteria, archaea, and eukaryotes). In the coming years, molecular

data will clarify some of the key questions about life on Earth:

† How many species exist on the planet?

† How did life evolve, from 4 BYA up to the present time?

† Why are some organisms pathogenic while close relatives are harmless?

† What mutations cause disease in humans and other organisms?

PITFALLS

While the research community is generating massive amounts of DNA sequence

data, there are many pitfalls associated with interpretation of those data. There is

an error rate associated with genome sequences (typically one nucleotide per

10,000 in finished DNA). Thus, in evaluating possible polymorphisms or mutations

in genomic DNA sequences, it is important to assess the quality of the sequence data.

Even if the sequence is correct, algorithms do not yet have complete success in pro-

blems such as finding protein-coding genes in eukaryotic DNA; in Chapter 16 we will

see examples of genome-sequencing projects (such as rice and human) in which the

predicted exons and gene models improve dramatically with each subsequent revi-

sion of the genome sequence. (For bacterial DNA, which generally lack introns,

the success rate is much higher.) Once protein-coding genes or other types of

genes are identified, there are very large numbers of errors in genome annotation

(Brenner, 1999). It will be important to carefully assess the basis of functional

annotation of genes, and ultimately the problem of gene function must be assessed

by biological as well as computational criteria.
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DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

SELF-TEST QUIZ

[13-1] The first complete genome to be sequenced was:

(a) Saccharomyces cerevisiae chromosome III

(b) Haemophilus influenzae

(c) A bacteriophage

(d) The human mitochondrial genome

[13-2] A typical eukaryotic mitochondrial genome encodes about how

many proteins (excluding RNAs)?

(a) From 5 to 20

(b) From 50 to 100

(c) From 500 to 1000

(d) 10,000

[13-3] Thousands of genomes have now been completely sequenced.

The majority of these are

(a) Viral

(b) Bacterial

(c) Archaeal

(d) Organellar (mitochondrial and plastid)

(e) Eukaryotic

[13-4] Ancient DNA projects allow the sequencing of historical

samples. A special challenge is:

(a) The DNA is often fragmented.

(b) The DNA is often contaminated by modern human DNA.

(c) The DNA is often contaminated by ancient prokaryotic

DNA.

(d) All of the above.

[13-5] Pyrosequencing is a powerful next-generation sequencing tech-

nology. One of its limitations is that

(a) The length of each read is typically only 33 to 50

nucleotides.

(b) Homopolymers are difficult to sequence accurately.

(c) Bacterial cloning of DNA fragments is required.

(d) The error rate is high.

[13-6] Cycle reversible termination is another next-generation

sequencing technology. One of its advantages is that

(a) It does not require gel electrophoresis.

(b) All four nucleotides are added to each reaction.

(c) There are millions of reads, offsetting the very short read

lengths.

(d) All of the above.

[13-7] The term “whole-genome shotgun sequencing” refers to:

(a) A strategy to sequence an entire genome by breaking up

DNA and sequencing using oligonucleotide primers that

span the genomic DNA

(b) A strategy to sequence an entire genome by breaking up

DNA, cloning it into libraries, and sequencing using oligo-

nucleotide primers that correspond to known chromosomal

locations (contigs)

(c) A strategy to sequence an entire genome by breaking up

DNA, cloning it into libraries, hybridizing small fragments,

then reassembling the fragments into a complete map

(d) A strategy to sequence an entire genome by breaking up

DNA, cloning it into libraries, sequencing small fragments,

then reassembling the fragments into a complete map

[13-8] The biggest problem in predicting protein-coding genes from

genomic sequences using algorithms is that:

(a) The software is difficult to use.

(b) The false negative rate is high: many exons are missed.

(c) The false positive rate is high: many exons are falsely

assigned.

[13-1] If you could decide which genome-sequencing projects to

pursue, how would you prioritize the organisms?

[13-2] If you could sequence the genomes of 50 individual

humans, who would they be, what hypotheses would you

test, how would you perform data analyses, and what

resources would you require in terms of hardware, soft-

ware, and collaborators? What ethical issues might arise

in sequencing human genomes?

[13-1] Figure 13.1 shows a tree of life based on rRNA sequences.

Construct a tree of life based on glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) protein sequences. One approach is

to identify this family in Pfam, export a large number of the

sequences in the fasta format, perform a multiple sequence align-

ment using MUSCLE (Chapter 6), and create and evaluate a

neighbor-joining tree using MEGA (Chapter 7). Use at least 30

sequences from each domain of life. How similar is your tree to

the one in Fig. 13.1? What might account for their differences?

[13-2] Obtain approximately 1000 bases of DNA sequence in the fasta

format from the bacterium Escherichia coli K12 (the accession

number of the complete genome is NC_000913). Use this as

a query in a blastn search of the Trace Archive at NCBI. Can

you identify a eukaryotic sequencing project that includes bac-

terial DNA? For example, search against human whole genome

shotgun (WGS) sequences. How would you determine the

total amount of bacterial DNA in any given eukaryotic entry

in the Trace Archive?
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(d) The false positive rate is high: many exons have unknown

function.

[13-9] For finished DNA sequence, the error rate must be

(a) .01 or less

(b) .001 or less

(c) .0001 or less

(d) .00001 or less
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REFERENCES 563



M. Genomic sequencing of Pleistocene cave bears. Science 309,

597–599 (2005).

Ohyama, K., et al. Chloroplast gene organization deduced from

complete sequence of liverwort Marchantia polymorpha chloro-

plast DNA. Nature 322, 572–574 (1986).

Oliver, S. G., et al. The complete DNA sequence of yeast chromo-

some III. Nature 357, 38–46 (1992).
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As early as 1885 Adolf Mayer showed that mosaic disease of the tobacco plant is contagious; we now know that it is caused by tobacco
mosaic virus. Martinus Beijerinck (1851–1931) further isolated a “contagium vivum fluidum” (virus) from tobacco leaves, dis-
tinguishing the causative agent from bacteria. Due to their small size, almost all viruses cannot be visualized by conventional
microscopy. Beginning in the 1930s Helmut Ruska pioneered the use of the electron microscope to visualize viruses (Kruger et al.,
2000). Early studies of the structure of viruses based on x-ray crystallography were performed by John D. Bernal (1901–1971).
He also trained Maurice Wilkins and Rosalind Franklin (who confirmed the structure of the double helix of DNA) and Nobel laureate
Dorothy Crowfoot Hodgkin (who solved the structure of vitamin B12). Together with Rosalind Franklin, Bernel studied tobacco mosaic
virus in the 1950s. Bernal and Fankuchen 1941 obtained a variety of purified viruses and performed x-ray analyses. This set of images
shows figures 15 (demonstrating shifts of intermolecular reflections), 16 (showing varying concentrations of viruses), 17 (enation
mosaic virus), 18 (dry gels of various virus proteins), 19 (tobacco mosaic virus), 20 (cucumber mosaic virus), and 21 (potato
virus X).
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Completed Genomes: Viruses

INTRODUCTION

In this chapter we will consider bioinformatic approaches to viruses. Viruses are

small, infectious, obligate intracellular parasites. They depend on host cells for

their ability to replicate. The virion (virus particle) consists of a nucleic acid

genome surrounded by coat proteins (capsid) that may be enveloped in a lipid bilayer

(derived from the host cell) studded with viral glycoproteins. Unlike other genomes,

viral genomes can consist of either DNA or RNA. Furthermore, they can be single,

double, or partially double stranded, and can be circular, linear, or segmented

(having different genes on distinct nucleic acid segments).

Viruses lack the biochemical machinery that is necessary for independent

existence. This is the fundamental distinction between viruses and free-living

organisms. Thus, while they replicate and evolve, viruses exist on the borderline of

the definition of life. The largest virus has a genome size of over 1 megabase

(Mimivirus; see below), and other large viruses (such as pox viruses) have genome

sizes of several hundred kilobases. These are nearly the same size as the smallest

archaeal and bacterial genomes (such as Nanoarchaeum equitans and Mycoplasma

genitalium) (Chapter 15). It is not a coincidence that those smallest prokaryotic

genomes are from organisms that (like viruses) are small, infectious, obligate

intracellular agents (see Chapter 15).

While there may be tens or hundreds of millions of species of bacteria and

archaea, only a few thousand species of virus are known. This disparity probably
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reflects their specialized requirement for invading a host. Also, recent metagenomics

projects (described below) suggest that we have an extremely limited understanding

of both the number of virus species and the diversity of viral genes and genomes.

Viruses infect all forms of life, including bacteria, archaea (Prangishvili et al.,

2006), and eukaryotes from plants to humans to fungi. Although we have catalogued

relatively few viral species, viruses are nonetheless the most abundant biological

entities on the earth (Edwards and Rohwer, 2005).

Although viruses are relatively simple agents, they are more complex than two

other pathogenic agents: viroids and prions. Viroids are small, circular RNA mol-

ecules of 200 to 400 nucleotides that cause diseases in plants (Flores, 2001; Daròs

et al., 2006). This minuscule genome does not encode any proteins, and the RNA

itself has enzymatic activity. Prions are infectious protein molecules (Prusiner,

1998; DeArmond and Prusiner, 2003). Cruetzfeld–Jakob disease is the most

common human prion disease (Johnson and Gibbs, 1998). It has a worldwide

incidence of one in one million individuals and usually presents as dementia.

Scrapie in sheep and bovine spongiform encephalopathy (BSE; “mad cow” disease)

are the most common prion diseases in animals.

Classification of Viruses
Before the sequencing era, morphology was the most important criterion for the

classification of viruses. Since 1959, electron microscopy has been employed to

describe the structure of over 5500 bacteriophages (viruses that invade bacteria;

Ackermann, 2007), as well as additional viruses that invade plants and animals.

Ninety-six percent of bacteriophages are tailed viruses, with the remainder having

filamentous, icosahedral, or pleiomorphic shapes. Many electron microscopic

images of viruses are available at ICTVdb, the database of the International

Committee on Taxonomy of Viruses (ICTV) (Büchen-Osmond, 1997, 2003).

Several of these images are presented in Fig. 14.1. ICTV is responsible for classifying

viruses and its website includes resources such as an index of viruses, viral characters,

and a variety of software tools (Fauquet et al., 2005).

In addition to morphology, another fundamental basis for classifying viruses

is to define the type of nucleic acid genome that is packaged into the virion.

Virions contain DNA or RNA; the nucleic acid may be single or double

stranded, and translation may occur from the sense strand, the antisense

strand, or both. Double-stranded viral genomes replicate by using the individual

strands of the DNA or RNA duplex as a template to synthesize daughter strands.

Single-stranded DNA or RNA viruses use their strand of nucleic acid as a

template for a polymerase to copy a complementary strand. Replication may

involve the stable or transient formation of double-stranded intermediates.

Some viruses with single-stranded RNA genomes convert the RNA strand to

DNA using reverse transcriptase (RNA-dependent DNA polymerase). In the

case of HIV-1, the pol gene encodes reverse transcriptase.

The ICTV regularly meets to refine an accepted standard for virus classification.

The ICTV recognizes the taxa of order, family, genus, and species. The ICTV data-

base (eighth report) subdivides viruses into some 73 families, 9 subfamilies, 287

genera and 1938 species (summarized by Mayo and Pringle, 1998). An example of

an online description of viruses on the ICTV website is provided in Fig. 14.2. For

a discussion of issues in virus taxonomy, including the concept of a viral species,

see van Regenmortel and Mahy 2004.

Stanley Prusiner won the Nobel

Prize in Physiology or Medicine

in 1997 “for his discovery of

Prions — a new biological prin-

ciple of infection.” See Q http://
nobelprize.org/nobel_prizes/
medicine/laureates/1997/.

The ICTV website is at Q http://
www.ncbi.nlm.nih.gov/ICTVdb/.

The ICTVdb was constructed by

Cornelia Büchen-Osmond

(Columbia University). The

Büchen-Osmond 2003 reference

is online at Q http://www.ncbi.

nlm.nih.gov/ICTVdb/c3buch.lo.

pdf.
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Some of the major groups of viruses are shown in Fig. 14.1 and Table 14.1. They

range in genome size from very small viruses such as rubella (�2 kb) to several viruses

over 350 kb in size. A giant virus (called Mimivirus for Mimicking microbe) has been

described, having a double-stranded circular genome of 1,181,404 base pairs (1.2

megabases) (La Scola et al., 2003; Raoult et al., 2004). Its mature particles are

400 nanometers in diameter. It is thus larger than many bacteria (the Mycoplasma gen-

italium genome is 580 kilobases) and archaea (the Nanoarchaeum equitans genome is

490 kb) and it is almost half the size of the smallest eukaryotic genome (that of

Encephalitozoon cuniculi, 2.5 million base pairs). Of its 1262 open reading frames of

length �100 amino acids, just 194 have similarity to proteins of known function.

An entirely different approach to classifying viruses is to identify those that cause

human disease. Many viral diseases can be prevented by vaccination (Table 14.2).

Others, such as smallpox, are of concern because of their potential use by bioterror-

ists (Cieslak et al., 2002). Smallpox, caused by the variola virus, was eradicated in

1977, and routine vaccination was discontinued in 1972 in the United States.
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FIGURE 14.1. Classification of
viruses. Adapted from ICTVdb and
Flint et al. (2000, pp. 16–17).
Electron micrographs are from the
ICTV website.

The Mimivirus GenBank acces-

sion number is NC_006450.

The National Institute of Allergy

and Infectious Diseases (NIAID)

at the National Institutes of

Health offers information on viral

and other diseases at Q http://
www.niaid.nih.gov/publications/.
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FIGURE 14.2. Example of a dia-
gram illustrating virus morphology
from the ICTV database.

TABLE 14-1 Classification of Viruses Based on Nucleic Acid Composition
Nucleic
Acid Strands Family Example Accession

Base
Pairs

RNA Single Picornaviridae Human poliovirus
1

NC_002058 7,440

Togaviridae Rubella virus NC_001545 9,755

Flaviviridae Yellow fever virus NC_002031 10,862

Coronaviridae Coronavirus NC_002645 27,317

Rhabdoviridae Rabies virus NC_001542 11,932

Paramyxoviridae Measles virus NC_001498 15,894

Orthomyxoviridae Influenza A virus
(segment 1)

NC_002023 13,585

Bunyaviridae Hantavirus — —

Arenaviridae Lassa fever virus J04324 3,402

Retroviridae HIV NC_001802 9,181

Double Reoviridae Rotavirus

DNA Single Parvoviridae Parvovirus H1 NC_001358 5,176

Mixed Hepadnaviridae Hepatitis B NC_001707 3,215

Double Papovaviridae JC virus NC_001699 5,130

Adenoviridae Human
adenovirus, type
17

NC_002067 35,100

Herpesviruses Human
herpesvirus 1

NC_001806 152,261

Poxviridae Vaccinia NC_001559 191,737

Source: Adapted in part from Schaechter et al. (1999, p. 292). Used with permission.
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Diversity and Evolution of Viruses
A practical way to access the diversity of known viruses is through the National Center

for Biotechnology Information (NCBI) website. We introduced the NCBI Entrez

Genome resources in Chapter 13 (Fig. 13.4). This site includes dedicated resources

for viruses (Fig. 14.3), as well as specialized sites for influenza virus, retroviruses,

SARS, and links to the ICTV database.

A premise of taxonomy is that it should represent phylogeny. In the case

of viruses, their unique, elusive, and sometimes fragile nature makes it difficult

to trace their evolution in as comprehensive a fashion as can be accomplished

with archaea, bacteria, and eukaryotes. Like living organisms, viruses are

subject to mutation (genetic variability) and selection. But viral genomes evolve

far faster than cellular genomes and present special difficulties for evolutionary

studies:

† Viruses tend not to survive in archeological or historical samples. There is

considerable evidence for the existence of viruses over 10,000 years ago,

based on human skeletal remains, historical accounts, and other historical

artifacts. However, ancient viral DNA or RNA has not been recovered. As

discussed below, influenza virus from the deadly 1918 pandemic has been

isolated, sequenced, and functionally analyzed.

† Viral polymerases of RNA genomes typically lack proofreading activity. This

leads to a mutation rate that may be 1 million to 10 million times greater

than that of DNA genomes (McClure, 2000). For viruses having DNA gen-

omes, the mutation rates are typically 20- to 100-fold higher than that of

the host cell. As an example, the mutation rate of hepatitis C virus is 1023

per nucleotide per generation (Chisari, 2005).

† In addition to a high mutation rate, many viruses also have an extremely high

rate of replication. A single cell can produce 10,000 poliovirus particles, and

an HIV-infected individual can produce 109 virus particles per day. For

TABLE 14-2 Vaccine-Preventable Viral Diseases
Disease Virus Comment

Hepatitis A Hepatitis A virus Causes liver disease

Hepatitis B Hepatitis B virus Causes liver disease

Influenza Influenza type A
or B

Causes 20,000 deaths per year (U.S.)

Measles Measles virus See below

Mumps Rubulavirus A disease of the lymph nodes

Poliomyelitis Poliovirus (three
serotypes)

Inflammation of the gray matter of the spinal cord;
kills neurons

Rotavirus Rotavirus Most common cause of diarrhea in children; kills
600,000 children annually worldwide

Rubella Genus Rubivirus Also called German measles.

Smallpox Variola virus Eradicated in 1977

Varicella Varicella-zoster
virus

About 75% of all children contract varicella by age 15

Source: Adapted from Q http://www.cdc.gov/nip/diseases/disease-chart-hcp.htm.

Currently (January 2009) there

are over 2700 viral genomes and

500 phage genomes listed at the

NCBI Genome site. The Entrez

Genome homepage for viruses is

Q http://www.ncbi.nlm.nih.gov/
genomes/VIRUSES/viruses.

html.

According to George Gaylord

Simpson (1963, p. 7), “Species are

groups of actually or potentially

inbreeding populations, which are

reproductively isolated from other

such groups. An evolutionary

species is a lineage (an ancestral-

descendant sequence of popu-

lations) evolving separately from

others and with its own unitary

evolutionary role and tendencies.”
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hepatitis C, 1012 virions per day can be produced (Neumann et al., 1998).

This can lead to the formation of quasi-species (a population of related but

nonidentical viruses).

† Many viral genomes are segmented. This allows segments to be shuffled

among progeny, producing a great diversity of viral subtypes (see influenza

virus and HIV sections below).

† Viruses are often subjected to intense selective pressures such as host immune

responses or antiviral drug therapies. The rapid mutation rate of HIV-1

ensures that some versions of the virus are likely to contain mutations

conferring resistance to retroviral drugs, and these HIV-1 molecules will be

selected for.

† Viruses have evolved to invade diverse species across the entire tree of life:

archaea, bacteria, and eukaryotes. Viruses that infect plants (e.g., tomato

bushy stunt virus), animals (e.g., SV40, rhinovirus, and poliovirus), as well

as bacteria (e.g., bacteriophage fX174) all share a “viral b-barrel” or “viral

jelly roll” fold in the capsid protein structure (Hendrix, 1999). Unless a

remarkable case of convergent evolution occurred, this suggests that these

viruses are homologous. A group of reoviruses that infect both plants and

animals has a characteristic double-stranded RNA genome packaged in an

FIGURE 14.3. The viral genomes
page at NCBI provides information
and resources for the study of
viruses. There are links to tools
(such as PASC for comparisons of
viral genomes) and to specialized
NCBI sites on retroviruses, SARS,
and influenza viruses.
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unusual capsid. They share these features in common with a family of

bacteriophages (such as f6), again suggesting homology between viruses

that infect different branches of life (Hendrix, 1999). Notably sequence

identity has not been detected in analysis of genes and/or proteins from

these viral genomes, highlighting the rapid rate of viral genome evolution.

The great diversity of viral genomes precludes us from making comprehensive

phylogenetic trees based on molecular sequence data that span the entire universe

of viruses. This reflects the complex molecular evolutionary events that form viral

genomes (McClure, 2000).

For a variety of viral families, phylogenetic trees have been generated. These are

indispensable in establishing the evolution, host specificity, virulence, and other bio-

logical properties of viral species. We will examine phylogenetic reconstructions of

the herpesviruses. Phylogenetic trees have been generated for HIV (see below) and

for other viruses from measles to hepatitis.

Metagenomics and Virus Diversity
Historically we have classified viruses based on observation of their effects (e.g. by

studying plant or human diseases caused by viruses), based on morphology, or

based on the nature of the nucleic acid in purified virus particles. Metagenomics

projects survey large amounts of genomic sequence from environmental samples

or from host organisms (Chapter 13). Several metagenomics studies have resulted

in the identification of large numbers of virus genomes (reviewed in Edwards and

Rohwer, 2005).

A major metagenomics approach is to characterize DNA sequences in environ-

mental samples. Recently Craig Venter and colleagues surveyed marine planktonic

microbiota in a Global Ocean Sampling expedition (Rusch et al., 2007). Forty-one

samples were collected over a range of 8000 kilometers, and 7.7 million sequencing

reads were obtained. Combining their results with the previous Sargasso Sea survey

(Venter et al., 2004) they reported the identification of 6.1 million proteins. There

was a disproportionately large number of novel protein sequences assigned to viral

genomes, consistent with the view that we have not yet achieved a broad sampling

of viral diversity. Culley et al. 2006 also reported a diverse set of previously unknown

RNA viruses in seawater.

Another metagenomic approach is to sample genomic DNA from individual

organisms. For example, the human gut is colonized by hundreds or thousands of

microbial species, including bacteria and archaea. Many of these prokaryotes are

infected by viruses. Breitbart et al. 2003 analyzed 532 clones from a library created

from viral samples (excluding prokaryotic cells) in the feces of a healthy adult. The

majority of the sequences (59%) were not significantly similar to other known

sequences based on tblastx. Zhang et al. (2006) further described plant pathogenic

RNA viruses in human fecal samples. In a separate metagenomic study, Cox-

Foster et al. (2007) determined DNA sequences associated with colony collapse dis-

order, an apparently recent phenomenon in which honey bee colonies collapse. This

now affects about a quarter of bee-keeping operations in the United States. RNA

samples were collected from hives that are either affected or not, and pyrosequencing

was performed. In addition to bacterial and fungal sequences, a group of RNA

viruses were identified, including one (Israeli acute paralysis virus) associated with

risk for colony collapse disorder.

The accession for Israeli acute

paralysis virus is NC_009025. It is

a picorna-like virus with a genome

that encodes two large proteins.
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BIOINFORMATICS APPROACHES TO PROBLEMS IN VIROLOGY

The tools of bioinformatics are well suited to address some of the outstanding

problems in virology:

† Why does a virus such as HIV-1 infect one species selectively (human) while a

closely related virus (simian immunodeficiency virus) infects monkeys but

not humans? Analysis of the sequence of the viruses as well as the host cell

receptors can address this question.

† Why do some viruses change their natural host? In 1997 a chicken influenza

virus infected 18 humans, killing 6. Are there changes in the genome of the

virus, or of the host, or both that facilitate cross-species changes in specificity?

† Why are some viral strains deadlier than others? We will explore the properties

of the 1918 influenza virus that killed an estimated 50 million people.

† What are the mechanisms of viral evasion of host immune systems? We

will see below how some herpesviruses acquire viral homologs of human

immune system molecules and thus interfere with human antiviral

mechanisms.

† Where did viruses originate? There are three main theories:

1. The regressive theory suggests that viruses are derived from more complex

intracellular parasites that eliminated many nonessential features.

2. Viruses could be derived from normal cellular components that now repli-

cate autonomously.

3. Viruses could have coevolved with their host cells, possibly originating from

self-replicating RNA molecules.

Phylogenetic analyses could help resolve these theories.

† Which vaccines are most likely to be effective? There are two main approaches

to developing vaccines for viruses that display a great amount of molecular

sequence diversity. One approach is to select isolates of a particular subtype

based on regional prevalence. A second approach is to deduce an ancestral

sequence or a consensus sequence for use as an antigen in vaccine develop-

ment (Gaschen et al., 2002). These approaches depend on molecular

phylogeny.

INFLUENZA VIRUS

The “Spanish” influenza pandemic of 1918–1919 infected hundreds of millions of

people, and is estimated to have killed 50 million people. The death rate among

otherwise healthy young adults was especially high. Why was it so deadly?

Influenza virus pandemics returned in the 1957 “Asian” flu, and the 1968 “Hong

Kong” flu. More recently, the avian influenza subtype H5N1 infected over 300

humans and killed over 200 of them, and also led to the slaughter of millions of

birds. Many wild birds such as ducks, geese, swans, and gulls are infected with influ-

enza A (Olsen et al., 2006). Will an avian influenza virus like H5N1 infect humans

globally? What are the properties of the influenza genome, and how can genome

analyses help us to predict the next epidemic and devise strategies to prevent and/

or treat its effects? In addition to the deadly avian flu strain, other subtypes of

The World Health Organization

(WHO) maintains a listing of

confirmed human cases of avian

influenza A (H5N1) (Q http://
www.who.int/csr/disease/avian_

influenza/country/en/). As of

December 2007 there were 336

laboratory-confirmed cases and

207 deaths.
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influenza virus are estimated to cause 250,000 to 500,000 deaths annually (36,000

deaths annually in the United States).

The influenza genome exists in several strains, each consisting of about 12,500 to

14,500 bases of single-stranded negative sense RNA and encoding 9 to 11 genes

(Table 14.3). The genome of influenza A consists of eight segments (ranging in

length from 890 to 2341 nucleotides) named PB1, PB2, PA, HA, NP, NA, M, and

NS (Fig. 14.4 and Table 14.4). The hemagglutinin (HA) and neuraminidase (NA)

segments encode two key surface glycoproteins that together define viral subtypes.

The HA and NA segments occur in particular combinations that account for the anti-

genic variation of the virus. These combinations include H1N1, H2N2, and H3N2.

The 1918 pandemic was of the H1N1 subtype, while subsequent pandemics in 1957

and 1968 were dominated by the H2N2 and H3N2 subtypes, respectively

TABLE 14-3 Influenza Viruses: Family Orthomyxoviridae Complete Genomes
Virus Source Information Segments Length (nt) Proteins

Influenzavirus A

Influenza A virus
(A/Goose/
Guangdong/1/
96(H5N1))

Strain: A/Goose/
Guangdong/1/96(H5N1)

8 13,590 11

Influenza A virus
(A/Hong
Kong/1073/
99(H9N2))

Serotype: H9N2

Strain: A/Hong Kong/
1073/99

8 13,498 11

Influenza A virus
(A/Korea/426/
68(H2N2))

Serotype: H2N2

Strain: A/Korea/426/68 8 13,460 11

Influenza A virus
(A/New York/
392/
2004(H3N2))

Serotype: H3N2

Strain: A/New York/392/
2004

8 13,627 11

Influenza A virus
(A/Puerto
Rico/8/
34(H1N1))

Serotype: H1N1

Strain: A/Puerto Rico/8/34 8 13,588 11

Influenzavirus B

Influenza B virus Strain: B/Lee/40 8 14,452 11

Influenzavirus C

Influenza C virus Strain: C/Ann Arbor/1/50 7 12,501 9

Isavirus

Infectious salmon
anemia virus

Isolate: CCBB 8 12,716 10

Thogotovirus

Thogoto virus Strain: SiAr 126 6 10,461 7

Source: NCBI (Q http://www.ncbi.nlm.nih.gov/genomes/VIRUSES/11308.html), December 2007.
Genus ranks are in bold.
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(Fig. 14.5). In the 1957 and 1968 pandemics the viruses resembled human strains

into which avian HA, NA, and PB1 molecules became incorporated, while the

recent Asian outbreaks are caused by avian strains that infected humans.

An Influenza Genome Sequencing Project has achieved the remarkable

accomplishment of sequencing 2800 full influenza genomes. All the sequence data

are available through GenBank (Bao et al., 2008). This project provides an opportu-

nity to address a range of fundamental questions about influenza viruses. One

approach that has been taken is to characterize the genomes of avian influenza

isolates. Obenauer et al. 2006 analyzed 169 complete avian influenza genomes and

reported strong positive selection for an alternatively spliced transcript of the

PB1 gene (the nonsynonymous to synonymous substitution rate ratio dN/dS

FIGURE 14.4. Schematic of the
eight segments from a typical
Influenza A virus (from NCBI).

TABLE 14-4 Genes in a Representative Influenza AVirus Complete Genome (A/Puerto Rico/8/
34(H1N1)),Taxonomy Identifier 211044

Gene Segment
Protein

Accession
Length (Amino

Acids) Name

PB2 1 NP_040987 759 RNA-dependent RNA
polymerase subunit PB2

PB1 2 NP_040985 757 RNA-dependent RNA
polymerase subunit PB1

PA 3 NP_040986 716 RNA-dependent RNA
polymerase subunit PA

HA 4 NP_040980 566 Hemagglutinin

NP 5 NP_040982 498 Nucleocapsid protein

NA 6 NP_040981 454 Neuraminidase

M2 7 NP_040979 97 Matrix protein 2

M1 7 NP_040978 252 Matrix protein 1

NS1 8 NP_040984 230 Nonstructural protein NS1

NS2 8 NP_040983 121 Nonstructural protein NS2

Source: NCBI (December 2007).

As of January 2009 there have

been 5000 human and avian

influenza genomes sequenced or

in progress. These genome

sequences have been deposited in

GenBank and can be accessed

through the NCBI influenza virus

resource (Q http://www.ncbi.

nlm.nih.gov/genomes/FLU/
FLU.html).
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[see Chapter 7] was over 9). In addition to performing phylogenetic analyses to dis-

tinguish emerging viral clades, Obenauer et al. described “proteotyping” in which

unique amino acid signatures of viral proteins are identified and used to define

molecular subtypes.

The analysis of human influenza virus strains has provided information about

influenza evolution and diversity. In one approach Ghedin et al. (2005) sequenced

209 human influenza A genomes taken from one geographic location (New York

State) over a period of several years (1998–2004). They plotted the amino acid

positions from 207 viruses as a function of year and presented evidence for segment

exchange between viruses. Reassortment among recent H3N2 strains was also

reported by Holmes et al. (2005). Large-scale surveillance through genome sequen-

cing permits the frequency of mutations and segment exchanges to be estimated,

both within human influenza strains and between avian and human subtypes.

In a dramatic effort to understand the nature of the 1918 influenza virus, Jeffery

Taubenberger, Terrence Tumpey, and colleagues isolated it and determined its full

genome sequence. Viral nucleic acid was purified from historic samples, including

an Alaskan woman and several soldiers who died of the 1918 flu. Taubenberger

et al. 2005 proposed that the 1918 virus was entirely of avian origin (in contrast to

the 1957 and 1968 strains that were reassortment viruses). Tumpey et al. (2005) cre-

ated a viral strain having the complete coding sequences of the eight viral segments of

the 1918 virus. They introduced the 1918 virus into mice, where it caused a titer from

125 to 39,000 higher than in mice exposed to a contemporary, less virulent strain.

Lethality was 100-fold greater, with all mice dying within six days of infection (but

none dying from the less virulent strain). This work carries considerable risk, but

allows analysis of mutations that confer virulence. For example, a mutation found

in the polymerase gene PB2 was also found in the virus isolated from a recent fatal

case of bird flu involving the H7N7 subtype (von Bubnoff, 2005). Such analyses

may aid surveillance efforts as we prepare for the next influenza pandemic

(Taubenberger et al., 2007).

1920
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2000

2020

1918 

1968 

H3

H1N1

H3N2

2006 

H1N1

1957 
H2N2

FIGURE 14.5. Summary of influ-
enza A strains. Analysis of archived
tissue samples indicates that prior
to 1918, the H3 strain predomi-
nated, while the great pandemic of
1918 was of the H1N1 subtype.
Subsequent pandemics were associ-
ated with the H2N2 and H3N2
subtypes, while the H1N1 subtype
has gained in recent decades.
Adapted from Enserink 2006.
Used with permission.
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HERPESVIRUS: FROM PHYLOGENY TO GENE EXPRESSION

Herpesviruses are a diverse group of double-stranded DNAviruses that include herpes

simplex, cytomegalovirus, and Epstein-Barr virus (McGeoch et al., 2006). As an

example of viral phylogeny, McGeoch et al. analyzed well-conserved genes to deduce

a phylogeny of the herpesviruses. Their phylogenetic reconstruction agrees with a

proposed major taxonomy of the herpesviruses (family Herpesviridae) in three

subfamilies: a-herpesviruses (formally called Alphaherpesvirinae), b-herpesviruses

(Betaherpesvirinae), and g-herpesviruses (Gammaherpesvirinae). This and similar

analyses (Davison, 2002; McGeoch et al., 1995) provide great insight into the origin,

diversity, and function of herpesviruses. Each herpesvirus is associated with a single

host species (although some hosts, including humans, are infected by a variety of her-

pesviruses). This specificity suggests that herpesviruses have coevolved with their

hosts over millions of years. Within each of the three subfamilies, the branching order

showing the emergence of various herpesvirus subtypes corresponds to the emergence

of the corresponding host organisms (Fig. 14.6). This suggests coevolution of the virus

and host lineages. Figure 14.6a shows the timescale for the emergence of major

Eutherian (placental mammal) lineages. Figure 14.6b to d shows the three herpesvirus

subfamilies with molecular clocks. Note for example that in Fig. 14.6b there is a clade

(thick red lines) of herpesviruses of the genus Varicellovirus (containing artiodactyls,

perissocdactyl, and carnivore viruses). Note the correspondence of this clade structure

to the evolution of those host organisms in Fig. 14.6a. McGeoch et al. 2006 estimate

that the herpesiviruses shown in Fig. 14.6 arose about 400 million years ago.

FIGURE 14.6. Phylogeny of the
herpesviruses and comparison to
the evolution of host genomes.
(a) Phylogenetic tree for eight
orders of the Eutheria (placental
mammals), all of which are hosts
to herpesviruses. Three deep clades
are indicated in thick red,
thin red, and gray. (b) Alpha-, (c)
Beta-, and (d) Gammaherpesviri-
nae are indicated with the hosts
and examples of viruses. The diver-
gence scales (in units of substi-
tutions per site) are indicated.
Abbreviations: NW, New World;
OW, Old World. For virus abbrevi-
ations see the source of this figure,
McGeoch et al. 2006. Used with
permission. 0.1 divergence

Lymphocryptovirus

Percavirus

Rhadinovirus

0.1 divergence

OW Primate
Scandent
Rodent
Human
Human
Artiodactyl
Proboscid

HCMV

EEHV
PCMV
HHV-7
HHV-6
MCMV
THV

Cytomegalovirus

Muromegalovirus

Roseolovirus

Proboscivirus

--

--

}

}OW Primate
NW Primate
Artiodactyl
Perissodactyl
Carnivore
OW Primate
NW Primate
Rodent
Artiodactyl
Perissodactyl

EBV
MarLCV
AHV-1
EHV-2
Badger HV
HHV-8
HVS
MuHV-4
BHV-4
Rhinoceros HV

Macavirus

}

(a) Eutheria

100 50 0
Millions of years before present

Rodentia

NW Primates
Scandentia

OW Primates

Artiodactyla
Perissodactyla
Carnivora
Probascidea

(c) Beta herpesvirinae

(b) Alphaherpesvirinae

0.1 divergence

Artiodactyl
NW Primate

OW Primate
Artiodactyl
Marsupial

Perissodactyl
Carnivore
OW Primate
Avian
Avian
Reptilian

HSVs

Simplexvirus}
}

BHV-2
Wallaby HVs
HVS-1, HVA-1

Turtle HVs
ILTV
MDVs
VZV
FHV-1
EHV-1
BHV-1 Varicellovirus

Mardivirus
Iltovirus
--

(d) Gammaherpesvirinae

}

The Alloherpesviridae comprise a

distinct family of piscine and

amphibian herpesviruses, and a

single known virus that infects

invertebrates is assigned to a third

family, the Malacoherpesviridae.
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Consider human herpesvirus 8 (HHV-8), a g-herpesvirus (Fig. 14.6d). HHV-8

is also called Kaposi’s sarcoma-associated herpesvirus, and it was initially identified

by representational difference analysis in Kaposi’s sarcoma lesions of AIDS patients

(Chang et al., 1994). HHV-8 causes AIDS-associated Kaposi’s sarcoma and other

disorders, such as primary effusion lymphoma and multicentric Castleman’s

disease. HHV-8 is closely related to rhesus rhadinovirus (RRV). The divergence of

the HHV-8 and RRV may have coincided with speciation of humans and rhesus

monkeys (Davison, 2002). The presence of both HHV-8 and an additional HHV-

8-related virus in chimpanzees suggests that an additional virus may be identified

that infects humans.

What is the molecular basis for the cycle of latent and lytic infection by HHV-8?

The genome is about 140,000 bp (NC_003409) and encodes over 80 proteins

(Russo et al., 1996). We can explore the genome at the NCBI website using the

Entrez genomes tool (Chapter 13). There are additional NCBI resources for the

study of viruses. From a viral genomes home page (Fig. 14.3) you can link to

double-stranded DNA viruses (such as the herpesviruses) or you can select the

protein clusters tool (Fig. 14.7). From this site, you can browse the double-stranded

DNA viruses (Fig. 14.8) and obtain a list of several dozen herpesvirus genomes.

The protein clusters tool also allows you to search by functional categories

(Fig. 14.9), analogous to the COGs tool (Chapter 15). Select HHV-8 and you can

view the open reading frames encoded by its genome in a graphic form or as a table

(Fig. 14.10).

The HHV-8 proteins include virion structural and metabolic proteins.

Interestingly, it also contains a variety of viral homologs of human host proteins,

such as complement-binding proteins, the apoptosis inhibitor Bcl-2, dihydrofolate

reductase, interferon regulatory factors, an interleukin 8 (IL-8) receptor, a neural

cell adhesion molecule–like adhesin, and a D-type cyclin.

How can viral genomes acquire a motif or an entire gene from a host organism?

This can occur by a variety of mechanisms, including recombination, transposition,

splicing, translocation, and inversion (McClure, 2000). Consider the IL-8 receptor,

a eukaryotic protein that functions in cell growth and survival. This receptor is a

member of the large family of G-protein-coupled receptors, including rhodopsin

FIGURE 14.7. The NCBI clusters
of related viral proteins (VCOG)
website. See Q http://www.ncbi.
nlm.nih.gov/genomes/VIRUSES/
vog.html.

Kaposi’s sarcoma is the most

common tumor related to AIDS.

It is a vascular malignancy that is

typically first apparent in the skin.
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(that responds to light), the beta-adrenergic receptor (that binds adrenalin), and a

variety of neurotransmitter receptors. Several viruses in addition to HHV-8 contain

genes that encode a viral IL-8 receptor. A blastp search using this protein as a

query reveals that several viruses have proteins that are distinct from but closely

related to mammalian IL-8 receptors (Fig. 14.11). Presumably, when the virus

infects a mammalian cell, this viral IL-8 protein is expressed and confers growth

and survival that is advantageous to the virus (Wakeling et al., 2001).

FIGURE 14.9. The Clusters of
Related Viral Proteins page allows
searches based on assigned func-
tional categories.

FIGURE 14.8. From the NCBI
VCOG page, you can obtain a list
of double-stranded DNA virus
protein families. This includes the
Herpesviridae.
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Two complementary approaches have been taken to further study the function of

viral genes (such as v-IL-8 receptor) as well as mechanisms of HHV-8 infection.

Paulose-Murphy et al. (2001) synthesized a microarray that represents 88 HHV-8

open reading frames and measured the transcriptional response of viral genes that

FIGURE 14.10. The HHV-8
genome at NCBI. Five of the 82 pro-
teins are shown. By clicking the
length histograms, particular pro-
teins can be selected based on size.

1
2

3

4

FIGURE 14.11. A viral protein is a G-protein-coupled receptor that is homologous to a superfamily
of mammalian G-protein-coupled receptors, including a high affinity interleukin 8 (IL-8) receptor.
Closely related homologs of this viral protein (open reading frame 74 or ORF74; RefSeq accession
NP_572131) exist in several viruses, including Kaposi’s sarcoma-associated herpesvirus (also called
HSV-8) and a murine g-herpesvirus. Database matches include HHV8 ORF74 (arrow 1), other
viral proteins such as a Macaca fuscata rhadinovirus (arrow 2), interleukin 8 receptor from a var-
iety of vertebrates including rat (arrow 3) and human (arrow 4). The gene encoding this receptor
was presumably of mammalian origin and integrated into the genomes of several viruses. Upon
viral infection, this receptor may promote growth and survival of infected cells.
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are activated during the lytic replication cycle of HHV8 in human cells. They

measured gene expression across a time series after inducing lytic infection and

described clusters of genes that are coexpressed. Such genes may be functionally

related. Clusters of genes coexpressed at early time points include several implicated

in activation of the lytic viral cycle; another group of genes encode proteins that func-

tion in virion assembly (Fig. 14.12). The viral homologs of human proteins were

expressed throughout the induced lytic cycle.

FIGURE 14.12. Two-way hierarchi-
cal clustering of microarray data
using an HHV-8 array to measure
HHV-8 gene expression in infected
human cells. The temporal
expression ratios of genes were
compared pairwise and grouped
according to their similarity. The
columns indicate separate time
points (hours postinduction of the
viral lytic cycle). The row displays
the expression profile of each
single open reading frame. The
normalized expression ratios
across all time points are color
coded to denote the level of up- or
downregulation. The dendrogram
at left groups genes based on simi-
lar gene expression patterns
across time. This approach is
useful to discern the function of
viral genes during infection. From
Paulose-Murphy et al. (2001).
Used with permission.

Apoptosis is a type of programmed

cell death in which the cell actively

commits suicide. It serves as a

mechanism by which a host cell

can destroy infected cells, pre-

venting a pathogen from spreading

throughout the body. However,

viruses have adapted to manip-

ulate the cellular death pathway.
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In an independent study, Poole et al. (2002) infected human dermal micro-

vascular endothelial cells with HHV-8 and measured the transcriptional response

of host cells to both latent and lytic virus infection. HHV-8 transforms the endothelial

cells from a cobblestone shape to a characteristic spindle shape. Kaposi’s sarcoma

is associated with many additional pathological features, including angiogenesis

and immune dysregulation. The endothelial genes regulated by HHV-8 infection

included those such as interferon-responsive genes involved in immune function

and genes encoding proteins with roles in cytoskeletal function, apoptosis, and

angiogenesis. Such studies may be useful in defining the cellular response to

viral infection.

HUMAN IMMUNODEFICIENCY VIRUS

Human immunodeficiency virus is the cause of AIDS (reviewed in Meissner and

Coffin, 1999). Until recently, HIV has been uniformly fatal. Most of the symptoms

of AIDS are not caused directly by the virus but instead are a consequence of the abil-

ity of the virus to compromise the host immune system. Thus, HIV infection leads to

disease caused by opportunistic organisms.

At the end of the year 2006, close to 33 million people were infected with AIDS

worldwide, and an additional 16 million people have died from AIDS. The preva-

lence of AIDS is increasing by about 3% per year. There have been many multina-

tional efforts to combat HIV/AIDS across disciplines from treatment to prevention

(Piot et al., 2004).

HIV-1 and HIV-2 are retroviruses of the group lentivirus. The viruses probably

originated in sub-Saharan Africa, where the diversity of viral strains is greatest and the

infection rates are highest (Sharp et al., 2001). The primate lentiviruses occur in five

major lineages, as shown by a phylogenetic tree based on full-length pol protein

sequences (Fig. 14.13a; see arrows 1 to 5) (Hahn et al., 2000; see also Rambaut

et al., 2004; Heeney et al., 2006). These five lineages are:

1. Simian immunodeficiency virus (SIV) from the chimpanzee Pan troglodytes

(SIVcpz), together with HIV-1

2. SIV from the sooty mangabeys Cerecocebus atys (SIVsm), together with HIV-2

and SIV from the macaques (genus Macaca; SIVmac)

3. SIV from African green monkeys (genus Chlorocebus; SIVagm)

4. SIV from Sykes’ monkeys, Cercopithecus albogularis (SIVsyk)

5. SIV from l’Hoest monkeys, Cercopithecus lhoesti (SIVlhoest); SIV from sun-

tailed monkeys (Cercopithecus solatus; SIVsun); and SIV from a mandrill

(Mandrillus sphinx; SIVmnd)

A prominent feature of phylogenetic analyses such as those in Fig. 14.13a is that

viruses appear to have evolved in a host-dependent manner (Hahn et al., 2000).

Viruses infecting any particular nonhuman primate species are more closely related to

one another than they are related to viruses from other species. For HIV-2, transmission

from the sooty mangabeys was indicated by five lines of evidence (Hahn et al., 2000):

1. Similarities in the genome structures of HIV-2 and SIVsm

2. Phylogenetic relatedness of HIV-2 and SIVsm (see Fig. 14.12, arrow 4)

Angiogenesis is the development

of blood vessels. Infectious viruses

(and cancerous tumors) require

the presence of an adequate blood

supply and sometimes promote

angiogenesis.

Information about AIDS is avail-

able at Q http://www.niaid.nih.

gov/factsheets/aidsstat.htm, an

NIH website. Information on

prevalence is from the Centers for

Disease Control and Prevention at

Q http://www.cdc.gov/hiv/
resources/factsheets/ and

UNAIDS and the World Health

Organization at Q http://www.

unaids.org/.

Prevalence of a disease (or infec-

tion) is the proportion of individ-

uals in a population who have a

disease at a particular time.

Prevalence does not describe

when individuals contracted a

disease. Incidence is the frequency

of new cases of a disease that occur

over a particular time. For

example, the incidence of a dis-

ease might be described as 10 new

cases per 1000 people in the gen-

eral population in a given year.

As of November 2007, GenBank

contains over 200,000 nucleotide

records for HIV-1. To see this, go

to the Taxonomy browser page

and enter HIV-1. If you limit the

output in a search of the Entrez

nucleotide database to RefSeq

entries, there is only one entry: the

complete HIV-1 genome

(NC_001802).
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3. Prevalence of SIVsm in the natural host

4. Geographic coincidence of those affected and the natural host

5. Plausible routes of transmission, such as exposure of humans to chimpanzee

blood in markets

Similar arguments have been applied to HIV-1, which probably appeared in

Africa in 1930 to 1940 as a cross-species contamination by SIVcpz. HIV-1 occurs

FIGURE 14.13. Evolutionary rel-
ationships of primate lentiviruses.
(a) Full-length Pol protein sequ-
ences were aligned and a tree was
created using the maximum-likeli-
hood method. There are five major
lineages (arrows 1 to 5). The scale
bar indicates 0.1 amino acid replace-
ments per site after correction for
multiple hits. (b) The HIV-1/
SIVcpz lineage is displayed based
on a maximum-likelihood tree
using Env protein sequences. Note
that the three major HIV-1 groups
(M, N, O; arrows 6 to 8) are distin-
guished. The scale bar is the same as
in (a). From Hahn et al. (2000).
Used with permission.

1

2

3

4

5

6

7

8

(a)

(b)

The Entrez Genome section

(Q http://www.ncbi.nlm.nih.gov/
entrez/query.fcgi?db ¼ Genome)

includes a listing of thousands of

viruses. As of November 2007,

there are almost 2500 completed

virus genome sequences available
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in three major subtypes, called M, N, and O. This is consistent with the occurrence of

three separate SIVcpz transmissions to humans: M is the main group of HIV-1

viruses; O is an outlier group; and N is also distinct from M and O. The three

main HIV-1 subtypes are apparent in a phylogenetic tree generated from full-

length Env protein sequences (Fig. 14.13b, arrows 6 to 8) (Hahn et al., 2000).

We saw an NCBI entry for HIV-1 in Fig. 2.12; the genome is 9181 bases and

encodes nine proteins. While the HIV-1 genome is small and there are few gene pro-

ducts, GenBank currently has about 200,000 nucleotide sequence records and an

equal number of protein records. The reason for this enormous quantity of data is

that HIV-1 mutates extremely rapidly, producing manysubtypes of the M, N, and O var-

iants. Thus, researchers sequence HIV variants very often. A major challenge for virol-

ogists is to learn how to manipulate such large amounts of data and how to use those data

to find meaningful approaches to treating orcuring AIDS. Wewill next describe two bioin-

formatics resources for the study of HIV molecular sequence data: NCBI and LANL.

Bioinformatic Approaches to HIV-1
The NCBI website offers several ways to study retroviruses, including HIV. You can

access information on HIV-1 via the Entrez Genome site at NCBI, as we have

described for HHV-8 above.

NCBI also offers a dedicated resource for the study of retroviruses (Fig. 14.14).

This site includes the following:

† A genotyping tool based on BLAST searching

† A multiple sequence alignment tool specific for retroviral sequences

† A reference set of retroviral genomes

FIGURE 14.14. Retroviruses
resource from NCBI (Q http://
www.ncbi.nlm.nih.gov/
retroviruses/).

at this site. Additionally there are

500 phage sequences and three

dozen viroids (infectious agents

with RNA genomes that cause

diseases in plants). Under the

virus category of “Entrez gen-

omes” a link is provided to this

virus (listed alphabetically) and to

the HIV-1 accession number

(NC_001802). By clicking on the

name of the virus, one is linked to

the NCBI taxonomy browser,

which includes information on the

lineage of HIV-1 (Viruses; Retroid

viruses; Retroviridae; Lentivirus;

Primate lentivirus group) as well

as links to dozens of HIV-1 var-

iants. From the Entrez Genome

page, by clicking on the accession

number NC_001802, one links to

the Entrez Nucleotide (GenBank).

entry for HIV-1. As indicated in

the entry, this is a 9181-base

single-stranded RNA molecule.

On the left sidebar, by clicking

“Coding Regions,” one links to a

table listing the coding regions in

the virus. This is a convenient way

to obtain the DNA (or amino acid)

sequence corresponding to a

specific gene (or protein) of

interest.
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† Specific pages with tools to study HIV-1, HIV-2, SIV, human T-cell lympho-

tropic virus type 1 (HTLV), and STLV

† A listing of the previous week’s publications on retroviruses

† A listing of the previous week’s GenBank releases (many hundreds of new

HIV-1 sequences are deposited weekly)

† Links to external retroviral website resources

A fundamental resource for the study of several virus types including HIV is the

Los Alamos National Laboratory (LANL) which operates a group of four HIV

FIGURE 14.15. The geography
tool at LANL allows you to view
HIV infection subtypes (a) globally
or (b) by continent (Africa is
shown). The subtype distribution
is displayed using pie charts. This
geography tool is available at Q

http://www.hiv.lanl.gov/ through
the tools section.

From the NCBI home page

(Qhttp://www.ncbi.nlm.nih.gov/),

select “All Databases” then

“Genomes” to find viruses

resources, or go directly to

“Retrovirus Resources” (Q http://
www.ncbi.nlm.nih.gov/
retroviruses/). NCBI also offers a

database of interactions between

HIV and human proteins

(Q http://www.ncbi.nlm.nih.gov/
RefSeq/HIVInteractions/).
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databases. The HIV Sequence Database is an important, comprehensive repository

of HIV sequence data. It allows searches for sequences by common names, accession

number, PubMed identifier, country in which each case was sampled, and likely

country in which infection occurred. Sequences may be retrieved as part of a multiple

sequence alignment or unaligned, and groups of sequences derived from an individ-

ual patient may be retrieved. The site includes a variety of specialized tools, including:

† An HIV BLAST server

† SNAP (Synonymous/Non-synonymous Analysis Program), a program that

calculates synonymous and nonsynonymous substitution rates

† Recombinant Identification Program (RIP), a program that identifies mosaic

viral sequences that may have arisen through recombination

† A multiple alignment program called MPAlign (Gaschen et al., 2001) that

uses HMMER software (Chapter 6)

† PCoord (Principal Coordinate Analysis), a program that performs a pro-

cedure similar to principal components analysis (Chapter 9) on sequence

data based on distance scores

† A geography tool that shows both total HIV infection levels (either worldwide or

by continent) as well as the subtype distribution of HIV (Figs. 14.15a and b)

The LANL website includes other databases that provide important tools for the

bioinformatic analysis of HIV-1 and related viruses. The HIV Drug Resistance

Database allows you to browse HIV-1 genes to identify specific drugs that are affected

by amino acid substitutions in that gene product (Fig. 14.16). This information is

FIGURE 14.16. The HIV Drug
Resistance Database compiles
amino acid substitutions in HIV
genes that confer resistance to
anti-HIV drugs. The browse tool
(available via Q http://resdb.
lanl.gov/Resist_DB/default.htm)
allows you to search any HIV-1
gene for substitutions. The data
can be sorted by many criteria as
shown in the pull-down menu.

The LANL HIV databases are

available at Q http://hiv-web.lanl.

gov/. This site offers four data-

bases: sequence, resistance,

immunology, and vaccine trials. In

the HIV Sequence Database you

can find the geography tool by

selecting Tools and then

Geography.
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also displayed graphically with the mapping tool in the HIV Drug Resistance

Database. This clickable plot shows the complete amino acid sequence of an HIV

protein (e.g., the protease; Fig. 14.17a, arrow 1). Each row contains a different

drug, and amino acid substitutions associated with the resistance of HIV to each of

the drugs are also displayed. Clicking on a substituted amino acid (Fig. 14.17,

arrow 2) leads to a report describing the mutation in detail (Fig. 14.17b).

MEASLES VIRUS

Measles virus is one of the deadliest viruses in human history. Today, it is the leading

cause of death in children in many countries, killing over one million infants each year

(Johnson et al., 2000). Vaccines have helped to reduce the mortality and morbidity

rates, but the presence of an immature immune system and maternal antibodies

FIGURE 14.17. (a) The LANL
website offers a map of HIV-1 pro-
tease mutations versus drugs. Each
row represents a drug (labeled at
right). The wild-type (strain
HXB2) HIV-1 protease sequence
is listed at top and bottom (arrow
1). Dashes indicate wild-type
amino acid positions, while
mutations that confer resistance
to the drug are indicated. An
example of a K-to-R (lysine-to-
arginine) mutation is indicated
(arrow 2). The small number
(41) indicates the “fold resistance”
of that particular mutation.
Mutations that have a colored
shape pointing to them are also
part of a synergistic combination
of mutations. (b) By clicking on
the position of a mutation (arrow
2), the map links to a detailed
report of the effects of that
mutation.

(a)

(b)

1 2

The LANL Protease Mutations-

by-Drug Map is available at

Q http://resdb.lanl.gov/Resist_

DB/protease_mutation_map.

htm.

Before the measles vaccination

was introduced in the United

States, there were 450,000 cases

annually (and about 450 deaths).

See Q http://www.cdc.gov/nchs/
fastats/measles.htm.
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prevent successful immunization in newborns before nine months of age. The virus

spreads by respiratory droplets, infecting epithelial cells in the respiratory tract. In

2004 measles caused over 450,000 deaths in sub-Saharan Africa, and thus this dis-

ease is a leading vaccine-preventable cause of child mortality (Moss and Griffin,

2006).

The measles virus is a Morbillivirus of the Paramyxoviridae family, which

includes mumps and respiratory syncytial virus. Rota and Bellini (2003) reviewed

the worldwide distribution of 14 different measles virus genotypes. You can access

a reference genome through the NCBI Entrez genomes resource (accession

NC_001498). Measles virus consists of a nonsegmented, negative sense RNA

genome protected by nucleocapsids and an envelope. The genome has 15,894

bases and encodes seven proteins. These sequences can be accessed by clicking on

the “coding regions” option on the left sidebar of the Entrez record (Fig. 14.18a).

Six genes are designated N (nucleocapsid), P (phosphoprotein), M (matrix),

(a)

(b)

FIGURE 14.18. Analysis of the
measles virus genome. (a) The
measles virus entry is accessed
from the NCBI Entrez website. By
clicking on the “Coding Regions”
option on the left sidebar, (b) a
list of the protein-coding genes is
obtained. These genes are desig-
nated N (nucleocapsid), P (phos-
phoprotein), M (matrix), F
(fusion), H (hemagglutinin), and
L (large polymerase). Note that
the P gene is predicted to encode
another protein (nonstructural C
protein) using an alternative start
site on a different reading frame.

Another member of the

Paramyxoviridae family is the

cause of rinderpest, an ancient

plague of cattle (Barrett and

Rossiter, 1999). These viruses

have had a devastating impact on

both humans and ruminants.
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F (fusion), H (hemagglutinin), and L (large polymerase) (Fig. 14.18b). The P gene is

predicted to encode another protein (nonstructural C protein) using an alternative

start site on a different reading frame. It is easy to visualize this by clicking on the

Entrez nucleotide record, then choosing the “Graphics” display option

(Fig. 14.19). This shows where the measles virus genome encodes the nonstructural

C protein.

The functions of the six measles virus proteins have been assigned: N binds to

genomic RNA and surrounds it, P and L form a complex involved in RNA synthesis,

M links the ribonucleoprotein to the envelope glycoproteins H and F which are

inserted in the virus membrane on the surface of the virion, H binds the cell surface

receptor through which the virus enters its host, and F is a fusion protein that pro-

motes insertion of the virus into the host cell membrane. The functions of each of

these proteins can be assessed by performing BLAST searches. For the nonstructural

C protein, a blastp nonredundant (nr) search reveals homology to proteins encoded

by the genomes of rinderpest virus, canine and phocine (seal) distemper virus, and

dolphin morbillivirus. A blastp nr search with the viral hemagglutinin reveals mem-

bership in a Pfam family (pfam00423, Hemagglutinin-neuraminidase), and there are

several hundred matches to measles virus hemagglutinin. Repeat the search with the

Entrez limit “hemagglutinin NOT measles virus[Organism]” and the results are

reduced to several dozen hemagglutinins from the homologous morbilliviruses

other than measles. A PSI-BLAST search identifies hundreds of additional

FIGURE 14.19. The “graphics”
display (arrow 1) of any Entrez
nucleotide entry shows a map of
the DNA sequence along with the
corresponding protein sequences.
It is easy to zoom in or out for a
more detailed or global view of
the sequence (arrow 2). The por-
tion of the measles genome that is
displayed is indicated in a graphical
overview (arrow 3). Usage of an
alternative start site allows the
measles genome to encode two dis-
tinct proteins using nonoverlap-
ping reading frames (arrow 4).

1

2

3

4
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hemagglutinins from viruses such as human parainfluenza, mumps, and a turkey

rhinotracheitis virus.

PERSPECTIVES

Several thousand species of viruses are known. In contrast, there may be tens or hun-

dreds of millions of species of bacteria and archaea (Chapter 15) and perhaps tens of

millions of eukaryotic species (Chapters 16 to 18). There are probably relatively

few species of viruses because of their specialized requirements for replication in

host cells.

Essentially all the bioinformatic tools that are applied to eukaryotic or prokaryo-

tic protein and nucleic acid sequences are applicable to the study of viruses as well

(Kellam, 2001).

† BLAST, PSI-BLAST, and other database searches may be applied to define

the homology of viral sequences to other molecules.

† Microarrays have been used to represent viral genes, allowing an assessment of

viral gene transcription during different phases of the viral life cycle.

† In independent approaches, the transcriptional response of host cells to viral

infection has begun to be characterized.

† Structural genomics approaches to viruses result in the identification of three-

dimensional structures of viral proteins. Some structures are solved in the pre-

sence of pharmacological inhibitors. The Entrez protein division of NCBI

currently includes over 3200 virus structural records.

PITFALLS

Viruses evolve extremely rapidly, in large part because some viral polymerases tend to

operate with low fidelity. It is for this reason that a person infected with HIV may

harbor millions of distinct forms of the virus, each with its own unique RNA

sequence. Thus, it may be difficult to define a single canonical sequence for some

viruses. This complicates attempts to study the evolution of viruses and the functions

of their genes.

While the tree of life has been described using rRNA or other sequences

(Chapter 13), viruses are almost entirely absent from this tree. This is because

there are no genes or proteins that all viruses share in common with other life

forms or with each other.

WEB RESOURCES

We have focused on ICTVdb, NCBI, and LANL tools. Many

specialized databases have been established for the study of

viruses, including those listed in Table 14.5. Project VirgO offers

software tools, including the Viral Genome Organizer, for the

graphical display of viral sequences (Upton et al., 2000). This

site also contains a Viral Genome DataBase (VGDB) with analyses

of the properties of viral genomes such as GC content. The

Stanford HIV RTand Protease Sequence Database offers an algor-

ithm that can be queried with an input viral DNA sequence (Rhee

et al., 2003). The output describes possible mutations in the viral

gene and an interpretation of likely susceptibility of that protein to

drug resistance.
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DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

TABLE 14-5 Virus Resources Available on theWeb
Resource Description URL

ICTVdb Universal virus database Q http://www.ncbi.nlm.nih.
gov/ICTVdb/

All the Virology on the
WWW

Provides many virology links
and resources

Q http://www.virology.net/

The Big Picture Book
of Viruses

General virus resource Q http://www.virology.net/
Big_Virology/BVHomePage.
html

VIrus Particle
ExploreER
(VIPER)

High-resolution virus structures
in the Protein Data Bank
(PDB)

Q http://viperdb.scripps.edu/

Viral Genome
Organizer

Analyses of large poxviruses and
other viruses

Q http://athena.bioc.uvic.ca/
tools/VGO

Institute for
Molecular Virology

A research institute at the
University of Wisconsin-
Madison

Q http://virology.wisc.edu/
virusworld/

Stanford HIV Drug
Resistance
Database

A curated database with
information on drug targets

Q http://hivdb.stanford.edu/

[14-1] There is no comprehensive molecular phylogenetic tree of

all viruses. Why not?

[14-2] If you wanted to generate phylogenetic trees that are as

comprehensive as possible, using DNA or RNA or protein

sequences available in GenBank, what molecule(s) would

you select? What database(s) would you search?

[14-1] How many HIV-1 proteins are in Entrez at NCBI? Given the

tremendous heterogeneity of HIV-1, you might expect there

to be thousands of variant forms of each protein. How many

are actually assigned RefSeq accession numbers? How many

measles virus RefSeq proteins are there?

[14-2] Find an HIV-1 protein with a RefSeq identifier in Entrez Protein

(such as the Vif protein, NP_057851; you should select your own

example). Perform a blastp search with it, and inspect the results

using the taxonomy report. Next, repeat the search, excluding

HIV from the output. As an example of how to do this, enter

“vif NOT txid11676[Organism]” or “vif NOT Hiv[Organism]”

into the advanced search option “Limit by Entrez query.” (Note

that you can find the taxonomy identifier txid11676[Organism]

by using the NCBI taxonomy browser.) How broadly is the

gene or protein you selected represented among viruses? Do you

expect some genes to be HIV specific while other genes are

shared broadly by viruses?

[14-3] Analyze a set of influenza viruses using the NCBI Influenza

Virus Resource (Q http://www.ncbi.nlm.nih.gov/genomes/

FLU/FLU.html).

(a) Click tree to begin choosing sequences. Select the virus

species (Influenza A), host (human), country/region

(e.g., Europe), and segment (HA). Include the options

of full-length sequences only, and remove identical

sequences. Click Get sequences.

(b) Construct a multiple sequence alignment and phyloge-

netic tree. Use neighbor-joining. In the case of HA, does

the tree form clades corresponding to H1N1, H3N2, and

H7N7 subtypes? Optionally, export the sequences in the

fasta format, perform your own multiple sequence align-

ments using MAFFT or MUSCLE (Chapter 6), then

import the alignment into MEGA (or other software) to

perform phylogenetic analyses yourself.

[14-4] Analyze HIV sequences at the HIV Sequence Database

(http://www.hiv.lanl.gov/). Select the search interface, then

choose genomic regions with the Vif coding sequence (Vif

CDS). Restrict the output to ten sequences. Select these, and

click “Make tree.” Include the reference sequences HXB2.

Choose a distance model (the default is Felsenstein 1984)

and either equal site rates or a gamma distribution. How

many clades do you observe? What do these clades represent?

Note that you can download the multiple sequence alignment

used to generate the tree to perform further phylogenetic

analyses.
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SELF-TEST QUIZ

[14-1] There are several thousand known viruses, while there are

many millions of prokaryotes and eukaryotes. The most likely

explanation for the small number of viruses is that

(a) we have not yet learned how to detect most viruses

(b) we have not yet learned how to sequence most viruses

(c) there are few viruses because their needs for survival are

highly specialized

(d) viruses use an alternative genetic code

[14-2] The HIV genome contains nine protein-coding genes.

The number of GenBank accession numbers for these nine

genes is approximately

(a) 9

(b) 900

(c) 9000

(d) 90,000

[14-3] For functional genomics analyses of viruses, it is possible to

measure gene expression

(a) of viral genes upon viral infection of human tissues

(b) of human genes upon viral infection of human tissues

(c) of viral genes and human genes, simultaneously measured

upon viral infection of human tissue

(d) of viral genes or human genes, separately measured upon

viral infection of human tissue

[14-4] Herpesviruses probably first appeared about

(a) 200 million years ago

(b) 2 million years ago

(c) 20,000 years ago

(d) 200 years ago

[14-5] HIV probably first appeared about

(a) 70 million years ago

(b) 7 million years ago

(c) 7,000 years ago

(d) 70 years ago

[14-6] Phylogeny of HIV virus subtypes

(a) establishes that HIV emerged from a cattle virus

(b) can be used to develop vaccines directed against ancestral

protein sequences

(c) establishes which human tissues are most susceptible to

infection

[14-7] Specialized virus databases such as that at Oak Ridge National

Laboratory offer resources for the study of HIV that are not

available at NCBI or EBI. An example is:

(a) a listing of thousands of variant forms for each HIV gene

(b) a listing of literature and citations from the previous week

(c) graphical displays of the genome

(d) a description of where HIV variants have been identified

across the world

SUGGESTED READING
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Antony van Leeuwenhoek (1622–1723) has been called the father of protozoology and bacteriology. This figure shows bacteria he
observed taken from his own mouth. Figure A indicates a motile Bacillus. Figure B shows Selenomonas sputigena, while C and D
show the path of its motion. Figure E shows two micrococci; F shows Leptotrichia buccalis, and G shows a spirochete. He describes
these “animalcules,” found in his and others’ mouths, in a letter written 17 September 1683. “While I was talking to an old man
(who leads a sober life, and never drinks brandy or [smokes] tobacco, and very seldom any wine), my eye fell upon his teeth, which
were all coated over; so I asked him when he had last cleaned his mouth? And I got for answer that he’d never washed his mouth in
all his life. So I took some spittle out of his mouth and examined it; but I could find in it nought but what I had found in my own
and other people’s. I also took some of the matter that was lodged between and against his teeth, and mixing it with his own spit,
and also with fair water (in which there were no animalcules), I found an unbelievably great company of living animalcules, a-swim-
ming more nimbly than any I had ever seen up to this time. The biggest sort (where of there were a great plenty) bent their body into
curves in going forwards, as in Fig. G. Moreover, the other animalcules were in such enormous numbers, that all the water (notwith-
standing only a very little of the matter taken from between the teeth was mingled with it) seemed to be alive” (translated from the
Dutch by Dobell, 1932, pp. 242–243). Used with permission.
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“And now you may be disposed to ask: To what end is this discourse on the anatomy of beings

too minute for ordinary vision, and of whose very existence we should be ignorant unless it were

revealed to us by a powerful microscope? What part in nature can such apparently insignificant

animalcules play, that can in any way interest us in their organization, or repay us for the pains of

acquiring a knowledge of it? I shall endeavour briefly to answer these questions. The Polygastric

Infusoria, notwithstanding their extreme minuteness, take a great share in important offices of

the economy of nature, on which our own well-being more or less immediately depends.

Consider their incredible numbers, their universal distribution, their insatiable voracity;

and that it is the particles of decaying vegetable and animal bodies which they are appointed

to devour and assimilate.

Surely we must in some degree be indebted to those ever active invisible scavengers for the

salubrity of our atmosphere. Nor is this all: they perform a still more important office, in pre-

venting the gradual diminution of the present amount of organized matter upon the earth. For

when this matter is dissolved or suspended in water, in that state of comminution and decay

which immediately precedes its final decomposition into the elementary gases, and

its consequent return from the organic to the inorganic world, these wakeful members of nat-

ure’s invisible police are every where ready to arrest the fugitive organized particles, and turn

them back into the ascending stream of animal life.”

—Richard Owen (1843, p. 27)

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.
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INTRODUCTION

In this chapter we will consider bioinformatic approaches to two of the three

main branches of life: bacteria and archaea. Bacteria and archaea are grouped

together because they are prokaryotes, that is, single-celled organisms that lack

nuclei. Bacteria and archaea are sometimes also termed microorganisms. The term

microbe refers to those microorganisms that cause disease in humans; microbes

include many eukaryotes such as fungi and protozoa (Chapters 17 and 18) as well

as some prokaryotes.

It has been estimated that bacteria account for 60% of Earth’s biomass. Bacteria

occupy every conceivable ecological niche in the planet, and there may be from 107 to

109 distinct bacterial species (Fraser et al., 2000), although some suggest there may

be fewer species (Schloss and Handelsman, 2004). The great majority of bacteria and

archaea (.99%) have never been cultured or characterized (DeLong and Pace,

2001). A compelling reason to study bacteria is that many cause disease in humans

and other animals.

This chapter provides an overview of bioinformatic approaches to the study of bac-

teria and archaea. We review aspects of prokaryotic biology such as genome size and

complexity, and tools for the analysis and comparison of prokaryotic genomes. The

analysis of whole genome sequencing has had profound effects on our understanding

of bacteria and archaea (reviewed in Bentley and Parkhill, 2004; Fraser-Liggett,

2005; Ward and Fraser, 2005; Binnewies et al., 2006). Some of the main issues are

(1) an improved sampling of the diversity of the prokaryotes through genomic sequence

analyses, along with improved phylogeny and classification; (2) a better understanding

of the forces that shape microbial genomes. These forces include the following:

† Loss of genes and reductions in genome size, especially in species that are

dependent on their hosts for survival, such as obligate intracellular parasites;

gains in genome size, especially in free-living organisms that may require

many genomic resources to cope with variable environmental conditions;

† Lateral gene transfer, in which genetic material is transferred horizontally

between organisms that share an environmental niche and not vertically

through descent from ancestors;

† Chromosomal rearragements such as inversions often occur in related

species.

In this chapter we will discuss these topics as well as bioinformatics tools that are

available to investigate them.

CLASSIFICATION OF BACTERIA AND ARCHAEA

In Chapter 13, we described many of the genome-sequencing projects for bacteria

and archaea in chronological order, beginning with the sequencing of Haemophilus

influenzae in 1995. We will now consider the classification of bacteria and archaea

by six different criteria: (1) morphology, (2) genome size, (3) lifestyle, (4) relevance

to human disease, (5) molecular phylogeny using rRNA, and (6) molecular phylo-

geny using other molecules. There are many other ways to classify bacteria and

archaea (Box 15.1).

William Martin and Eugene

Koonin (2006) briefly discuss the

definition of the term prokaryote.

We will contrast prokaryotes and

eukaryotes in Chapter 16.

It has been estimated that there are

1030 bacteria, comprising the

majority of the biomass on the

planet (Sherratt, 2001).
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In describing prokaryotes and their genomes, we will examine bioinformatics

tools to analyze individual microbial genomes and tools for the comparison of

two or more genomes. It is through comparative genomics that we are beginning to

appreciate some of the important principles of microbial biology, such as the adap-

tation of microbes to highly specific ecological niches, the lateral transfer of genes

between microbes, genome expansion and reduction, and the molecular basis of

pathogenicity (Bentley and Parkhill, 2004; Binnewies et al., 2006).

The Comprehensive Microbial Resource (CMR) and the National Center

for Biotechnology Information (NCBI) describe major divisions of bacteria (Table

15.1), as well as the two major divisions of archaea: crenarchaeota and euryarchaeota

(Table 15.2). These tables provide an overview of the prokaryotes as we begin to

classify them by various criteria.

Classification of Bacteria by Morphological Criteria
Most bacteria are classified into four main types: Gram-positive and Gram-negative

cocci or rods (reviewed in Schaechter, 1999). Examples of these different bacteria are

presented in Table 15.3. The Gram stain is absorbed by about half of all bacteria

and reflects the protein and peptidoglycan composition of the cell wall. Many

other bacteria do not fit the categories of Gram-positive or Gram-negative cocci or

rods because they have atypical shapes or staining patterns. As an example, spiro-

chetes such as the Lyme disease agent Borrelia burgdorferi have a characteristic

outer membrane sheath, protoplasmic cell cylinder, and periplasmic flagella

(Charon and Goldstein, 2002).

The classification of microbes based on molecular phylogeny is far more compre-

hensive, as described below. Molecular differences can reveal the extent of microbial

diversity both between species (showing the breadth of the prokaryotic tree of life)

and within species (e.g., showing molecular differences in pathogenic isolates

and in closely related, nonvirulent strains). However, beyond molecular criteria

there are many additional ways to differentiate bacteria based on microscopy and

BOX 15.1
Classification of Prokaryotes

While we will choose six basic ways to classify the prokaryotes, there are many other

approaches. These include the energy source (respiration, fermentation,

photosynthesis), their formation of characteristic products (e.g., acids), the

presence of immunological markers such as proteins or lipopolysaccharides, their

ecological niche (also related to the lifestyle), and their nutritional growth

requirements. The types based on growth requirements include obligate and/or

facultative aerobes (requiring oxygen) or anaerobes (growing in environments

without oxygen), chemotrophs (deriving energy from the breakdown of organic

molecules such as proteins, lipids, and carbohydrates), and autotrophs

(synthesizing organic molecules through the use of an external energy source and

inorganic compounds such as carbon dioxide and nitrates). Autotrophs (from the

Greek for “self feeder”) are either photoautotrophs (obtaining energy through

photosynthesis; requiring carbon dioxide and expiring oxygen) or chemautotrophs

(obtaining energy from inorganic compounds and carbon from carbon dioxide).

Heterotrophs, unlike autotrophs, must feed on other organisms to obtain energy.

Pathogenicity is the ability of an

organism to cause disease.

Virulence is the degree of

pathogenicity.

The CMR was developed at the

Institute for Genomic Research

(TIGR) which is now part of the J.

Craig Venter Institute (see data-

bases at Q http://cmr.jcvi.org).

We also introduced major geno-

mics resources from the Europan

Bioinformatics Institute in

Chapter 13, such as Genome

Reviews (Q http://www.ebi.ac.

uk/GenomeReviews/). Another

major resource for prokaryotic and

eukaryotic genomes is PEDANT

at the Munich Information Center

for Protein Sequences (MIPS;

Q http://pedant.gsf.de/).
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TABLE 15-1 Classification of Bacteria

Intermediate
Rank 1

Intermediate
Rank 2

Genus, Species,
and Strain
(Examples)

Genome
Size (Mb)

GenBank
Accession

Actinobacteria Actinobacteridae Mycobacterium
tuberculosis
CDC1551

4.4 NC_002755

Aquificae Aquificales Aquifex aeolicus
VF5

1.5 NC_000918

Bacteroidetes Bacteroides Porphyromonas
gingivalis W83

2.3 NC_002950

Chlamydiae Chlamydiales Chlamydia
trachomatis
serovar D

1.0 NC_000117

Chlorobi Chlorobia Chlorobium tepidum
TLS

2.1 NC_002932

Cyanobacteria Chroococcales Synechocystis sp.
PCC6803

3.5 NC_000911

Nostocales Nostoc sp. PCC
7120

6.4 NC_003272

Deinococcus-
Thermus

Deinococci Deinococcus
radiodurans R1

2.6 NC_001263

Firmicutes Bacillales Bacillus subtilis 168 4.2 NC_000964

Clostridia Clostridium
perfringens 13

3.0 NC_003366

Lactobacillales Streptococcus
pneumoniae R6

2.0 NC_003098

Mollicutes Mycoplasma
genitalium G-37

0.580 NC_000908

Fusobacteria Fusobacteria Fusobacterium
nucleatum ATCC
25586

2.1 NC_003454

Proteobacteria Alphaproteobacteria Rickettsia
prowazekii
Madrid E

1.1 NC_000963

Betaproteobacteria Neisseria
meningitidis
MC58

2.2 NC_003112

Epsilon subdivision Helicobacter pylori
J99

1.6 NC_000921

Gamma subdivision Escherichia coli
K12-MG1655

4.6 NC_000913

Magnetotactic cocci Magnetococcus sp.
MC-1

4.7 NC_008576

Spirochaetales Spirochaetaceae Borrelia burgdorferi
B31

0.91 NC_001318

Thermotogales Thermotoga Thermotoga
maritima MSB8

1.8 NC_000853

Bacteria are described as a kingdom, followed by “intermediate ranks.”
Sources: TIGR Comprehensive Microbial Resource (Q http://cmr.jcvi.org/) and NCBI (Q http://www.
ncbi.nlm.nih.gov).
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studies of physiology—for example, distinguishing those microbes that are capable of

oxygenic photosynthesis (cyanobacteria) or those that produce methane.

The diversity of morphologies in prokaryotic life forms is spectacular. We can

provide examples of two predatory bacteria that prey on other bacteria. Each of

these examples is intended to highlight both the diversity of morphologies that

may occur, and the role that genome sequence analysis may have in elucidating

mechanisms of structural change.

(1) The myxobacteria are single-celled d-proteobacteria organisms that are

highly successful, with millions of cells per gram of cultivated soil. Upon encounter-

ing low nutrient conditions up to 100,000 individuals of Myxococcus xanthus join to

form a fruiting body, which is essentially a multicellular organism having a spherical

TABLE 15-2 Classification of Archaea
Intermediate Intermediate Genus, Species, and Genome GenBank

Rank 1 Rank 2 Strain (Examples) Size (Mb) Accession

Crenarchaeota Thermoprotei Aeropyrum pernix K1 1.6 NC_000854

Euryarchaeota Archaeoglobi Archaeoglobus fulgidus
DSM4304

2.2 NC_000917

Halobacteria Halobacterium sp. NRC-
1

2.0 NC_002607

Methanobacteria Methanobacterium
thermoautotrophicum
delta H

1.7 NC_000916

Methanococci Methanococcus jannaschii
DSM2661

1.6 NC_000909

Methanopyri Methanopyrus kandleri
AV19

1.6 NC_003551

Thermococci Pyrococcus abyssi GE5 1.7 NC_000868

Thermoplasmata Thermoplasma volcanium
GSS1

1.5 NC_002689

Archaea are described as a kingdom, followed by “intermediate ranks.”
Sources: TIGR Comprehensive Microbial Resource (Q http://cmr.jcvi.org/) and NCBI (Q http://www.
ncbi.nlm.nih.gov).

TABLE 15-3 Major Categories of Bacteria Based on Morphological Criteria
Type Examplesa

Gram-positive
cocci

Streptococcus pyogenes, Staphylococcus aureus

Gram-positive
rods

Corynebacterium diphtheriae, Bacillus anthracis (anthrax), Clostriduium
botulinum

Gram-negative
cocci

Neisseria, Gonococcus

Gram-negative
rods

Escherichia coli, Vibrio cholerae, Helicobacter pylori

Other Mycobacterium leprae (leprosy), Borrelia burgdorferi (Lyme disease),
Chlamydia trachomatis (sexually transmitted disease), Mycoplasma
pneumoniae

aThe disease is indicated in parentheses.
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shape and that is resistant to different kinds of stress. In favorable nutrient conditions

individual spores within the fruiting body germinate and thousands of M. xanthus

spores swarm. This swarm can surround, lyse, and consume prey bacteria. Goldman

et al. (2006) reported thecompletegenomesequenceofM. xanthusand provided insight

into genes that encode motor proteins and allow the organism to glide, use retractable

pili, and secrete mucus. Also, the large genome size (9.1 megabases [Mb]) contrasts

with the much smaller size of other, related d subgroup proteobacteria (3.7 to 5.0

Mb). Goldman et al. characterized the nature of the M. xanthus genome expansion

and its possible relation to this organism’s extraordinary behavior and morphology.

(2) Bdellovibrio bacteriovorus provides a second example of a prokaryote with an

extraordinary morphology. This is also a predatory d-proteobacterium that eats

Gram-negative bacteria. Its genome of about 3.8 Mb is predicted to encode over

3500 proteins (Rendulic et al., 2004). The bacterium attacks its prey (by swimming

to them at high speed), adheres irreversibly, opens a pore in the prey’s outer mem-

brane and peptidoglycan layer, then enters the periplasm and replicates. B. bacterio-

vorus then forms a structure called a bdelloplast in which the rod-shaped prey

becomes rounded and the predator grows to several multiples of its normal size as

it consumes the prey nutrients. Later, the predator exits the bdelloplast. The analysis

of this genome allowed Rendulic et al. to identify genes encoding catabolic enzymes

(e.g., proteases, nucleases, glycanases, and lipases) implicated in its lifestyle, as well

as a host interaction locus containing genes implicated in pilus and adherence genes.

Classification of Bacteria and Archaea Based on Genome
Size and Geometry
In haploid organisms such as bacteria and archaea, the genome size (or C value) is the

total amount of DNA in the genome. Bacterial and archaeal genomes vary in size from

under 500,000 bp [0.5 megabases (Mb)] to over 10 Mb (Table 15.4) (Casjens, 1998).

The genome sizes of 23 named major bacterial phyla and some of their subgroups are

shown in Fig. 15.1. As indicated in the figure, most bacterial genomes are circular,

although some are linear; some bacterial genomes consist of multiple circular chromo-

somes. Plasmids (small circular extrachromosomal elements) have been found in most

bacterial phyla, although linear extrachromosomal elements are more rare.

Some bacterial genomes are comparable in size to or even larger than eukaryotic

genomes. The genome of the fungus Encephalitozoon cuniculi is just 2.5 Mb and

encodes about 2000 proteins (see Chapter 17), and at least a dozen eukaryotic

genomes that are currently being sequenced are under 10 Mb. The Sorangium

cellulosum genome, the largest bacterial genome that has been sequenced to date, is

TABLE 15-4 Range of Genome Sizes in Bacteria and Archaea
Taxon Genome Size Range (Mb) Ratio (Highest/Lowest)

Bacteria 0.16–13.2 83

Mollicutes 0.58–2.2 4

Gram-negative 0.16–9.5 59

Gram-positive 1.6–11.6 7

Cyanobacteria 3.1–13.2 4

Archaea 0.49–5.75 12

Source: Modified from Graur and Li (2000, p. 36). Used with permission.

The M. xanthus DK 1622 com-

plete, circular genome (length

9,139,763 nucleotides) has acces-

sion NC_008095. Note that by

entering that accession number

into the Entrez search engine from

the home page of NCBI you can

link to the Genome Project page

that provides an overview of the

organism. The slime mold

Dictyostelium discoideum, a eukar-

yote, also includes a lifestyle that

can alternate between single-

celled and multicellular (Chapter

18).

The B. bacteriovorus accession is

NC_005363. Its life cycle is

described at the NCBI Entrez

Genome Project page for this

organism.

In diploid or polyploid organisms,

the genome size is the amount of

DNA in the unreplicated haploid

genome (such as the sperm cell

nucleus). We discuss eukaryotic

genome sizes in Chapters 16 to 19.
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13 Mb and includes over 9700 genes (Table 15.5). In general, those prokaryotes

having notably large genome sizes exhibit great behavioral or phenotypic complexity,

participating in complex social behavior (such as multicellular interactions) or

processes such as differentiation.

Overall, the number of genes encoded in a bacterial genome ranges from the

exceptionally small number of 182 to 8000. This range is comparable to the range

in C values. For a large number of bacteria with completely sequenced genomes,

protein-coding genes constitute about 85% to 95% of the genome. Thus, intergenic

and nongenic fractions are small. (An exception is the pathogen that causes leprosy,

Mycobacterium leprae. Its genome underwent massive gene decay, and protein-coding

genes constitute only 49.5% of the genome [Cole et al., 2001].) The density of genes

in microbial genomes is consistently about one gene per kilobase. As an example, the

genome of Escherichia coli K12 (accession NC_000913) is 4.6 Mb and it encodes

4243 proteins (one gene per 1093 base pairs). Even in very small genomes such as

Mycoplasma genitalium, reduced genome sizes are not associated with changes

either in gene density or in the average size of genes (Fraser et al., 1995). The

genome sizes of selected large or small bacteria and archaea are shown in Table 15.5.

Examination of the sizes of several hundred prokaryotic genomes in relation to

the number of genes shows a linear relationship (Fig. 15.2). This figure (adapted

from Giovannoni et al., 2005) further distinguishes free-living, host-associated,

and obligate symbiont organisms. The smallest bacterial and archaeal genomes are

TABLE 15-5 Genome Size of Selected Bacteria and Archaea Having Relatively Large or Small Genomes

Species
Genome

Size (Mb)
Coding
Regions

GC
Content Reference

Sorangium cellulosum 13 9703 71 Unpublished;
accession
NC_010162

Solibacter usitatus [B] 10 7,888 61.9 Unpublished;
accession
NC_008536

Myxococcus xanthus DK
1622 [B]

9.1 7,388 68.9 Goldman et al., 2006

Streptomyces coelicolor [B] 8.67 7,825 72 Bentley et al., 2002

Methanosarcina acetivorans
C2A [A]

5.75 4,524 42.7 Galagan et al., 2002

Ureaplasma urealyticum
parvum biovar serovar
3 [B]

0.752 613 26 Glass et al., 2000

Mycoplasma pneumoniae
M129 [B]

0.816 677 40 Himmelreich et al.,
1996

Mycoplasma genitalium
G-37 [B]

0.58 470 32 Fraser et al., 1995

Nanarchaeum equitans [A] 0.49 552 31.6 Huber et al., 2002;
Waters et al., 2003

Buchnera aphidicola [B] 0.42 362 20 Pérez-Brocal et al.,
2006

Carsonella ruddii [B] 0.16 182 16.5 Nakabachi et al.,
2006

Abbreviations: [A], archaeal; [B], eubacterial.
Source: Adapted from Q http://www.sanger.ac.uk/Projects/Microbes/ and the NCBI website (PubMed,
Entrez Genome).

Another exception is the parasite

Rickettsia prowazekii, described

below, that has 24% noncoding

DNA.
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from intracellular bacteria that are parasites or symbionts having an obligate relation-

ship with a host that provides nutrition. In general, prokaryotes having very small

genome sizes live in extremely stable environments in which the host provides reliable

resources (e.g., nutrients) and homeostatic benefits (e.g., a constant pH). Organisms

with small genomes evolved from ancestors with larger genomes. One of the smallest

sequenced genomes of a free-living organism (and one of the first genomes to have

been sequenced) is that of Mycoplasma genitalium, a urogenital pathogen. The

M. genitalium has 580,070 bp encoding 470 protein-coding genes, 3 rRNA genes,

and 33 tRNA genes (Fraser et al., 1995). Mycoplasmas are bacteria of the class

Mollicutes. They lack a cell wall and have a low GC content (32%) characteristic

of this class.

Of the very smallest bacterial genomes, Buchnera aphidicola has a genome of just

422,434 base pairs with 362 protein-coding genes (Pérez-Brocal et al., 2006). The

genome is organized in a circular chromosome and an additional 6 kilobase plasmid

for leucine biosynthesis. There is an obligate endosymbiotic relationship between

B. aphidicola and the cedar aphid Cinara cedri. The bacterium has lost most of its

metabolic functions, depending on those provided by its host, while in turn it

provides metabolites since the aphid diet is restricted to plant sap and so it needs

essential amino acids and other nutrients. The relationship between host and bacter-

ium is thought to have been established over 200 million years ago, with a continual

reduction in the size of the bacterial genome such that it no longer possesses the

capability to synthesize its own cell wall.

The smallest prokaryotic genome that has been found to date is that of another

endosymbiont, Carsonella ruddii (indicated in Fig. 15.2). Its genome consists of a

single circular chromosome of 159,662 base pairs with only 182 open reading

frames (Nakabachi et al., 2006). Both the small genome size and the low guanine

plus cytosine content (GC content 16.5%) are exceptional. Half of the open reading

frames encode proteins implicated in translation and amino acid metabolism. Like

B. aphidicola, C. ruddii is an obligate endosymbiont of a sap-feeding insect, the psyllid

Pachypsylla venusta.
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FIGURE 15.2. Number of pre-
dicted protein-encoding genes versus
genome size for 246 complete pub-
lished genomes from bacteria and
archaea. This figure is adapted
from Giovannoni et al. (2005) who
reported that P. ubique has the smal-
lest number of genes (1354 open
reading frames) for any free-living
organism that has been studied in
the laboratory. Recent data from
the smallest prokaryotic genomes
are indicated (B. aphidicola, C.
ruddii). Used with permission.

Aphids are metazoans (animals)

within the class Insecta. The

B. aphidicola accession is

NC_008513.
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Among the archaea the smallest genome is that of a hyperthermophilic organism

that was cultured from a submarine hot vent, Nanoarchaeum equitans (Huber et al.,

2002). This archaeon appears to grow attached to another archeon, Ignicoccus.

Because of its small cell size (400 nm) and small genome size, Huber et al. 2002

suggested that N. equitans resembles an intermediate between the smallest living

organisms (such as M. genitalium) and large viruses (such as the pox virus). None-

theless, even parasitic intracellular bacteria and archaea are classified as organisms

distinct from viruses.

By comparing small prokaryotic genomes, it is possible to estimate the minimal

number of genes required for life (Box 15.2). The B. aphidicola and C. ruddii genomes

do not encode many proteins that serve transport functions, suggesting that their

metabolites may freely diffuse to their hosts. Many required gene products could have

been transferred to their hosts’ nuclear genomes. Such a process has occurred in mito-

chondria, which depends on many proteins encoded by a eukaryotic nuclear genome.

BOX 15.2
Small Genome sizes, Minimal Genome Sizes, and Essential Genes

How many genes are required in the genome of the smallest living organism—that

is, the smallest autonomous self-replicating organism? One approach is to identify

the smallest genomes in nature. The B. aphidicola and C. ruddii genomes encode

only 362 and 182 proteins, respectively, although they are constrained to living

within particular insect cells (Andersson, 2006). Prokaryotes of the genus

Mycoplasma tend to have both small sizes and small genomes, and thus have

been studied in terms of minimal gene sets. At present, 34 species from this

genus are at least partially sequenced, including M. pneumoniae and M.

genitalium (Fadiel et al., 2007). The forces driving the evolution of small

genome size include genome reduction from larger ancestral genomes in a

process that may promote fitness of the organism. In thinking about a minimal

genome size we must always consider the ecological niche occupied by the

organism, which will have an enormous influence on the particular genes of the

endosymbiont as well as the mechanisms of reductive evolution.

A second approach involves comparative genomics by identifying the

orthologs in common between several microbes. In the earliest days of

complete genome sequencing, Mushegian and Koonin 1996 identified 239

genes in common between Escherichia coli, H. influenzae, and M. genitalium.

This is considered one estimate of the minimal genome size. The functions of

these 239 genes include several basic categories: translation, DNA replication,

recombination and DNA repair, transcription, anaerobic metabolism, lipid and

cofactor biosynthesis, and transmembrane transporters.

A third approach to determining the minimal number of genes required for

life is experimental. Itaya 1995 randomly knocked out protein-coding genes in

the bacterium Bacillus subtilis. Mutations in only 6 of 79 loci prevented growth

of the bacteria and were indispensible. Extrapolating to the size of the

complete B. subtilis genome, about 250 genes were estimated to be essential for

life. Attempts are underway to create life forms from a specific set of genes.

Pósfai et al. (2006) from the group of Frederick Blattner have experimentally

reduced the genome size to Escherichia coli K-12 (by 20% to about 4 Mb),

targeting the removal of insertion sequence elements and other mobile DNA

See Andersson (2006) for a review

of the B. aphidicola and C. ruddii

genomes.
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Classification of Bacteria and Archaea Based on Lifestyle
In addition to the criteria of morphology and genome size and geometry, a third

approach to classifying bacteria (and archaea) is based on their lifestyle. One main

advantage of this approach is that it conveniently highlights the principle of extreme

reduction in genome size that is associated with three lifestyles: extremophiles and

intracellular and epicellular prokaryotes:

† Extremophiles are microbes that live in extreme environments. Archaea have

been identified in hypersaline conditions (halophilic archaea), geothermal

areas such as hot vents (hyperthermophilic archaea), and anoxic habitats

(methanogens) (DeLong and Pace, 2001). One of the most extraordinary

extremophiles is Deinoccoccus radiodurans, which can survive dessication as

well as massive doses of ionizing radiation (it thrives in nuclear waste). It

achieves this feat by reassembling shattered chromosomes through a novel

repair mechanism (Zahradka et al., 2006).

† Intracellular bacteria invade eukaryotic cells; a well-known example is the a-

proteobacterium that is thought to have invaded eukaryotic cells and evolved

into the present-day mitochondrion.

† Epicellular bacteria (and archaea) are parasites that live in close proximity to

their hosts but not inside host cells.

We may distinguish six basic lifestyles of bacteria and archaea (Table 15.6):

1. Extracellular: For example, E. coli commonly inhabits the human intestine

without entering cells. Many free-living prokaryotes have relatively large gen-

omes (as indicated in Fig. 15.2), such as the d-proteobacterium Myxococcus

xanthus described above. Having a larger genome may provide a reservoir

of genes that can be utilized to meet the needs of changing environments.

As another example the Gram-positive bacterium Propionibacterium acnes

inhabits human skin and can cause acne. Its 2.5 Mb genome allows

P. acnes the flexibility to grow under aerobic or aneaerobic conditions

and to utilize a variety of substrates available from skin cells (Brüggemann

et al., 2004).

elements as well as repeats that mediate structural changes (such as inversions,

duplications, and deletions). For M. tuberculosis, random transposon

mutagenesis has been employed to identify essential genes (Lamichhane et al.,

2003). This and related approaches can provide information on which genes

and gene products are likely to be most useful as drug targets (Lamichhane

and Bishai, 2007).

Several groups have reviewed progress toward identifying core sets of genes

required for life, including Koonin (2003) and Gil et al. (2004). Koonin lists

63 genes that are present across all of �100 genomes sequenced at the time.

These include genes having functions in translation (e.g., ribosomal proteins

and aminoacyl-transfer RNA synthetases, and translation factors), transcription

(RNA polymerase subunits), and replication and repair (DNA polymerase

subunits, exonuclease, topoisomerase). The COGs database (see below)

provides access to many of these highly conserved proteins.
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TABLE 15-6 Classification of Bacteria and Archaea Based on Ecological Niche

Lifestyle Bacterium
Genome

Size (Mb) Reference

Extracellular Escherichia coli 4.6 Blattner et al., 1997

Vibrio cholerae 4.0 Heidelberg et al., 2000

Pseudomonas
aeruginosa

6.3 Stover et al., 2000

Bacillus subtilis 4.2 Kunst et al., 1997

Clostridium
acetobutylicum

4.0 Nolling et al., 2001

Deinococcus
radiodurans

3.3 White et al., 1999

Facultatively
intracellular

Salmonella enterica 4.8 Parkhill et al., 2001a

Yersinia pestis 4.7 Parkhill et al., 2001b

Legionella
pneumophila

3.9 Bender et al., 1990

Mycobacterium
tuberculosis

4.4 Cole et al., 1998

Listeria
monocytogenes

2.9 Glaser et al., 2001

Extremophile Aeropyrum pernix 1.7 Kawarabayasi et al., 1999

Methanococcus
janneschi

1.7 Bult et al., 1996

Archeoglobus
fulgidus

2.2 Klenk et al., 1997

Thermotoga
maritima

1.9 Nelson et al., 1999

Aquifex aeolius 1.6 Deckert et al., 1998

Epicellular Neisseria
meningitidis

2.2 Tettelin et al., 2000

Haemophilus
influenzae

1.8 Fleischmann et al., 1995

Mycoplasma
genitalium

0.6 Fraser et al., 1995

Mycoplasma
pneumoniae

0.8 Himmelreich et al., 1996

Ureaplasma
urealyticum

0.8 Glass et al., 2000

Mycoplasma
pulmonis

1.0 Chambaud et al., 2001

Borrelia burgdorferi 0.9 Fraser et al., 1997; Casjens
et al., 2000

Treponema pallidum 1.1 Fraser et al., 1998

Helicobacter pylori 1.7 Tomb et al., 1997; Alm et al.,
1999

Pasteurella
multocida

2.3 May et al., 2001

Obligate
intracellular,
symbiotic

Buchnera sp. 0.6 Shigenobu et al., 2000
Wolbachia spp. 1.1 Sun et al., 2001
Wigglesworthia

glossinidia
0.7 Akman et al., 2002

Sodalis glossinidius 2.0 Akman et al., 2001

(Continued )
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2. Facultatively intracellular bacteria can enter host cells, but this behavior

depends on environmental conditions. Mycobacterium tuberculosis, the cause

of tuberculosis, can remain dormant within infected macrophages, only to

activate and cause disease many decades later.

3. Extremophilic microbes: Initially, archaea were all identified in extreme

environmental conditions. Some archaea have been found to grow at

temperatures as high as 1138C, at pH 0, and in salt concentrations as high

as 5 M sodium chloride. Methanococcus janneschi, the first archeal organism

to have its genome completely sequenced (Bult et al., 1996), grows at press-

ures over 200 atm and at an optimum temperature near 858C. Archaea have

subsequently been identified in less extreme habitats, including forest soil and

ocean seawater (DeLong, 1998; Robertson et al., 2005).

4. Epicellular prokaryotes grow outside of their hosts, but in association with

them. Mycoplasma pneumoniae, a bacterium with a genome size of

�816,000 bp, is a major cause of respiratory infections. The bacterium is a

surface parasite that attaches to the respiratory epithelium of its host.

The genome was sequenced (Himmelreich et al., 1996) and subsequently

reannotated by Peer Bork and colleagues (Dandekar et al., 2000).

5. Obligately intracellular and symbiotic: Tamas et al. 2002 compared the

complete genome sequences of two bacteria, Buchnera aphidicola (Sg) and

Buchnera aphidicola (Ap), that are endosymbionts of the aphids Schizaphis

graminum (Sg) and Acyrthosiphon pisum (Ap). Each of these bacteria has a

small genome size of about 640,000 bp. They have 564 and 545 genes, respect-

ively, of which they share almost all (526). Remarkably, these bacteria diverged

about 50 MYA, yet they share complete conservation of genome architecture.

There have been no inversions, translocations, duplications, or gene acqui-

sitions in either bacterial genome since their divergence (Tamas et al., 2002).

This provides a dramatic example of genomic stasis. Although it is extremely

rare for obligate intracellular bacteria to share such genome conservation, it is

common for endosymbionts to have relatively small genome sizes. This may

reflect the dependence of these bacteria on nutrients derived from the host.

6. Obligately intracellular and parasitic: Rickettsia prowazekii is the bacterium

that causes epidemic typhus. Its genome is relatively small, consisting of

TABLE 15-6 Continued

Lifestyle Bacterium
Genome

Size (Mb) Reference

Obligate
intracellular,
parasitic

Rickettsia
prowazekii

1.1 Andersson et al., 1998

Rickettsia conorii 1.3 Ogata et al., 2001
Ehrlichia chaffeensis 1.2 Hotopp et al., 2006
Cowdria

ruminantium
1.6 de Villiers et al., 2000

Chlamydia
trachomatis

1.1 Stephens et al., 1998; Read
et al., 2000

Chlamydophila
pneumoniae

1.3 Kalman et al., 1999; Read
et al., 2000; Shirai et al.,
2000

Source: Adapted from Q http://www.chlamydiae.com.

Each year, 1.9 million people die

of tuberculosis and 1.9 billion

people are infected worldwide

(Q http://www.cdc.gov/ncidod/
eid/vol8no11/02-0468.htm).

The M. tuberculosis genome was

sequenced by Cole et al. (1998).
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1.1 Mb (Andersson et al., 1998). Like other Rickettsia, it is an a-proteobacter-

ium that infects eukaryotic cells selectively. It is also of interest because it is

closely related to the mitochondrial genome. A closely related species,

Rickettsia conorii, is an obligate intracellular parasite that causes

Mediterranean spotted fever in humans. Its genome was sequenced by Ogata

et al. (2001). Similar to the Buchnera aphidicola subspecies, the genome organ-

ization of the two Rickettsia parasites is well conserved.

Why are some bacterial genome sizes severely reduced? Intracellular parasites

are subject to deleterious mutations and substitutions that cause gene loss, tend-

ing toward genome reduction (Andersson and Kurland, 1998). A similar pro-

cess occurred as a primordial a-proteobacterium evolved into the modern

mitochondrion, maintaining only a minuscule mitochondrial genome size

(Chapter 13).

While we are interested in surveying different lifestyles of prokaryotes and the

specific niches they inhabit, the vast majority are not cultivatable in vitro and

thus have been difficult to sample. Metagenomics projects have enabled the

large-scale, culture-independent characterization of the prokaryotes inhabiting

a particularenvironment (reviewed inRiesenfeldet al., 2004; Tringeand Rubin,

2005). Some metagenomics studies have employed high throughput sequen-

cing technologies (as discussed in Chapter 13). Other studies have focused on

sampling ribosomal RNA (discussed below).

† Walker and Pace (2007) review studies of prokaryotes in endolithic ecosys-

tems, that is, living in the pore space in rocks.

† Tringe et al. (2005) sampled a range of nutrient-rich environments from

agriculture soil and from deep-sea “whale fall” carcasses.

† Trillionsof bacteria live in thehuman gut; Gill et al. (2006)estimate that 1013

to 1014 microorganisms inhabit the intestine, collectively containing 100

times as many genes as the human genome. Several studies have investigated

the diversity of microbial life in feces. Palmer et al. (2007) used a microarray-

based approach to identify ribosomal RNAs in the stool samples of 14 healthy

human infants across the first year of life. Gill et al. (2006) sequenced �78

million base pairs of DNA from the fecal samples of two adults. They ident-

ified commonly occurring bacteria such as Bifidobacterium longum and

archaea such as Methanobrevibacter smithii. Sixty of 72 main bacterial phylo-

types were from uncultivatable organisms. Both studies identified bacteria

from several clades, including the Gram-positive bacteria (Firmicutes and

Actinobacteria), Proteobacteria, and Bacteroidetes.

Classification of Bacteria Based on Human Disease Relevance
Bacteria and eukaryotes have engaged in an ongoing war for millions of years. Bacteria

occupy the nutritive environment of the human body in an effort to reproduce. Typical

sites of bacterial colonization include the skin, respiratory tract, digestive tract (mouth,

large intestine), urinary tract, and genital system (Eisenstein and Schaechter, 1999). It

has been estimated that each human has ten times more bacterial cells than human cells

in the body. In the majority of cases, these bacteria are harmless to humans. However,

many bacteria cause infections, often with devastating consequences.

In recent years, the widespread use of antibiotics has led to an increased preva-

lence of drug resistance among bacteria. It is thus imperative to identify bacterial
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virulence factors and to develop strategies for vaccination. One approach to this pro-

blem is to compare pathogenic and nonpathogenic strains of bacteria (see below).

Table 15.7 lists some of the bacterial diseases for which vaccinations are routinely

administered. The worldwide disease burden caused by bacteria is enormous.

As of late 2008, there have been 770 completed prokaryotic genome-sequencing

projects, and another 1300 are in progress. At least one representative strain of the

major bacteria known to cause human disease is being sequenced. The National

Microbial Pathogen Data Resource centralizes information about 50 strains of patho-

genic bacteria, including expert curation and analyses of metabolic pathways in those

organisms (McNeil et al., 2007).

There has been a strong bias toward sequencing prokaryotic genomes of known

medical relevance. For example, there are 690,000 new cases of leprosy reported

annually worldwide; the causative agent is Mycobacterium leprae. There are millions

of cases of salmonellosis each year, caused by Salmonella enterica. A pathogenic

strain of E. coli (O157:H7) causes hemorrhagic colitis and infects 75,000 individuals

in the United States each year. As mentioned above, M. tuberculosis infects billions of

people and kills millions.

Anemerging theme in the biologyofprokaryotes is that inaddition tomutationbac-

terial populations undergo recombination, causing genetic diversification (Fraser et al.,

2007). Species can be defined as clusters of genetically related strains, and the exchange

of DNA by homologous recombination or other processes can complicate species defi-

nitions. Joyce et al. (2002) have reviewed recombination in the context of pathogenic

bacteria such as Helicobacter pylori (a leading cause of gastric ulcers), Streptococcus pneu-

moniae, and Salmonella enterica. While eukaryotes achieve genetic diversity through

sexual reproduction, prokaryotes also achieve tremendous genetic diversity through

both recombination and lateral gene transfer (discussed below).

Classification of Bacteria and Archaea Based
on Ribosomal RNA Sequences
The main way we know to analyze the diversity of microbial life is by molecular

phylogeny. Trees have been generated based on multiple sequence alignments of

TABLE 15-7 Vaccine-Preventable Bacterial Diseases
Disease Species

Anthrax Bacillus anthracis

Diarrheal disease (cholera) Vibrio cholerae

Diphtheria Corynebacterium diphtheriae

Community acquired
pneumonia

Haemophilus influenzae type B, Streptococcus pneumoniae

Lyme disease Borrelia burgdorferi

Meningitis Haemophilus influenzae type B (HIB), Streptococcus pneumoniae,
Neisseria meningitidis

Pertussis Bordetella pertussis

Tetanus Clostridium tetani

Tuberculosis Mycobacterium tuberculosis

Typhoid Salmonella typhi

Source: Adapted from Q http://www.cdc.gov/vaccines/vpd-vac/vpd-list.htm and Q http://www.cdc.gov/
ncidod/dbmd/diseaseinfo/default.htm.

The NMPDR is available online at

Q http://www.nmpdr.org/.

You can read about a variety of

bacterial diseases at the Centers

for Disease Control and

Prevention website (Q http://
www.cdc.gov/DataStatistics/).
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16S rRNA and other small rRNAs from various species. Ribosomal RNA has excel-

lent characteristics as a molecule of choice for phylogeny: it is distributed globally, it

is highly conserved yet still exhibits enough variability to reveal informative differ-

ences, and it is only rarely transferred between species. An example of a rRNA

based tree is shown in Fig. 15.1, and we saw a similar tree reconstruction in Fig. 13.1.

A major conclusion of early rRNA studies, by Carl Woese and colleagues (Woese

and Fox, 1977; Fox et al., 1980), is that bacteria and archaea are distinct groups. The

deepest branching phyla are hyperthermophilic microbes, consistent with the hypoth-

esis that the universal ancestor of life existed at hot temperatures (Achenbach-Richter

et al., 1987).

A great advance in our appreciation of microbial diversity has come from the

realization that the vast majority of bacteria and archaea are noncultivatable

(Hugenholtz et al., 1998). It is straightforward to obtain microbes from natural

sources and grow some of them in the presence of different kinds of culture

medium. But for the great majority of microbes, perhaps .99%, culture conditions

are not known. It is still possible to sample uncultivated (or uncultivatable) microbes

by extracting nucleic acids directly from naturally occurring habitats (Delong

and Pace, 2001). Norman Pace and colleagues pioneered the analysis of rRNA to

characterize uncultivated species.

Because of sampling bias, four bacterial phyla have been characterized most

fully: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Hugenholtz,

2002). These major groups account for over 90% of all known bacteria (discussed

in Gupta and Griffiths, 2002). However, 35 bacterial and 18 archaeal phylum-

level lineages are currently known (Hugenholtz, 2002). Analyses of uncultivated

microbes will expand our view of bacterial and archaeal diversity. Among the archaea,

early studies described them as extremophiles, but more recent samplings indicate

that they are present in nonextreme habitats such as surface waters of the oceans

and agricultural soils (DeLong, 1998). Twenty percent of all microbes in the

oceans may be archaea (DeLong and Pace, 2001).

Classification of Bacteria and Archaea Based on Other
Molecular Sequences
In addition to rRNA, many other DNA, RNA, or protein sequences can be used for

molecular phylogeny studies. One motivation to do this is that the analysis of 16S

ribosomal RNA sequence occasionally yields conflicting results. For example, the

a-proteobacterium Hyphomonas neptunium is classified as a member of the order

Rhodobacterales based on 16S rRNA but Caulobacterales based on 23S rRNA as

well as according to ribosomal proteins, HSP70 and EF-Tu (Badger et al., 2005).

This is potentially due to lateral gene transfer (discussed below). In other instances,

16S rRNA of unusual composition has been identified (Baker et al., 2006). Because

of concerns about the properties of 16S rRNA for phylogenetic analysis, Teeling and

Gloeckner (2006) introduced RibAlign, a database of ribosomal protein sequences.

The HOGENOM database is another resource that is useful for phylogenetic studies.

It includes large numbers of protein families across the tree of life.

The use of individual proteins (or genes) for such studies sometimes yields tree

topologies that conflict with each other and with topologies obtained using rRNA

sequences. These discrepancies are usually attributed either to lateral gene transfer

(see below), which can confound phylogenetic reconstruction, or to the loss of phy-

logenetic signals due to saturating levels of substitutions in the gene or protein

Brochier and Philippe (2002) have

contested the view that

hyperthermophilic bacteria (such

as Aquificales and

Thermotaogales) are the most

deeply branching. Instead, they

suggest that Planctomycetales are

positioned at the base of the tree.

Reysenbach and Shock (2002)

described a phylogenetic tree of

extremophilic microbes based on

16S rRNA sequences. They used a

software package designed for

rRNA studies, called ARB

(described in Chapter 8). You can

obtain this software at Q http://
www.arb-home.de/.

RibAlign is available at Q http://
www.megx.net/ribalign. Its mul-

tiple sequence alignments of ribo-

somal proteins use MAFFT

(Chapter 6). HOGENOM:

Homologous Sequences in

Complete Genomes Database

(HOGENOM) is available at

Q http://pbil.univ-lyon1.fr/
databases/hogenom.php.

We will study eukaryotes from the

perspective of a tree that uses a

combined protein data set (Fig.

16.1).
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sequences. A strategy to circumvent this problem is to use combined gene or protein

sets. Brown et al. (2001) aligned 23 orthologous proteins conserved across 45 species.

Their trees supported thermophiles as the earliest evolved bacteria lineages (Fig. 15.3).

There are many other approaches to bacterial phylogeny. One is to identify con-

served insertions and deletions in a large group of proteins. Such “signature

sequences” can distinguish bacterial groups and form the basis of a tree (Fig.

15.4) (Gupta and Griffiths, 2002). This tree shows the relative branching order of

bacterial species from completed genomes. Eugene Koonin and colleagues (Wolf

et al., 2001) used five independent approaches to construct trees for 30 completely

sequenced bacterial genomes and 10 sequenced archaeal genomes:

1. They assessed genes that are present or absent in each of these genomes using

the COG database (see below). Seventeen invariant genes were identified (all

of which encode ribosomal proteins and RNA polymerase subunits).

FIGURE 15.3. An unrooted tree
of life adapted from Brown et al.
(2001) is based on an alignment
of 23 proteins (spanning 6591
amino acid residues). These pro-
teins are conserved across 45
species and include tRNA synthe-
tases, elongation factors, and
DNA polymerase III subunit. By
combining these proteins, there
are many phylogenetically infor-
mative sites. The tree consists of
three major, monophyletic bran-
ches of life as described in Chapter
13. The tree was generated in
PAUP by maximum parsimony.
Used with permission.
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2. They assessed the conservation of local gene order (i.e., pairs of adjacent

genes) among the genomes.

3. They measured the distribution of percent identity between likely orthologs.

4. They aligned 32 ribosomal proteins into a multiple sequence alignment

consisting of 4821 columns (characters) and then generated a tree using the

maximum-likelihood approach.

5. They compared multiple trees generated from a series of protein alignments.

Wolf et al. (2001) concluded that traditional alignment-based methods were

as effective as newer approaches based on genomic data such as local gene

order. However, these approaches can yield different kinds of information

(e.g., analysis of orthologs can identify genes that have been lost or horizontally

transferred between lineages).

ANALYSIS OF PROKARYOTIC GENOMES

Some of the main attributes of a prokaryotic genome are its genome size, nucleotide

composition, gene content, extent of lateral gene transfer, and functional annotation.

We can approach this subject by considering Escherichia coli, arguably the best

characterized bacterium. Following its intial genome sequence analysis by Blattner

et al. (1997), it continues to be annotated and used as a reference genome (Riley

et al., 2006), and related K12 strains have been sequenced. The annotation process

includes an effort by the community to correct sequence errors, to update the bound-

aries for genes and transcripts (based for example on models for gene structures in

related bacteria), and to assign functional descriptions for all genes (as described

in Chapter 12). There are online resources that centralize information about

E. coli, such as EcoCyc (Karp et al., 2007), RegulonDB (Salgado et al., 2006),

and EcoGene (Rudd, 2000).

A search of the Comprehensive Microbial Resource (CMR) shows that there are

currently seven E. coli genomes sequenced (Fig. 15.5a). Following the link to E. coli

K12 (strain MG1655) provides a wealth of information on its genome, including

summaries of the DNA molecule (4,639,221 base pairs; 50.78% GC content) and

of the primary annotation (e.g., 4289 protein coding genes, of which almost half

have been assigned a functional role category) (Fig. 15.5b).

Nucleotide Composition
In the analysis of a completed genome, the nucleotide composition has characteristic

properties. The GC content is the mean percentage of guanine and cytosine, and as

first reported by Noboru Sueoka (1961) it typically varies from 25% to 75% in prokar-

yotes (Fig. 15.6). Eukaryotes almost always have a largerand more variable genome size

than bacteria, but their GC content is very uniform (around 40% to 45%). Within each

species, nucleotide composition tends to be uniform. We showed the range of GC con-

tent in Fig. 13.15.

GC content varies within an individual genome. The CMR website includes a

tool to plot GC content as shown for E. coli (Fig. 15.7). Regions having atypical

GC content sometimes reflect invasions of foreign DNA (such as phage DNA incor-

porating into bacterial genomes). The GC content is highest (AT content lowest) in

intergenic regions, possibly because of the requirements of transcription factor

EcoCyc is online at Q http://
ecocyc.org/, Regulon is at

Q http://regulondb.ccg.unam.

mx/, and EcoGene is available at

Q http://ecogene.org/. For each

database try entering a query for

the gene BLC and you will see a

variety of data, including its

genomic context, links to struc-

tural genomics projects, and blast

links. Julio Collado-Vides and

colleagues have expertly curated

the transcription initiation sites

and operon organization of E. coli

with an emphasis on elucidating

the regulatory networks.

Visit the CMR at Q http://cmr.

jcvi.org.

You can determine GC content

with the Emboss program

GEECEE (Q http://bioweb.

pasteur.fr/seqanal/interfaces/
geecee.html) or with other pro-

grams such as GLIMMER (see

below).
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binding sites (Mitchison, 2005). GC content is also related to the frequency of codon

utilization; we will explore this in a computer lab exercise at the end of this chapter.

Two-dimensional bacterial genomic display (2DBGD) is an electrophoresis

technique analogous to two-dimensional protein gels (Chapter 10) in which bacterial

genomic DNA is fragmented and separated first by size and then by sequence

composition. Malloff et al. (2002) used 2DBGD to compare the genomes of three res-

piratory pathogens with very high GC content: Bordetella pertussis, the cause of whoop-

ing cough (68% GC); M. tuberculosis (66% GC); and Mycobacterium avium (66% GC).

This technique can be used to detect insertions and deletions in prokaryotic strains.

FIGURE 15.5. The Comprehensive
Microbial Resource at the Institute
for Genomic Research provides one
of the most important websites for
the study of microbes (Q http://
cmr.tigr.org/). The site includes a
wide range of tools. (a) The results
are shown for a search for
Escherichia coli. (b) The genome
page for E. coli K12 (strain
MG1655) is shown.

FIGURE 15.6. GC content for
584 sequenced prokaryotic gen-
omes (data from NCBI Entrez
Genome, December 2007 were
plotted).
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Finding Genes
Bacteria and archaea are characterized by a high gene density (about one gene per

kilobase), absence of introns, and very little repetitive DNA. Thus the problem of

finding genes is relatively simple in comparison to searching eukaryotic DNA

(Chapter 16). Several programs are available for microbial gene identification

(Table 15.8).

There are four main features of genomic DNA that are useful for gene recog-

nition (Baytaluk et al., 2002). These features apply to both bacterial and eukaryotic

gene finding:

1. Open reading frame (ORF) length. An ORF is not necessarily a gene; for

example, many short ORFs are not part of authentic genes (discussed further

below). An ORF is defined by a start codon (i.e., ATG encoding a methion-

ine) and a stop codon (TAA, TAG, TGA). However, in bacteria, alternative

start codons may be employed, such as GTG or TTG, and there are rarely

used alternative stop codons.

2. Presence of a consensus sequence for ribosome binding in the immediate vicinity of the

start codon. In some cases, it is possible to identify two in-frame ATG codons,

either of which could represent the start codon. Identifying a ribosome

binding site can be an important indicator of which is the likely start site.

In bacteria, the ribosome binding site is called a Shine–Dalgarno sequence.

It is a purine-rich stretch of nucleotides that is complementary to the 30 end of

61.68% 

56.93% 

52.18% 

47.43% 

42.68% 

37.93% 

33.18% 
0 kb 463 kb 927 kb 1391 kb 1855 kb 2319 kb 2783 kb 3247 kb 3711 kb 4175 kb 4639 kb 

44.62% 

55.18% 

FIGURE 15.7. GC content across

the E. coli K12 genome (in 5000

base pair windows). This plot is

available at the CMR website.

The window size is adjustable,

and there are links to the genes

in each region.

TABLE 15-8 Programs for Gene Finding in Prokaryotic Genomes
Program Description URL

EasyGene A web server from Anders Krogh
and colleaguges

Q http://www.cbs.dtu.dk/services/
EasyGene/

FrameD Locates genes and frameshifts;
optimized for GC-rich
genomes

Q http://bioinfo.genopole-
toulouse.prd.fr/apps/FrameD/
FrameD.html

GeneMarkP,
GeneMarkS

Uses hidden Markov models Q http://exon.gatech.edu/
GeneMark/

GLIMMER At the University of Maryland Q http://www.cbcb.umd.edu/
software/glimmer/
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16S rRNA, extending from the –20 position (i.e., 50 to the initiation codon)

to the þ13 position (i.e., 13 nucleotides downstream in the 30 direction).

Samuel Karlin and colleagues (Ma et al., 2002) studied 30 prokaryotic gen-

omes and correlated the features of the Shine–Dalgarno sequence with

expression levels of genes based on codon usage bias (see below), type of

codon, functional gene class, and type of start codon. They have shown a

positive correlation between the presence of a strong Shine–Dalgarno

sequence and high levels of gene expression.

3. Presence of a pattern of codon usage that is consistent with genes. Hidden Markov

models (Chapter 6 and see below) have been particularly useful in defining

the coding potential of putative protein-coding DNA sequences.

4. Homology of the putative gene to other, known genes. Genomic DNA sequences,

including putative genes, can be searched against protein databases using

blastx (see Chapter 5). This approach is especially helpful in finding genes

in eukaryotic organisms. For example, exons can be matched to expressed

sequence tags (Chapter 16).

The first three of these features are studied using intrinsic approaches to gene

finding. They are called intrinsic because the features do not necessarily depend

on comparisons to gene sequences from other organisms. The fourth feature,

relationship to other genes, is called an extrinsic approach. Prokaryotic gene-finding

programs sometimes combine both intrinsic and extrinsic approaches.

The GLIMMER system is one of the premier gene-finding algorithms. It

identifies over 99% of all genes in a bacterial genome (Delcher et al., 1999a,

2007). The latest version has excellent sensitivity (determined based on comparisons

to well-annotated bacterial genomes) and specificity (there are relatively few false

positive results, i.e., gene predictions that do not correspond to authentic genes).

The algorithm uses interpolated Markov models (IMMs). A Markov chain

can describe the probability distribution for each nucleotide in a genomic DNA

sequence. This probability can depend on the preceding k variables (nucleotides)

in the sequence. A fixed-order Markov chain would describe the k-base context for

each nucleotide position; for example, a fixed fifth-order Markov chain model

describes 45 ¼ 1024 probability distributions, one for each possible 5-mer.

GLIMMER uses a fifth-order Markov chain because that corresponds to a model

of two consecutive codons (six nucleotide positions). The k-mers are used as a train-

ing set to teach the algorithm the rules for which probability distributions are most

likely to be relevant to this particular genomic sequence. Larger values for k are

more informative, but since they occur more rarely, it is more difficult to sample

enough data for a training set in order to model the probability of the next base in

the sequence. IMMs are a specialization of Markov models in which rare k-mers

tend to be ignored, and more common k-mers are weighted more heavily.

GLIMMER builds an IMM from a training set, then scans a genomic DNA

sequence to predict genes. Criteria for gene finding include the presence of an

initiation codon and some particular minimal length for an open reading frame.

GLIMMER further assigns functions to predicted genes through BLAST searches

and HMM searches, and also searches for noncoding RNAs (e.g., using

tRNAscan; Chapter 8), paralogs, and PROSITE motifs (Chapter 10).

A simplified form of GLIMMER is available online at the NCBI website. To use

the full GLIMMER program, it is necessary to run the software on a UNIX operating

system. First, enter a data set of genomic DNA from the organism of interest (e.g.,

Intrinsic approaches are also

sometimes called ab initio

approaches.

GLIMMER was written by Owen

White, Steven Salzberg and col-

leagues while at the Institute for

Genomic Research. GLIMMER

is an acronym for Gene Locator

and Interpolated Markov

Modeler.

618 COMPLETED GENOMES: BACTERIA AND ARCHAEA



E. coli ) in order to train the algorithm. The command to do this is shown in

Fig. 15.8a, and the output for the analysis of 76,000 nucleotides of E. coli genomic

DNA is shown in Fig. 15.8b. This shows the GC content of the DNA fragment

(51.5% in this case), the parameters (e.g., the minimum gene length is set to 90

nucleotides), and a list of the predicted genes, including orientation (on the forward

or reverse strand), length, and score. The GLIMMER output also has a summary of

the predicted genes, including notations on possible overlaps (Fig. 15.8c).

There are several pitfalls associated with prokaryotic gene prediction:

† There may be multiple genes that are encoded by one genomic DNA seg-

ment, in an alternate reading frame on the same strand or opposite strand.

GLIMMER includes features to address this situation.

† It is difficult to assess whether a short ORF is genuinely transcribed.

According to Skovgaard et al. 2001, there are far too many short genes anno-

tated in many genomes. For E. coli, they suggest that there are 3800 true

$ /usr/local/glimmer2.02/build-icm < ecoli_first100.txt > trainecoli

GC Proportion = 51.5%
Minimum gene length = 90
Minimum overlap length = 30
Minimum overlap percent = 10.0%
Use independent scores = True
Ignore independent score on orfs longer than 765
Use first start codon = True

              Orf     Gene                 Lengths     Gene    -- Frame Scores -  Indep
  ID#  Fr    Start    Start      End      Orf  Gene    Score   F1 F2 F3 R1 R2 R3  Score
       F2       35       44      178      144   135       0     0  0  0  _  0  _   99     0
       F1      226      247      402      177   156       0     0  _  _  _  0  _   99     0
       F3      273      420      563      291   144       0     _  _  0  _  _  0   99     0
       R2      740      713      609      132   105       0     _  6  _  _  0  2   89     0
       F2      515      548      916      402   369       0     _  0  _  _  _  0   99     6
       R1     1149     1143     1036      114   108       0     _  _  0  0  _  0   99     0
       F3      888      936     1265      378   330       0     _  _  0  _  _  0   99     0
       F1     1162     1210     1347      186   138       0     0  _  _  _  _  0   99     0
       F3     1365     1377     1592      228   216       0     _  _  0  _  _  0   99     0
       F3     1707     1710     1823      117   114       0     _  _  0  _  _  0   99     0
    1  R3     1951     1909      380     1572  1530      99     _  _  _  _  _ 99    0   101
       F3     1857     1872     1994      138   123       0     _  _  0  _  _  _   99     0
       R1     2124     2121     2029       96    93       0     _  _  _  0  _  _   99     0
       F3     2043     2043     2273      231   231       0     _  _  0  _  _  0   99     0
       F1     2098     2140     2319      222   180       0     0  0  _  _  _  0   99     0
       R1     2604     2589     2182      423   408       0     _  0  _  0  _  0   99     0
       F3     2313     2349     2645      333   297       0     _  0  0  _  _  0   99     0
       F2     2057     2183     2692      636   510       0     _  0  _  _  _  0   99     0
    2  R1     2844     2835     2692      153   144      90     _  _  _ 90  _  1    7    90
       F1     2809     2815     2946      138   132       7     7  _  0  _  _  4   87     7
       F3     2769     2835     2987      219   153       0     _  _  0  _  _  5   94     0
    3  R3     3034     2971     2039      996   933      99     _  _  _  _  _ 99    0   109

   48    66485    65460  [-3 L=1026]
   49    69967    68642  [-2 L=1326]
   50    71402    70614  [-3 L= 789]
   51    73146    71341  [-1 L=1806]
   52    73426    74445  [+1 L=1020]
   53    74625    76166  [+3 L=1542]
   54    80198    76878  [-3 L=3321]
   55    80118    81140  [+3 L=1023]  [LowScoreBy #56 L=918 S=2]
   56    81188    80223  [-3 L= 966]  [OlapWith #55 L=918 S=97]
   57    82370    81288  [-3 L=1083]
   58    84895    83759  [-2 L=1137]  [DelayedBy #59 L=108]
   59    84873    86438  [+3 L=1566]

$ /usr/local/glimmer2.02/glimmer2 ecoli76k.fasta colitrain 

(c)

(b)

(a)

FIGURE 15.8. The GLIMMER
program is useful to find genes in
bacterial DNA. The program is
run on a UNIX operating system.
(a) A data set of genomic DNA
must first be trained to generate
Markov models, and then the pro-
gram is run. (b) The output
includes a list of identifiers with
ORF data on the forward (F1,
F2, F3) and reverse (R1, R2, R3)
strands and scores for the likelihood
that a gene has been identified. (c)
The output also includes a list of
several genes. The DNA used was
from E. coli K12 (accession
number U14003).

The NCBI GLIMMER program

is available in the tools menu of the

Microbial Genomes page found at

Q http://www.ncbi.nlm.nih.gov/
genomes/, or visit Q http://www.

ncbi.nlm.nih.gov/genomes/
MICROBES/glimmer_3.html.
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protein-coding genes rather than the 4300 genes that have been annotated.

Since stop codons (TAA, TAG, TGA) are AT rich, genomes that are GC

rich tend to have fewer stop codons and more predicted long ORFs. For all

predicted proteins in a genome, the proportion of hypothetical proteins

(defined as predicted proteins for which there is no experimental evidence

that they are expressed) rises greatly as sequence length is smaller.

† Frame shifts can occur, in which the genomic DNA is predicted to encode a

gene with a stop codon in one frame but a continuing sequence in another

frame on the same strand. A frame shift could be present because of a sequen-

cing error or because of a mutation that leads to the formation of a pseudo-

gene (a nonfunctional gene). GLIMMER extends gene prediction loci

several hundred base pairs upstream and downstream to search for homology

to known proteins and thus is designed to detect possible frameshifts.

† Some genes are part of operons that often have related functional roles in

prokaryotes. Operons have promoter and terminator sequence motifs, but

these are not well characterized. Steven Salzberg and colleagues

(Ermolaeva et al., 2001) analyzed 7600 pairs of genes in 34 bacterial and

archaeal genomes that are likely to belong to the same operon.

† Lateral gene transfer, also called horizontal gene transfer, commonly occurs

in bacteria and archaea. We will discuss this next.

Lateral Gene Transfer
Lateral, or horizontal, gene transfer (LGT) is the phenomenon in which a genome

acquires a gene from another organism directly, rather than by descent (Eisen,

2000; Koonin et al., 2001; Boucher et al., 2003). There are many situations in

which examination of a genome shows that a particular gene is very closely related

to orthologs in distantly related organisms. The simplest explanation for how a

species acquired such a gene is through lateral gene transfer. This mechanism

represents a major force in genome evolution. The gene transfer is unidirectional,

rather than involving a reciprocal exchange of DNA, and it does not involve the

usual pattern of inheritance from a parental lineage. Over 50% of archaeal and a smal-

ler percentage of bacterial species have one or more protein domains acquired by lateral

gene transfer, in contrast to ,10% of eukaryotic species (Choi and Kim, 2007).

Lateral gene transfer is a significant phenomenon for several reasons:

1. This mechanism vastly differs from the normal mode of inheritance in which

genes are transmitted from parent to offspring. Thus, lateral gene transfer

represents a major shift in our conception of evolution.

2. This mechanism is very common in prokaryotes, and many examples have

been described in eukaryotes as well. It has been observed within and between

each of the three main branches of life but is particularly prevalent in prokar-

yotes relative to eukaryotes (Choi and Kim, 2007).

3. Lateral gene transfer can greatly confound phylogenetic studies. If a DNA,

RNA, or protein is selected for phylogenetic analysis that has undergone

lateral gene transfer, then the tree will not accurately represent the natural

history of the species under consideration. An extreme interpretation of lateral

gene transfer is that if it is common enough, then it is impossible in principle

to derive a single true tree of life. Daubin et al. (2003) and Choi and Kim

An operon is a cluster of contigu-

ous genes, transcribed from one

promoter, that gives rise to a

polycistronic mRNA. The pre-

dicted gene pairs from this study,

encompassing 73 bacterial and

archaeal genomes, are available on

the web at OperonDB (Q http://
www.cbcb.umd.edu/cgi-bin/
operons/operons.cgi).
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(2007) have suggested that although lateral gene transfer is common, it is not

so prevalent that it greatly interferes with phylogenetic studies of organisms.

Huang and Gogarten (2006) offer the perspective that lateral gene transfer

can be useful in phylogenetic studies to infer monophyletic groups and to elu-

cidate the evolutionary history of both donor and recipient species.

4. Lateral gene transfer can profoundly affect the properties of basic biological

processes, as reviewed extensively by Boucher et al. (2003). They describe

its importance in a variety of processes such as photosynthesis, aerobic

respiration, nitrogen fixation, sulfate reduction, and isoprenoid biosynthesis.

Lateral gene transfer occurs as a multistep process (Fig. 15.9) (Eisen, 2000).

A gene that evolves in one lineage (by the traditional Darwinian process of vertical

descent) may transfer to the lineage of a second species. This DNA transfer could

be mediated by a viral vector or by a mechanism such as homologous recombination.

Once a new gene is incorporated into the genome of individuals with a population

(e.g., species 3 in Fig. 15.9), positive selection maintains its presence within those

individuals. A transferred gene presumably must confer benefits to the new species

in order to be maintained, propagated, and spread throughout the population of

the new species. Finally, the new gene adapts to its new lineage, a process called

“amelioration” (Eisen, 2000) (Fig. 15.9, arrow 6).

How is lateral gene transfer identified? The main criterion is that a gene has an

unusual nucleotide composition, codon usage, phylogenetic position, or other fea-

ture that distinguishes it from most other genes in a genome. There are three principal

methods by which lateral gene transfer may be inferred:

1. Phylogenetic trees of different genes may be compared. This is the favored

approach (Eisen, 2000). If a tree based on a gene (or protein) has a topology

Species 1 Species 2 Species 3 Species 4

1

2

6

3,4,5

FIGURE 15.9. Lateral gene transfer occurs in stages. In this hypothetical scenario, four species
evolved from a common ancestor. Genes in each species descend in a horizontal fashion over time
(arrow 1). At some point in time, a gene transfers horizontally from the lineage of species 4 to the
lineage of species 3 (arrow 2). Transferred genes must then be fixed in some individual genomes
(arrow 3), maintained under strong positive selection (arrow 4), and spread through the popu-
lation of species 3 (arrow 5). The laterally transferred gene then evolves as an integral part of the
new genome (arrow 6). This gene may be distinguished from other genes in species 3 by having a
nucleotide composition or codon usage profile that is characteristic of species 4. This figure is
adapted from Eisen (2000). Used with permission.

Carl Woese (2002) has suggested

that in early evolution lateral gene

transfer predominated to such an

extent that primitive cellular evol-

ution was a communal process,

followed only later by vertical

(Darwinian) evolution.
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different than that observed using ribosomal RNA, this discrepancy could be

caused by lateral gene transfer.

2. Patterns of best matches for each gene in a genome may be used. A gene

may have a highly unusual nucleotide composition or frequency of codon

utilization, consistent with its origin in a distantly related genome.

3. The distribution pattern of genes across species can be assessed to search

for genes that have undergone lateral gene transfer. If a gene is present in

crenarcheota and a group of plants but not in other archaea, bacteria, or

eukaryotes, this may be taken as evidence favoring a lateral gene transfer

mechanism from crenarcheota to plants.

There are several reasons for caution in assigning a mechanism of lateral gene

transfer. Consider the case of a gene widely distributed in bacteria that is observed

in humans.

† If orthologs of the bacterial gene were present in an insect such as Drosophila

or a plant, then the argument in favor of lateral gene transfer to humans

would be considerably weakened. A concern in positing lateral gene transfer

has been that the candidate gene might be present throughout the tree of life,

but we might have insufficient sequence data to find it in other species; the

recent flood of sequence data makes the possible lack of data less likely.

Over time it will be progressively easier to assess evolutionary relationships.

† It is also possible that the gene in question has undergone rapid mutation,

such that the phylogenetic signal is lost. This mechanism may lead to artifac-

tual results (false positives) if gene loss or rapid mutation has occurred but

not lateral gene transfer.

As a specific example of a gene that has undergone lateral gene transfer, consider

proteorhodopsin. This protein is found in proteobacteria such as Candidatus

Pelagibacter ubique (accession ZP_01264205). A blastp search using this protein as a

query, restricted to the RefSeq database, shows many matches to other proteobacteria

but also a match to Archaea of the order Thermoplasmatales. Frigaard et al. (2006)

reported that these Archaea inhabit the upper water column of the oceans where plank-

tonicbacteria laterally transferredproteorhodopsin genes to them. Frigaard et al. specu-

late that there is strong selective pressure for the use of proteorhodopsins in the presence

of light, leading to a broad spatial distribution of the gene across species.

Functional Annotation: COGs
As prokaryotic genomes are sequenced, they are annotated (see Chapter 13). This pro-

cess is far more straightforward in bacteria and archaea than in eukaryotes. A large collec-

tion of tools is available at CMR, at NCBI, and at EBI. An example of the functional

groups assigned to E. coli genes by the EcoCyc database is shown in Fig. 15.10.

At NCBI, The Clusters of Orthologous Groups of Proteins (COG) database

organizes information collected from dozens of prokaryotic genomes as well as the

yeast Saccharomyces cerevisiae (Chapter 17) and other eukaryotes (Tatusov et al.,

1997, 2003; Koonin et al., 2004). The goal of the COG project is to provide a

phylogenetic classification of prokaryotic proteins. The approach is to classify the

relationships of proteins in groups based on “best-hit” BLAST search results.

See the computer laboratory

exercises at the end of this chapter

for another example of lateral gene

transfer.

The COG URL is Q http://www.

ncbi.nlm.nih.gov/COG/. About

200,000 proteins are organized

into about 5000 clusters of ortho-

logous groups.
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FIGURE 15.10. The EcoCyc data-
base includes a Pathways link.
This site organizes E. coli proteins
according to function. From
Q http://ecocyc.org/.

FIGURE 15.11. The COG page
at NCBI provides analyses of func-
tionally related genes and
proteins from completely sequenced
genomes (Q http://www.ncbi.nlm.
nih.gov/COG/).
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The COG main page is shown in Fig. 15.11. Information is organized by

taxonomy (there are currently 14 prokaryotic phyla, 28 classes, 38 orders, and 66

genomes [species] represented). Following the link to unicellular clusters, one can

perform a text-based query such as for globins (Fig. 15.12a). This result shows

how many phyla, classes, orders, and genomes have globin-related domains, and

also assigns a functional category to that cluster. We presented a list of the COGs

functional categories in Table 10.10, including 25 categories organized into the gen-

eral areas of information storage and processing, cellular processes and signaling,

metabolism, and poorly characterized. There is a link to the two COGs that are

related to globins. In each case, the COG entries show the relationship of a group

of bacterial globins in various species, as well as a multiple sequence alignment of

these proteins and phylogenetic tree.

The COGs website summarizes the distribution of clusters of orthologous genes as

a function of the number of species (Fig. 15.12b). This is a useful way to identify groups

FIGURE 15.12. (a) A text search
for the term “globin” resulted in
matches for two Clusters of
Orthologous Groups of proteins
(COGs): hemoglobin-like flavopro-
teins and truncated hemoglobins.
The output includes a list of the
total numbers of phyla, classes,
orders, and genomes (i.e., species)
having these clusters and a graphi-
cal view of the orders having these
globin clusters. The functional cat-
egories are indicated, following the
COGs schema. There is also a link
to the specific COGs; that page
includes accession numbers of the
individual prokaryotic globins
and a phylogenetic tree showing
the relations of the proteins in the
clusters. (b) The COGs site sum-
marizes the distribution of clusters,
from those occurring very rarely
(arrow 1) to those that occur in
all genomes covered in the database
(arrow 2). The bars in this plot are
clickable, leading to the results
shown in (c) and (d). (c)
Examples of COGs that occur
only rarely. Many of these are
annotated as uncharacterized con-
served proteins. (d) COGs that
occur across all prokaryotic orders
include ATPases, GTPases, amino
acid tRNA synthetases, and riboso-
mal proteins. All these proteins are
highly conserved and thus may be
useful for large-scale phylogenetic
studies.
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of relatedproteins thatoccur very rarelyor very frequently.ThoseCOGsthatoccur infre-

quently tend to be annotatedas uncharacterized conserved proteins (Fig. 15.12c). If you

are studying a particular prokaryote, it could be of interest to study these proteins

because they may be relatively unique to that organism. Other proteins are highly con-

served. For example, there are 63 clusters of orthologous proteins that are found in 26

different species (Fig. 15.12d). These well-conserved protein families include tRNA

synthetases, ribosomal proteins, and other enzymes such as signal recognition particle

GTPase and S-adenosyl methionine-dependent methyltransferases. Each of these is

thus a good candidate for phylogenetic studies across the bacteria and/or archaea.

COMPARISON OF PROKARYOTIC GENOMES

One of the most important lessons of whole-genome sequencing is that comparative

analyses greatly enhance our understanding of genomes. It can be useful to compare

genomes whether they are closely or distantly related organisms. Some of the species

that have had the genomes of closely related strains completely sequenced are indi-

cated in Table 15.9. It will be significant to compare such genomes for several reasons:

† We may be able to discover why some strains are pathogenic.

† Eventually, we may be able to predict clinical outcome of infections based on

the genotype of the pathogen.

† We may develop strategies for vaccine development.

TABLE 15-9 Prokaryotic Species forWhich Genome of at LeastTwo Closely Related Strains Have Been
Determined
Organism Accession Genome Size (bp)

Chlamydophila pneumoniae AR39 NC_002179 1,229,858

C. pneumoniae CWL029 NC_000922 1,230,230

C. pneumoniae J138 NC_002491 1,226,565

Escherichia coli K12 NC_000913 4,639,221

E. coli O157:H7 NC_002695 5,498,450

E. coli O157:H7 EDL933 NC_002655 5,528,445

Helicobacter pylori 26695 NC_000915 1,667,867

H. pylori J99 NC_000921 1,643,831

Mycobacterium tuberculosis CDC1551 NC_002755 4,403,836

M. tuberculosis H37Rv NC_000962 4,411,529

Neisseria meningitidis MC58 NC_003112 2,272,351

N. meningitidis Z2491 NC_003116 2,184,406

Staphylococcus aureus aureus MW2 NC_003923 2,820,462

S. aureus aureus Mu50 NC_002758 2,878,040

S. aureus aureus N315 NC_002745 2,813,641

Streptococcus agalactiae 2603V/R NC_004116 2,160,267

S. agalactiae NEM316 NC_004368 2,211,485

S. pneumoniae R6 NC_003098 2,038,615

S. pneumoniae TIGR4 NC_003028 2,160,837

S. pyogenes M1 GAS NC_002737 1,852,441

S. pyogenes MGAS315 NC_004070 1,900,521

S. pyogenes MGAS8232 NC_003485 1,895,017
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For an example of comparisons of prokaryotic genomes (and proteomes) we can

consider Chlamydiae which are obligate intracellular bacteria that are phylogeneti-

cally distinct from other bacterial divisions. Chlamydia pneumoniae infects humans,

causing pneumonia and bronchitis. Chlamydia trachomatis causes trachoma (an

ocular disease that leads to blindness) and sexually transmitted diseases. Why do

these closely related bacteria affect different body regions and cause such distinct

pathologies? Their genomes have been sequenced and compared (Stephens et al.,

1998; Kalman et al., 1999; Read et al., 2000). There are hundreds of genes present

uniquely in each bacterium, including a family of outer membrane proteins that

could be important in tissue tropism (Kalman et al., 1999).

TaxPlot
The NCBI offers a powerful tool for genome comparison that is easy to use. From the

Entrez Genome page, select C. trachomatis to obtain a page such as that shown in

Fig. 13.7. Select TaxPlot, and you will be able to compare two genomes (such as

C. trachomatis and C. pneumoniae AR39) against a reference genome (the anthrax

bacterium B. anthracis in the example of Fig. 15.13). In this plot, each point

represents a protein in the reference genome. The x and y coordinates show the

BLAST score for the closest match of each protein to the two Chlamydia proteomes

FIGURE 15.13. The TaxPlot tool
at NCBI (Entrez) allows the
comparison of two bacteria
(C. trachomatis A/HAR-13 and
C. pneumoniae AR39) to a refer-
ence genome (B. anthracis strain
Ames in this case). The plot shows
the distribution of blastp scores of
each bacterium against the refer-
ence genome. Thirty matches are
identical, while 459 hits are at
least marginally closer to
C. trachomatis and 633 hits are
closer to C. pneumoniae. The two
queries are selected using a pull-
down menu (arrows 1 and 2). A
match of interest that has a higher
pairwise blastp score in one pro-
teome relative to the other query
can be clicked (arrow 3) leading
to a zoom feature (arrow 4). The
highlighted protein is identified in
all three species (arrow 5) and
there are links to the pairwise
alignments from blast 2 sequences
(Chapter 3). Optionally, the user
can select from a set of functional
categories to further focus the
analysis (arrow 6).

In the United States, 10% of all

pneumonia cases and 5% of

bronchitis cases are attributed to

C. pneumoniae.
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being compared. Most proteins are found along a diagonal line, indicating that they

have equal (or nearly equal) scores between the reference protein and either of the

Chlamydia proteins. However, there are notable outliers, which could represent

genes important in the distinctive behavior of these two organisms. These points

are clickable (see circled data point in Fig. 15.13, arrow 3), and the selected data

point is highlighted (Fig. 15.13, arrow 4). This protein is identified as an arginine/

ornithine antiporter in B. anthracis and C. trachomatis, and as an amino acid permease

in C. pneumoniae. There are further links to the pairwise BLAST comparisons (arrow

5). The displays in TaxPlot can further be color coded according to the COG classi-

fication scheme (arrow 6).

Another powerful application of TaxPlot is to select a genome for both reference

and for one of the queries, then select a second genome for the second query. This is

illustrated in Fig. 15.14 for a C. trachomatis strain versus C. pneumoniae. All the data

points fall on the diagonal (indicating that they share identity between the two

species) or in the upper left section. No data points are in the lower right section

because no C. trachomatis query protein can possibly be more related to C. pneumo-

niae than to its own protein sequence. The outliers, such as those indicated with

arrows, are of particular interest because they are particularly highly divergent

FIGURE 15.14. TaxPlot can be
used with one proteome serving as
both the reference and the first
query (in this case, C. trachomatis
A/HAR-13) while another pro-
teome forms the second query (in
this case, C. pneumoniae AR39).
Points that fall off the diagonal
line (e.g., see arrows) have a high
blastp score in one proteome but a
relatively low score in the other,
indicating that they are relatively
poorly conserved. Such proteins
may be of great interest in explain-
ing the particular physiology or
behavior of a strain or species.

There are several ways to access

TaxPlot, including from the Tools

link on the left sidebar of the main

NCBI home page, as well as from

Q http://www.ncbi.nlm.nih.gov/
Genomes.
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between the two species, having high blastp scores in one but low scores in the other.

All three of the arrows point to polymorphic outer membrane proteins. Several

additional outlying data points correspond to proteins that are annotated as hypo-

thetical and thus for which function has not been assigned. These are potentially

important in distinguishing the functional differences between these two species.

TaxPlot is thus an easy way to identify proteins that are different in two microbial

genomes of interest. The tool has been extended to eukaryotes as well (Chapter 16).

MUMmer
A major challenge in aligning whole microbial genomes is the excessive amount of

time required to perform an alignment of millions of base pairs using dynamic pro-

gramming (Chapter 3). We introduced several fast algorithms such as BLAT in

Chapter 5. Still, additional tools to accomplish large-scale genome alignment are

needed (Miller, 2001). MUMmer is a software package that offers rapid, accurate

alignments of microbial genomes (Delcher et al., 1999b). It has been adapted to

aligning eukaryotic sequences (Delcher et al., 2002; Kurtz et al., 2004).

MUMmer accepts two sequences as input. The algorithm finds all subsequences

that are longer than a specified minimum length k and that are perfectly matched. By

definition, these matches are maximal because extending them further in either direc-

tion causes a mismatch. The algorithm uses a suffix tree, which is a search structure that

identifies all the maximal unique matches (“MUM”s) in the pairwise alignment. The

MUMs are ordered, and the algorithm closes gaps by identifying large inserts, repeats,

small mutated regions, and single-nucleotide polymorphisms (SNPs).

MUMmer output consists of a dot matrix plot (Fig. 15.15) showing the align-

ment of the two genomic sequences with some minimum alignment length (e.g.,

15 or 100 bp). The kinds of results that can be obtained include:

1. SNPs

2. Regions where sequences diverge by more than an SNP

3. Large insertions (e.g., by transposition, sequence reversal, or lateral gene

transfer)

4. Repeats (e.g., a duplication in one genome)

5. Tandem repeats (in different copy number)

In the example of Fig. 15.15, two strains of E. coli are compared: a harmless

E. coli K12 strain and the E. coli O157:H7 strain that appears in contaminated

food, causing disease such as hemorrhagic colitis. These strains diverged about

4.5 MYA (Reid et al., 2000). Both genomes were sequenced and compared

(Blattner et al., 1997; Perna et al., 2001; Hayashi et al., 2001; reviewed in Eisen,

2001). Escherichia coli 0157:H7 is about 859,000 bp larger than E. coli K12. The

two bacteria share a common backbone of about 4.1 Mb, while E. coli 0157:H7

has an additional 1.4-Mb sequence comprised largely of genes acquired by lateral

gene transfer. The MUMmer output is useful to identify regions of the two genomes

that are shared in common as well as regions in which the orientation is inverted.

Eisen et al. 2000 used such analyses to describe symmetrical chromosomal inversions

around the origin of replication in comparisons of closely related species including

C. pneumoniae versus C. trachomatis.

MUMmer was written by Steven

Salzberg and colleagues at TIGR.

You can download the software

from Q http://mummer.

sourceforge.net/, and there is an

interactive web browser at the

Comprehensive Microbial

Resource. From the CMR home-

page (Q http://cmr.jcvi.org/)

follow the links to comparative

tools then alignment tools.
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There are two further extensions of MUMmer. NUCmer (NUCleotide

MUMmer) allows multiple reference and query sequences to be aligned. One appli-

cation is to align a group of contigs. PROtein MUMmer (PROmer) is similar to

NUCmer but uses six-frame translations of each nucleotide sequence, thus offering

superior sensitivity in aligning distantly related sequences.

PERSPECTIVE

The recent sequencing of several thousand bacterial and archaeal genomes has had a

profound effect on virtually all aspects of microbiology. We can summarize the

benefits of whole-genome sequencing of microbes as follows:

† Upon identifying the entire DNA sequence of a bacterial or archaeal genome,

we obtain a comprehensive survey of all the genes and regulatory elements.

This is similar to obtaining a parts list of a machine, although we do not

also have the instruction manual.

† Through comparative genomics, we may learn the principles by which the

“machine” is assembled and by which it functions.

† We can understand the diversity of microbial species through comparative

genomics. Thus, we can begin to uncover the principles of genome

FIGURE 15.15. The MUMmer
program allows you to select two
microbial genomes of interest for
comparison on a dot plot. The
minimal alignment length can be
adjusted. The MUMmer output
consists of a dot plot that displays
maximally unique matching subse-
quences (MUMs) between two
genomes. This tool rapidly describes
the relationship between two gen-
omes, including information on
the relative orientation of the geno-
mic DNA and the presence of inser-
tions or deletions. Here E. coli K12-
MG1655 is represented on the x
axis, and the pathogenic strain
E. coli 0157:H7 EDL933 is on the
y axis. There is a major 458 line
where the two closely related gen-
omes align. A line segment near
the center is oriented at a 908
angle. This represents an inversion
in which the orientation of a geno-
mic segment in one of the two
strains is reversed relative to the
other.
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organization, and we can compare pathogenic versus nonpathogenic strains.

We can also appreciate the dramatic differences in genome properties

between two strains from the same species.

† We are gaining insights into the evolution of both genes and species. We can

now appreciate lateral gene transfer as one of the driving forces of microbial

evolution. We can study gene duplication and gene loss. Having the complete

genome available is important both to learn what genes comprise an organ-

ism and to learn what genes are absent.

† Complete genome sequences offer a starting point for biological

investigations.

PITFALLS

As complete bacterial and archaeal genomes are sequenced, two of the most

important tasks are gene identification and genome annotation. Gene identifi-

cation has become routine, but can be difficult for several reasons: It is difficult

to assess whether short ORFs correspond to transcripts that are actively tran-

scribed, and (in contrast to eukaryotes) prokaryotes do not always use AUG as

a start codon.

Genome annotation is the critical process by which functions are assigned to

predicted proteins. When genome sequences were first identified in the 1990s it

was common for half of all predicted proteins to have no known homologs, and

their function was entirely obscure. Perhaps surprisingly this situation has persisted

to a large extent, with many genes annotated as “hypothetical” or having unknown

function.

Gene annotation performed computationally should always be viewed as gener-

ating a hypothesis that needs to be experimentally tested. There are several kinds of

common errors (Brenner, 1999; Mural, 1999; Peri et al., 2001):

† Transitive catastrophes: inappropriately assigning a function to a gene based

on homology to another gene with a known function.

† Identification of small ORFs as authentic genes when they are not tran-

scribed. Devos and Valencia 2001 estimate that about 5% of the genes anno-

tated for general functions are incorrect, while about 33% of the gene

annotations for specific functions are erroneous.

WEB RESOURCES

DISCUSSION QUESTIONS

The Comprehensive Microbial Resource (Q http://cmr.jcvi.org)

provides an important starting point for any study of microbial gen-

omes. A useful link on microbes is Q http://www.microbes.info.

This site includes a broad variety of resources, including introduc-

tory articles on microbiology.

[15-1] Anthrax strains vary in their pathogenicity. What bioinfor-

matics approaches could you take to understand the basis

of this difference? What specific proteins are involved in

its pathogenicity?

[15-2] How can you assess whether bacterial genes have incorpor-

ated into the human genome through lateral gene transfer?

What alternative explanations could there be for the pre-

sence of a human protein that is most closely related to a
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PROBLEMS/COMPUTER LAB

SELF-TEST QUIZ

[15-1] A typical bacterial genome is composed of approximately how

many base pairs of DNA?

(a) 20,000 bp

(b) 200,000 bp

(c) 2,000,000 bp (2 Mb)

(d) 20,000,000 bp (20 Mb)

[15-2] Myxococcus xanthus has a relatively large genome size, even

compared to other proteobacteria. One reason for this size

may be the following:

(a) M. xanthus acquired repetitive DNA sequences

(b) M. xanthus lives is a bacterium with a relatively large diam-

eter size

(c) M. xanthus has a complex social lifestyle requiring large

numbers of genes

(d) M. xanthus acquired a large number of plasmids

[15-3] The E. coli genome encodes about 4300 protein-coding genes.

The total number of E. coli introns is approximately

(a) 10

(b) 430

(c) 4,300

(d) 43,000

[15-4] The smallest prokaryotic genomes tend to be those of

(a) Extremophiles

(b) Viruses

(c) Intracellular bacteria

(d) Bacilli

[15-5] Which of the following constitutes strongest evidence that an

E. coli gene became incorporated into the E. coli genome by

lateral gene transfer?

(a) The GC content of the gene varies greatly relative to other

E. coli genes.

(b) The frequency of codon utilization of the gene varies greatly

relative to other E. coli genes/.

(c) Phylogenetic analysis shows that proteobacteria closely

related to E. coli lack this gene.

(d) Any of the above.

group of bacterial proteins, without having other eukary-

otic orthologs?

[15-3] Consider the differences between E. coli K12 and E. coli

O157:H7 and other closely related pairs of bacteria. They

undergo lateral gene transfer to different degrees, they have

distinct patterns of pathogenicity, and these two strains

even differ in genome size by over a million base pairs.

What is the definition of a species? Is E. coli a species?

[15-1] Analyze the genome of E. coli. Begin at Entrez Genomes. Find a

gene that is known to have a homolog in eukaryotes. Use the

TaxPlot tool of Entrez genomes. Now use the Clusters of

Orthologous Genes (COG) site to find a gene that is known

to have a homolog in eukaryotes. In addition to NCBI, there

are two excellent resources for completed genomes:

† Explore this same bacterial genome at the TIGR website. Go

to Q http://cmr.jcvi.org. Then (from the left sidebar) click

TIGR databases. Click the link for “projects completed”

and find your genome.

† Explore this same bacterial genome at the Wellcome Trust

Sanger Institute website. Go to Q http://www.sanger.ac.

uk/Projects/.

[15-2] Explore the GC content and codon utilization of a bacterium.

From the CMR (Q http://cmr.jcvi.org) search the genomes for

Yersinia pestis, and select Y. pestis CO92. How many chromo-

somes and plasmids does it contain? Under genome tools/

analysis tools select GC content display tool, choose Y. pestis,

and compare the range of GC percent across the main chromo-

some and across plasmid pPCP1. Which has a higher GC con-

tent? Under genome tools/analysis tools select the codon usage

tool, and choose Y. pestis. Look at the codon utilization for both

the main chromosome and for one of its plasmids (you may

choose to print them out to study them). Are there differences

in the codon usages?

[15-3] The bacterium Wolbachia pipientis is an endosymbiont that lives

inside insect and nematode hosts. A large fraction of its genome

has transferred to the nuclear genome of some hosts (Hotopp

et al., 2007). Select a Wolbachia protein (e.g., NP_965857)

and provide evidence that an ortholog has been laterally trans-

ferred to a Drosophila species. As one strategy, first perform

blastp with the protein as a query restricting the output to bac-

teria, and then restricting the output to eukaryotes. Try per-

forming a tblastn search against the trace archives (a link is

provided on the main NCBI blast web page). Try a tblastn

search against the whole-genome shotgun read database

restricted to the insects.

[15-4] Compare two completed genomes. Begin at Entrez Genomes.

Choose bacteria, then choose an organism such as Rickettsia

prowazekii. Use TaxPlot to perform a three-way genome com-

parison. Try clicking on a point on the graph. Restrict your

analysis to a functional group of genes (“transcription”).

Repeat your search with the group “function unknown.” Are

the profiles different?
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[15-6] The main idea of the Clusters of Orthologous Groups of

Proteins (COGs) database is

(a) To classify proteins from completely sequenced prokaryotic

genomes based on orthologous relationships

(b) To provide multiple sequence alignments of completed

prokaryotic genomes

(c) To provide a functional classification system for proteins

(d) To predict the functions of individual eukaryotic proteins

based on the conserved families in prokaryotes

[15-7] We noted that the Candidatus Carsonella ruddii genome is extre-

mely small (see accession NC_008512). First note how many

genes are annotated based on NCBI’s Entrez database. Next,

obtain the sequence (159,662 nucleotides) in FASTA format,

input it to the GLIMMER program for gene prediction

(obtained via the NCBI prokaryotic genomes site). How

many genes does the GLIMMER program annotate relative

to the NCBI annotation?

(a) More genes

(b) The same number of genes

(c) Fewer genes

[15-8] The pathogenic strain E. coli O157:H7 EDL933 is substantially

larger than E. coli K12 substr. DH10B (discussed above). Use

TaxPlot, MUMmer, or NCBI Genomes to determine approxi-

mately how many more genes it has.

(a) 1000

(b) 2000

(c) 3000

(d) 8000
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Through the first half of the twentieth century, Charles Darlington performed brilliant studies of the chromosomes. (a) First P.G. mitosis
in Paris quadrifolia, Liliaceae, showing all stages from prophase to telophase. n ¼ 10. �800 magnification. (b) First P.G. mitosis in
polar view. Tradescantia virginiana, Commelinaceae, n ¼ 9 (from aberrrant plant with 22 chromosomes). �1200. (c) Root tip
squashes showing anaphase separation in Fritillaria pudica, 3x ¼ 39. Note the spiral structure of chromatids (daughter
chromosomes). �3000. (d) Cleavage mitosis in the morula of the teleostean fish, Coregonus clupeoides, in the middle of anaphase.
Spindle structure revealed by slow fixation. �4000.
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The Eukaryotic Chromosome

Science is about building causal relations between natural phenomena (for instance, between a

mutation in a gene and a disease). The development of instruments to increase our capacity to

observe natural phenomena has, therefore, played a crucial role in the development of

science—the microscope being the paradigmatic example in biology. With the human

genome, the natural world takes an unprecedented turn: it is better described as a sequence

of symbols. Besides high-throughput machines such as sequencers and DNA chip readers,

the computer and the associated software becomes the instrument to observe it, and the dis-

cipline of bioinformatics flourishes. However, as the separation between us (the observers)

and the phenomena observed increases (from organism to cell to genome, for instance), instru-

ments may capture phenomena only indirectly, through the footprints they leave. Instruments

therefore need to be calibrated: the distance between the reality and the observation (through

the instrument) needs to be accounted for. [We are] calibrating instruments to observe gene

sequences; more specifically, computer programs to identify human genes in the sequence

of the human genome.

—Martin Reese and Roderic Guigó (2006, p. S1.1),

introducing EGASP, the Encyclopedia of DNA Elements (ENCODE)

Genome Annotation Assessment Project

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.
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INTRODUCTION

The eukaryotes are single-celled or multicellular organisms that are characterized by

the presence of a membrane-bound nucleus and a cytoskeleton. We will begin our

examination of specific eukaryotes with the fungi (Chapter 17), including

Saccharomyces cerevisiae. We then broadly survey the eukaryotes (Chapter 18), from

the simplest primitive single-celled organisms to plants and metazoans (animals).

At the start of Chapter 13 we addressed five basic perpectives on the field of

genomics. With respect to the topic of eukaryotic chromosomes, we may briefly

reiterate the five perspectives as follows:

Perspective 1: Catalog genomic information. We will examine genome sizes, noncod-

ing DNA (e.g., repetitive DNA), and coding DNA (genes). For a given segment of

genomic DNA, we will address the problem of annotation: how much repetitive

DNA is present and of what type? How many protein-coding genes or RNA genes

are present?

Perspective 2: Catalog comparative genomic information. How can comparative

genomics help us to understand chromosomal rearrangements that have occurred

over time?

Perspective 3: Biological principles. What are the mechanisms underlying chromo-

somal functions and chromosomal variations such as duplications, inversions, and

translocations? More broadly, as we examine genomic DNA, we want to address

the molecular basis of how organisms and species evolve.

Perspective 4: Human disease relevance. In what ways are chromosomal variants

associated with disease?

Perspective 5: Bioinformatics aspects. What tools are available to understand

chromosomes, from genome browsers to gene-finding algorithms?

A focus of this chapter is on the analysis of completely sequenced eukaryotic

genomes. The C. elegans sequencing consortium 1998 described why we want to

obtain the complete genomic sequences:

† The complete genome sequence provides the basis for discovering all the

genes that are encoded in a genome. Other approaches, such as characterizing

expressed sequence tags, can never be as comprehensive.

† The comparative genomic sequence shows the structural and regulatory

elements associated with genes.

† It provides the basis to assess the molecular evolution of a species as well as the

extent of its variation between individuals, populations, and other species.

† It provides a set of tools for future experimentation.

At the same time that eukaryotic genomes are completely sequenced, a parallel

molecular approach is the characterization of individual genes from many hundreds

or thousands of species. The use of model genes complements the use of model

organisms. For example, a search of GenBank for the gene ribulose-1,5-bisphos-

phate carboxylase (rubisco; rbcL) currently reveals about 50,000 entries. Rubisco

is a major plant gene (discussed in Chapter 18), and the availability of molecular

sequence data from many species for this and selected other genes is crucial for

Synonyms of eukaryotes include

eucaryotae, eucarya, eukarya, and

eukaryotae. The word derives

from the Greek eu- (“true”) and

karutos (“having nuts”; this refers

to the nucleus).
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phylogenetic reconstructions and structure–activity studies. Other commonly

studied genes include highly conserved molecules such as those described in Figs.

17.2 and 18.1.

Major Differences between Eukaryotes and Prokaryotes
Eukaryotes share a common ancestry with prokaryotes, but when we compare

them, we find several outstanding differences (Cavalier-Smith, 2002; Vellai and

Vida, 1999; Watt and Dean, 2000). Some of these genomic features are highlighted

in Table 16.1.

† There is a tremendous diversity of both prokaryotic and eukaryotic life forms.

However, very few bacterial or archaeal life forms are visible to the human eye.

Many eukaryotes are single-celled, microscopic organisms. Nonetheless,

most life forms that we can see are multicellular eukaryotes (e.g., plants and

metazoans).

† Eukaryotic cells have three cellular features that are lacking in prokaryotes:

(1) a membrane-bound nucleus, (2) an extensive system of organelles

bound by intracellular membranes, and (3) a cytoskeleton, including elements

such as actin and tubulin, and molecular motors. Notably, prokaryotes lack

energy-producing organelles and are incapable of endocytosis, the process

by which extracellular cargo is internalized (Vellai and Vida, 1999).

† Most eukaryotes undergo sexual reproduction, although some are asexual.

Bacteria lack gamete fusion and do not exchange DNA by sex.

† The genome size of eukaryotes varies widely, spanning five orders of magni-

tude (Table 16.2). In contrast, most archaeal and bacterial genomes are

between about 0.2 and 13 Mb in size (see Chapters 13 and 15).

† Prokaryotic genomes tend to have a relatively high density of protein-coding

genes and little repetitive or other noncoding DNA. For example, 0.7% of

the Escherichia coli genome consists of noncoding repeats (Blattner et al.,

1997). In contrast, many eukaryotic genomes include large tracts of noncod-

ing DNA. Several examples are provided in Table 16.1.

TABLE 16-1 Features of Several Sequenced Bacterial and Eukaryotic Genomes
Feature E. coli K-12 Parasitea Yeastb Slime Moldc Plantd Humane

Genome size, Mb 4.64 22.8 12.5 8.1 115 3289

GC content, % 50.8 19.4 38.3 22.2 34.9 41

Number of genes 4288 5268 5770 2799 25,498 20,000–25,000

Gene density, kb per gene 0.95 4.34 2.09 2.60 4.53 27

Percent coding 87.8 52.6 70.5 56.3 28.8 1.3

Number of introns 0 7406 272 3578 107,784 53,295

Repeat % ,1 ,1 2.4 ,1 14 46

aPlasmodium falciparum.
bSaccharomyces cerevisiae.
cDictyostelium discoideum.
dArabidopsis thaliana.
eHomo sapiens.

Abbreviations: bp, base pairs; Mb, millions of base pairs (megabases).

Source: Adapted from Gardner et al. (2002); Blattner et al. (1997); International Human Genome Sequencing Consortium (2001, 2004).

Sexual reproduction is called

syngamy, the process by which the

haploid chromosomes of the male

and female gametes combine to

form the zygote (i.e., the fertilized

ovum).
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† Prokaryotes are haploid, that is, the organism has one set of chromosomes.

Eukaryotes may be haploid or diploid (2x; having two sets of chromosomes)

or have other ploidy states (such as triploid [3x]). This higher level of ploidy

offers eukaryotes a variety of evolutionary mechanisms such as heterozygous

advantage (Watt and Dean, 2000).

† The genomes are organized differently. The majority of bacterial and

archaeal genomes are organized in circular chromosomes, often with small

accompanying plasmids (see Fig. 15.1). Eukaryotic nuclear genomes are

organized primarily into linear chromosomes. These eukaryotic chromosomes

are typically numerous (ranging from a few to over 100) and each has

a centromere (defined below) as well as telomeres at either end. These

features are absent from prokaryotic chromosomes, although centromere-like

elements have been described (Ben-Yehuda et al., 2002; Moller-Jensen et al.,

2002). The mechanisms by which bacteria segregate DNA are relatively

obscure.

TABLE 16-2 Genome Size of Selected Phyla or Classes of Eukaryotes

Taxon
Phylum, Class, or

Division
Genome Size
Range (Gb)

Ratio of genome sizes
(Highest/Lowest)

All eukaryotes — 0.003–686 228,667

Alveolata — — 22,333

Apicomplexians 0.009–201 22,333

Ciliates 0.024–8.62 359

Dinoflagellates 1.37–98 72

Diatoms 0.035–24.5 700

Amoebae 0.035–686 19,600

Euglenozoa 0.098–2.35 24

Fungi/microsporidia 0.003–1.47 490

Animals — — 3,325

Sponges 0.059–1.78 30

Cnidarians 0.227–1.83 8

Insects 0.089–9.47 106

Elasmobranchs 1.47–15.8 11

Bony fishes 0.345–133 386

Amphibians 0.93–84.3 91

Reptiles 1.23–5.34 4

Birds 1.67–2.25 1

Mammals 1.7–6.7 4

Placozoa 0.04 —

Plants — — 6,140

Algae 0.080–30 375

Pteridophytes 0.098–307 3,133

Gymnosperms 4.12–76.9 19

Angiosperms 0.050–125 2,500

Note: 0.001 Gb (gigabases) equals 1 Mb. Values in picograms were multiplied times 0.9869 � 109 to
obtain gigabases.

Sources: Adapted from Graur and Li 2000, Animal Genome Size Database of T. R. Gregory (Q http://
www.genomesize.com), and the National Center for Biotechnology Information (Q http://www.ncbi.
nlm.nih.gov).
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GENERAL FEATURES OF EUKARYOTIC GENOMES

AND CHROMOSOMES

C Value Paradox: Why Eukaryotic Genome
Sizes Vary So Greatly
In eukaryotic genomes, the haploid genome size (C value) varies enormously. This is

shown in Table 16.2 for various taxa of eukaryotes and in Table 16.3 for specific

eukaryotic species. Some genomes are relatively quite small, such as the microspor-

idian Encephalitozoon cuniculi (2.9 Mb; Chapter 17). Others have genome sizes in

the range of hundreds of billions of base pairs. Tremendous variation in C values

occurs among the unicellular protists such as amoebae, with a 20,000-fold range.

Within the animal kingdom, the range is about 3000-fold.

TABLE 16-3 Genome Size (C Value) for Various Eukaryotic pecies
Species Common Name C Value (Gb)

Saccharomyces cerevisiae Yeast 0.012

Neurospora crassa Fungus 0.043

Dysidea crawshagi Sponge 0.054

Caenorhabditis elegans Nematode 0.097

Drosophila melanogaster Fruitfly 0.12

Paramecium aurelia Ciliate 0.19

Oryza sativa Rice 0.47

Strongylocentrotus purpuratus Sea urchin 0.80

Gallus domesticus Chicken 1.23

Erysiphe cichoracearum Powdery mildew 1.5

Boa constrictor Snake 2.1

Parascaris equorum Roundworm 2.5

Carcharias obscurus Sand-tiger shark 2.7

Canis familiaris Dog 2.9

Rattus norvegicus Rat 2.9

Xenopus laevis African clawed frog 3.1

Homo sapiens Human 3.3

Nicotania tabacum Tobacco plant 3.8

Locusta migratoria Migratory locust 6.6

Paramecium caudatum Ciliate 8.6

Allium cepa Onion 15

Truturus cristatus Warty newt 19

Thuja occidentalis Western giant cedar 19

Coscinodisucus asteromphalus Centric diatom 25

Lilium formosanum Lily 36

Amphiuma means Two-toed salamander 84

Pinus resinosa Canadian red pine 68

Protopterus aethiopicus Marbled lungfish 140

Amoeba proteus Amoeba 290

Amoeba dubia Amoeba 690

Sources: Adapted from Graur and Li (2000), NCBI (Q http://www.ncbi.nlm.nih.gov), Cameron et al.
(2000), and the Database of Genome Sizes (Q http://www.cbs.dtu.dk/databases/DOGS/index.php).

The C value is measured in base

pairs or in picograms (pg) of

DNA. One picogram of DNA

corresponds to approximately

1 Gb.

An online database of plant C

values is available at Q http://
data.kew.org/cvalues/homepage.

html. Currently (December 2007)

it lists data for over 5000 species.

The Animal Genome Size

Database (from T. Ryan Gregory)

is online at Q http://www.

genomesize.com/. Another

resource is the Database of

Genome Size (DOGS) (Q http://
www.cbs.dtu.dk/databases/
DOGS/).
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Remarkably, the range in C values does not correlate well with the complexity

of organisms. Some organisms such as A. thaliana (a plant) and Fugu rubripes (a puf-

ferfish) have extremely compact genomes while closely related organisms of similar

biological complexity have genomes that are orders of magnitude larger. This lack

of correlation is called the C value paradox (Hartl, 2000; Knight, 2002; Hancock,

2002; Kidwell, 2002). The genomes of many eukaryotes have now been sequenced,

including Caenorhabditis elegans (1998), Drosophila melanogaster (2000), Homo sapiens

(2001), and Mus musculus (2002) (see below and Chapters 13 and 18). These whole-

genome studies provide one clear answer to the C value paradox: genomes are filled

with large tracts of noncoding DNA sequences in varying amounts. This accounts for

the variation in genome size. We will explore this noncoding DNA below.

Organization of Eukaryotic Genomes into Chromosomes
Genomic DNA is organized in chromosomes. Originally, chromosomes were defined

morphologically as the bodies into which the nucleus resolves itself at the beginning

of mitosis and from which it is derived at the end of mitosis (Waldeyer, 1888;

Darlington, 1932). It was clear by the 1880s that the nucleus is the cellular organelle

that directs the cell division process, and that mitosis occurs in both plants and ani-

mals (Lima-de-Faria, 2003). Visualizing chromosomes cytogenetically was challen-

ging, and reports from the 1920s that there are 48 human chromosomes were not

corrected until Joe Hin Tjio and Albert Levan (1956) reported that the diploid

number of chromosomes is 46, that is, there are 23 pairs of human chromosomes.

As we explore a variety of eukaryotic genomes that have been completely

sequenced, it is helpful to describe the structure and content of chromosomes. We

will refer to a karyotype of human metaphase chromosomes visualized with

Wright’s stain (Fig. 16.1a). A variety of stains produce banding patterns on chromo-

somes. These include Q bands (based on stains using quinacrine mustard or deriva-

tives) and G bands (based on the Giemsa dye; Wright’s stain is an example of such a

dye). These dyes stain the entire length of each chromosome and produce a charac-

teristic banding pattern. A band is defined as a portion of a chromosome that is

distinguishable from adjacent segments by appearing lighter or darker.

There are several major features of eukaryotic chromosomes. The most apparent

landmarks are the two telomeres (the chromosome ends) and the centromere.

Telomeres are structures characterized by tandem arrays of repetitive sequences

found at the chromosome ends. They provide stability to chromosomes by preventing

the degradation of the chromosome end and by blocking the fusion of chromosome

ends (Blackburn et al., 1989). The centromere, a region that remains unstained with

many dyes, appears as a constriction. Centromeres may be metacentric (located near

the middle of the chromosome) or acrocentric (located close to a telomere). In

humans, the five acrocentric chromosomes are 13, 14, 15, 21, and 22. In some

species such as the mouse, Mus musculus, all chromosomes are acrocentric.

The autosomes consist of chromosomes 1 to 22, while the X and Y are the sex

chromosomes. In the particular karyotype shown in Fig. 16.1a there is a hemizygous

deletion of the terminus of chromosome 11q. In a euploid (apparently normal) indi-

vidual there are two copies of each autosome; in a hemizygous deletion there is only

one copy, and in a homozygous deletion there are zero copies. Using conventional

karyotyping, deletions or duplications as small as several million base pairs can be

observed by inspection of the banding patterns. Figure 16.1b shows a trisomy of

Alternative solutions to the C

value paradox do not fit. The

number of protein-coding genes in

eukaryotes varies over a �10-fold

range, but this variation is far

smaller than the range of genome

sizes. Also, interspecies variation

in the lengths of mRNA molecules

does not explain the C value

paradox because no correlation

exists between mean gene length

and genome size.

Chromosomes are often studied at

metaphase, when they are thickest

and most condensed. For human

studies, a sample is typically

collected from blood cells or

amniotic fluid. Chromosomes are

most often visualized using dyes or

using specific DNA probes by

fluorescence in situ hybridization

(FISH).

Deletion 11q syndrome results in

trigonencephaly (a triangle-

shaped head), a carp-shaped

mouth, and cardiac defects

(Jones, 1997).
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chromosome 21 in which the entire chromosome (�46 million base pairs) is present

in three copies.

Inside a nucleus, chromosomes tend to be unraveled structures that occupy

restricted spaces called chromosome territories. Meaburn and Misteli (2007) pro-

vide an overview of the spatial organization of chromosomes and genomes, including

visualization with chromosome-specific fluorescent probes. Trask 2002 has written

an overview of the field of human cytogenetics.

Analysis of Chromosomes Using Genome Browsers
The diploid number of chromosomes is constant in each species, although there may

be individual variation. We will explore the 16 S. cerevisiae chromosomes (Chapter

17), including a variety of databases such as NCBI, MIPS, and SGD that provide

graphic displays. In humans, the diploid number is 46 (i.e., there are 23 pairs of

1
2

3
4 5

6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 X Y

B

A

C

(a)

(b)

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 X Y

FIGURE 16.1. Example of human
karyotypes. (a) The chromosomes
are visualized with Wright’s stain.
Centromeres are visible as an
indentation in the chromosome
(e.g., see arrows A and C). This
karyotype is of a person with a
hemizygous deletion of a telomeric
portion of chromosome 11q, result-
ing in a loss of several million base
pairs of DNA (arrow B). (b)
Karyotype of a female with trisomy
21 (Down syndrome). Note that
there are three copies of chromo-
some 21.
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chromosomes in almost all somatic cells). We will explore databases that display

ideograms of chromosomes in Chapters 18 and 19. Ideograms of karyotypes for

some other organisms are available online (Table 16.4).

Databases such as GenBank, EMBL, and DDBJ (Chapter 2) store hundreds of

billions of base pairs of DNA from various organisms. For a particular organism of

interest, whether a fungus, plant, or animal, genome browsers represent an essential

tool to store, centralize, process, and display both raw sequence data and analyses

based on annotation of the data. Annotation consists of adding information about

features such as the experimentally determined or computationally predicted

repetitive elements or genes or sites of variation.

There are three major genome browsers that provide broad and deep coverage of

a variety of eukaryotic genomes, as follows.

1. NCBI offers a map viewer for dozens of species. An example is shown

for human chromosome 21 (Fig. 16.2). There is an ideogram (arrow 1).

Vertical tracks can be added or removed, such as the UniGene entries

(arrow 2). The symbols column (arrow 3) provides a link for each gene to

Entrez Gene. A variety of other links are provided (arrow 4).

2. The Ensembl project offers a map viewer filled with annotation data (Hubbard

et al., 2007). A view of human chromosome 21 includes summaries of the

genomic features such as GC content, single nucleotide polymorphisms

(SNPs), and coding and noncoding gene content (Fig. 16.3a). A link to the

cytoviewer (Fig. 16.3b) provides access to dozens of additional tracks of fea-

tures that can be viewed or downloaded for detailed chromosomal analyses.

3. We focus on the UCSC Genome Browser in this chapter. It includes a gateway

to select a genome and chromosomal region of interest (Fig. 16.4a). The

main genome browser page depicts the chromosome of interest (human

chromosome 21 in Fig. 16.4b) along with a series of user-selected annotation

tracks. In this example, tracks are displayed showing the chromosome band,

gaps in the genome assembly, GC percent, and RefSeq genes. Recent litera-

ture on the UCSC Genome Browser includes an overview of its function

(Kuhn et al., 2007), its resources for analyzing variation (Thomas et al.,

2007b), its Table Browser (Karolchik et al., 2004), and BLAT (Kent, 2002).

TABLE 16-4 Web-Based Databases of Chromosomes
Resource Comment URL

Ensembl genome
browser

Ideograms for human (Chapter
19), mouse, rat, zebrafish,
fugu, mosquito, other

Q http://www.ensembl.org/

Ideogram Album Human, mouse, and horse
ideograms from the University
of Washington

Q http://www.pathology.
washington.edu/research/
cytopages/

Human
Chromosome
Launchpad

From the Oak Ridge National
Laboratory

Q http://www.ornl.gov/sci/
techresources/Human_
Genome/launchpad/

KaryotypeDB From Mario Nenno Q http://www.nenno.it/
karyotypedb/

SKY/M-FISH and
CGH Database

From the National Cancer
Institute and NCBI

Q http://www.ncbi.nlm.nih.
gov/sky/skyweb.cgi

An ideogram is a diagram of a

karyotype. A karyotype is an image

(often a photograph) of the

chromosomes from a cell during

metaphase, when each chromo-

some is a pair of sister chromatids.

Karyotypes display the chromo-

somes in numerical order, with the

short arm (p arm) oriented

upward. For humans, the short

arm is called “p” for petit (French

for “small”), while the q arm (long

arm) is named as the letter

following p.

Ensembl (Q http://www.ensembl.

org) is a joint project between

EMBL-EBI and the Sanger

Institute.

The UCSC Genome

Bioinformatics site is Q http://
genome.ucsc.edu/.
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Analysis of Chromosomes by the ENCODE Project
An initial version of the human genome sequence was reported by a public consor-

tium (International Human Genome Sequencing Consortium, 2001) and by

Venter et al. 2001. It was immediately clear that the annotation of the functional

elements embedded in the genomic DNA is extraordinarily complex. The

Encyclopedia of DNA Elements (ENCODE) project was initated to investigate the

properties of the human and other genomes (ENCODE Project Consortium,

2004). Forty-four regions of the human genome were selected, spanning 30 mega-

bases or about 1% of the human genome. These ENCODE regions include a mixture

of about half randomly selected loci as well as half containing well-known genes (such

as alpha and beta globins, and cystic fibrosis transmembrane regulator).

The ENCODE Project Consortium (2007) released its findings on 1% of the

genome in a paper with over 250 coauthors. This represented the generation of

over 200 data sets by 35 groups. Their 11 main conclusions were as follows:

1. The human genome is pervasively transcribed. We discussed this in

Chapter 8.

2. Many novel noncoding transcripts were identified, sometimes overlapping

protein-coding genes.

3. Novel transcriptional start sites were identified and characterized in detail.

4. Regulatory sequences surrounding transcription start sites are symmetrically

distributed. Previously, it had been thought that there is a bias towards the

location of regulatory sequences upstream of genes.

1 2 3 4 

FIGURE 16.2. Chromosomes can be explored using the NCBI Map Viewer, accessible from the
main page of NCBI (Q http://www.ncbi.nlm.nih.gov). Here, chromosome 21 is depicted. There
is an ideogram of the chromosome (arrow 1); upon clicking one can zoom or display from 10,000
to 10 million base pairs of DNA. Optional tracks such as UniGene entries (arrow 2) can be
added using the Maps and Options button (top right of web page). Gene symbols (arrow 3)
link to Entrez Gene entries. Many other links are provided (arrow 4), such as “pr” to access
the protein sequence, “dl” to download genomic DNA in the vicinity of a gene, or “ev” to
link to the Evidence Viewer presenting models of exon structure for each gene.

The National Human Genome

Research Institute offers infor-

mation on the ENCODE project

at Q http://www.genome.gov/
10005107.
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5. Histone modification and chromatin accessibility predict the presence and

activity of transcription start sites.

6. Some genomic DNA sites are hypersensitive to digestion with the endo-

nuclease DNaseI. Such sites have histone modification patterns that

distinguish them from promoters.

7. DNA replication timing correlates with chromatin structure.

FIGURE 16.3. View of human
chromosome 21 using Ensembl.
This is one of the three important
genome browsers (with UCSC
and NCBI) and it offers an excep-
tionally wide range of viewing
and analysis options. (a)
Overview of human chromosome
21. (b) Ideogram and view of
selected chromosome features.
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(a)

(b)

(c)
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FIGURE 16.4. The University of California, Santa Cruz (UCSC) Genome Browser. (a) From
the genome browser portal you can select the clade (e.g., vertebrate, deuterostome such as sea
squirts, insect, nematode), the assembly (which may vary as genome sequencing and annotation
progress), and the position or search term (e.g., the name myoglobin or an accession number).
(b) The genome browser includes a position/search box that allows you to specify a name, acces-
sion number, or physical map position to view. Here, all of chromosome 21 is selected (about 47
million base pairs). The browser includes an ideogram (arrow 2) and a box showing user-
selected annotation tracks. By clicking the top row (arrow 3), the view is zoomed in threefold.
An example of an optional annotation track is the GC percent or the RefSeq genes (arrow
4). (c) There are many dozens of available annotation tracks, arranged into categories such
as Mapping and Sequencing Tracks (arrow 5), Phenotype and Disease Associations, Genes
and Gene Prediction Tracks, mRNA and EST Tracks, Expression and Regulation,
Comparative Genomics, and Variation and Repeats. Additional sections correspond to the
ENCODE project (discussed below). For any annotation track you can click its title (e.g.,
RefSeq, arrow 6) to link to detailed information on options for displaying that track, the
method by which the genome was annotated, and literature references. A pull-down menu
(arrow 7) allows you to hide each track or to view in relatively condensed or extended forms.
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8. Five percent of the nucleotides in the human genome are under evolutionary

constraint in mammals. Of these constrained bases, there is experimental

evidence of some function for about 60%.

9. Not all bases that are experimentally shown to have function are under evol-

utionary constraint.

10. Functional elements vary in their degree of conservation, and in their like-

lihood of being located in a structurally variable region of the human

genome.

11. Many functional elements are unconstrained across mammalian evolution.

We will discuss an example of this for regulators of RET gene function

between human and fish.

Many of the findings of the ENCODE consortium are available through the

UCSC Genome Browser (Thomas et al., 2007a). We will provide examples through-

out this chapter. With its focus on 1% of the human, the ENCODE project has

helped the research community define the experimental and computational

approaches that will be useful to characterize the function of the remaining portion

of the human genome as well as other eukaryotic genomes.

REPETITIVE DNA CONTENT OF EUKARYOTIC CHROMOSOMES

Eukaryotic Genomes Include Noncoding and Repetitive
DNA Sequences
Bacterial and archaeal genomes have both genes and additional, relatively small inter-

genic regions. Typically, these prokaryotic genomes are circular, and there is about

one gene in each kilobase of genomic DNA (Chapter 14 and Table 16.1). In contrast,

eukaryotic genomes contain a smaller proportion of protein-coding genes and large

amounts of noncoding DNA. This noncoding material includes repetitive DNA,

genes encoding RNAs that have regulatory functions, and introns that interrupt

exons and are spliced from mature RNA transcripts.

Repetitive DNA sequences can occupy vast proportions of eukaryotic genomes.

These sequences consist of repeated nucleotides of various lengths (Jurka, 1998). We

will also discuss these repeats in our analysis of the human genome (Chapter 19). In

mammals, up to 60% of genomic DNA is repetitive; in some yeasts 20% is repetitive.

Identifying repetitive DNA elements in eukaryotic DNA is essential in genome analy-

sis. Such repeats can powerfully influence the structure of the genome, including the

capacity of chromosomes to rearrange and to regulate transcription. They are often

important in disease, serving as substrates for recombination events that delete or

duplicate chromosomal segments. Repeats are also useful as “molecular fossils” in

evolutionary studies based on comparative analysis of genomes from different species

(Chapter 19).

Britten and Kohne (1968) performed some of the earliest experiments that defined

the repetitive nature of eukaryotic DNA. They purified genomic DNA from a wide

variety of species, sheared it, and dissociated the DNA strands. Under appropriate con-

ditions of salt, temperature, and time, the DNA strands reanneal. They measured the

rate at which the DNA reassociates and found that for dozens of eukaryotes—but

not for several viruses or bacteria—DNA reassociates in several distinct fractions.

To view the ENCODE regions,

visit Q http://genome.ucsc.edu,

click ENCODE, then select from

the list.
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Large amounts of eukaryotic DNA reassociate extremely rapidly. For the mouse

genome, about 10% of genomic DNA reassociates rapidly and consists of about one

million copies (Fig. 16.5, arrow A). This highly repetitive DNA is localized to the

highly condensed portion of chromosomes referred to as heterochromatin (Redi

et al., 2001; Avramova, 2002). A further 20% of the DNA reassociates in a fraction con-

taining from 1000 to100,000distinct DNA species (arrow B).Finally, about70% of the

DNA isunique, consisting ofonlya single copy (arrow C). This DNA forms the euchro-

matin, a portion of the chromosome that is not condensed and thus is accessible for the

transcription of genes. The banding pattern of chromosomes (Fig. 16.1) corresponds to

regions of heterochromatin and euchromatin. Heterochromatic regions tend to lack

(or actively inhibit) gene expression, although some expressed genes have been ident-

ified in the heterochromatin of a variety of species from Drosophila to human

(Yasuhara and Wakimoto, 2006).

The origin of these repeats and their function present fascinating questions.

What different kinds of repeats occur? From where did they originate and when? Is

there a logic to their promiscuous growth or do they multiply without purpose? We

are beginning to understand the extent and nature of the repeat content of eukaryotic

genomes, including the human genome. Repetitive DNA has sometimes been called

“junk DNA” or “selfish DNA,” reflecting its propensity to expand throughout
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FIGURE 16.5. The complexity of genomic DNA can be estimated by denaturing then renatur-
ing DNA. This figure (redrawn from Britten and Kohne, 1968) depicts the relative quantity of
mouse genomic DNA (y axis) versus the logarithm of the frequency with which the DNA is
repeated. The data are derived from a C0t1/2 curve, which describes the percent of genomic
DNA that reassociates at particular times and DNA concentrations. A large C0t1/2 value implies
a slower reassociation reaction. Three classes are apparent. The fast component accounts for 10%
of mouse genomic DNA (arrow A), and it represents highly repetitive satellite DNA. An inter-
mediate component accounts for about 20% of mouse genomic DNA and contains repeats having
from 1000 to 100,000 copies. The slowly reassociating component, comprising 70% of the mouse
genome, corresponds to unique, single-copy DNA. Britten and Kohne (1968) obtained similar
profiles from other eukaryotes, although distinct differences were evident between species.
Used with permission.

Britten and Kohne (1968) used

several techniques to distinguish

single-stranded from double-

stranded DNA, such as hydroxya-

patite chromatography (a calcium

phosphate column), binding of

radiolabeled DNA fragments to

immobilized DNA on filters, and

spectrophotometry. The rate of

DNA reassociation is a function of

the incubation time (t) and the

DNA concentration (C0). The C0t

plot displays the fraction of DNA

that remains single stranded

versus the C0t value, and it is the

basis for the data shown in

Fig. 16.5.
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genomes. However, it is likely that repetitive DNA has important roles in

chromosome structure, recombination events, and the function of some genes

(Makalowski, 2000; and see below).

There are five main classes of repetitive DNA in eukaryotes (International

Human Genome Sequencing Consortium, 2001; Jurka, 1998; Kidwell, 2002;

Makalowski, 2000).

1. Interspersed Repeats (Transposon-Derived Repeats).
Together, interspersed repeats constitute about 45% of the human genome (see

Chapter 19). These repeats can be generated by elements that copy RNA intermedi-

ates (retroelements) or DNA intermediates (DNA transposons) (Table 16.5). Genes

may be copied by retrotransposition when an mRNA is reverse transcribed and

then integrated into the genome. Such genes can be identified because they usually

lack introns, while they do have short direct flanking repeats. Examples of some

mammalian retrotransposed genes are presented in Table 16.6.

Interspersed repeats can be divided into four categories (Ostertag and Kazazian,

2001; Kidwell, 2002) (see also Fig. 19.18):

† Long-terminal-repeat (LTR) transposons, which are RNA-mediated

elements. These are also called retrovirus-like elements. LTR transposons

have LTRs of several hundred base pairs at either end of the element.

† Long interspersed elements (LINEs), which encode an enzyme with reverse

transcriptase activity (and possibly additional proteins). In mammals,

LINE1 and LINE2 families are most prevalent.

† Short interspersed elements (SINEs), which are also RNA-mediated

elements. Alu repeats, found in primates, are well-known examples of

SINEs. We will see an example of an Alu repeat sequence below.

† DNA transposons comprise about 3% of the human genome.

TABLE 16-5 Examples of Classes and Transposable Elements

Class Subclass Superfamily
Examples of

Family
Approximate

Size Range (bp)

Retroelements
(RNA-mediated
elements)

LTR
retrotransposons

Ty1-copia Opie-1 (maize) 3,000–12,000

Non-LTR
retrotransposons

LINEs LINE-1 (human) 1,000–7,000

SINEs Alu (human) 100–500

DNA transposons Cut-and-paste
transposition

Mariner-Tc1 Tc1 in C. elegans 1,000–2,000

P P in Drosophila 500–4,600

Rolling circle
transposition

Helitrons Helitrons in
A. thaliana,
O. sativa, and
C. elegans

5,500–17,500

Source: Adapted from Kidwell (2002). Used with permission.

A retrotransposon (also called a

retroposon or retroelement) is a

transposable element that copies

itself to genomic locations through

a process of reverse transcription

with an RNA intermediate. This

process is similar to that of a

retrovirus.

Barbara McClintock was awarded

a Nobel Prize in 1983 for her

discovery of mobile genetic

elements in maize (Zea mays). You

can read more about this pioneer-

ing work at Q http://www.nobel.

se/medicine/laureates/1983/.

A search of Entrez nucleotide with

the term “retropseudogene” yields

65 hits (December 2007), while

“retrotransposed” yields 53 hits.

But a search with the term “retro-

transposon” yields .20,000 core

nucleotide matches, .14,000

expressed sequence tags, and

almost 40,000 genome survey

sequences.

The mouse genome contains one

functional gene encoding glycer-

aldehyde-3-phosphate dehydro-

genase (Gapdh; NM_008084) and

at least 400 pseudogenes distrib-

uted across 19 chromosomes

(Mouse Genome Sequencing

Consortium, 2002). The func-

tional Gapdh gene was listed as

assigned to mouse chromosomes 7

(Mouse Genome Sequencing

Consortium, 2002), but currently

(December 2007) it is assigned to

chromosome 6 by Entrez Gene at

NCBI and by the Ensembl mouse

genome Contig Viewer. The

presence of many pseudogenes

contributes to the difficulty of

assigning correct chromosomal

loci.
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We can illustrate interspersed repeats using the UCSC Genome Browser.

A region of 15,000 base pairs including the beta globin (HBB) and delta globin

(HBD) genes is shown (Fig. 16.6a). Information on repeats that is precomputed

using the RepeatMasker software package shows SINE, LINE, LTR, and DNA

transposon elements as well as several other categories of repetitive DNA (simple

repeats, low complexity DNA, satellite DNA). By clicking the Table link on the

top sidebar of the UCSC Genome Browser, you can access the Table Browser

(Fig. 16.6b). By clicking “get output” you can obtain a tab-delimited file listing all

the elements detected by RepeatMasker as well as their genomic coordinates.

RepeatMasker searches a DNA query of interest against RepBase, a database of

known repeats and low-complexity regions in eukaryotic DNA. Several programs,

including RepeatMasker and the Censor Server at GIRI, effectively allow searches

of DNA query sequences against this database (Smit, 1999; Jurka, 2000).

To identify and mask repetitive DNA sequences, you can use a RepeatMasker

web server. Several servers are listed in Table 16.7, making it unnecessary to install

either the program or the database locally. We will explore this with 50,000 bp of

genomic DNA from human chromosome 11 in the beta globin locus. Paste your

sequence into a box that is provided and select the output options. The

RepeatMasker output includes a list of scores using the Smith–Waterman algorithm,

the position of the repeat, and information on the type of repeat (e.g., SINE/Alu,

LTR, or simple repeat) (Fig. 16.7). In this example about 17,500 bases were

masked (�35%), the majority of which were interspersed repeats. Pairwise align-

ments are provided between canonical (reference) repeat sequences and the query;

examples are shown for an Alu repeat (Fig. 16.8) and a DNA transposon

(Fig. 16.9). RepeatMasker also returns the input sequence in the FASTA format,

with the repetitive residues masked with the letter N or X. This version of the

sequence is especially useful for subsequent database searches.

2. Processed Pseudogenes. These are genes that are not actively

transcribed or translated (Harrison and Gerstein, 2002; Echols et al., 2002). They

TABLE 16-6 Examples of Mammalian Genes Generated by Retrotransposition
Retrotransposed Gene Original Gene

Distribution
Age

(MYA)Name RefSeq Chr Name RefSeq Chr

ADAM20 NM_003814 14q ADAM9 NM_003816 8p Human, not
macaque

,20

Cetn1 NM_004066 18p Cetn2 NM_004344 Xq28 Mammals .75

Glud2 NM_012084 Xq Glud1 NM_005271 10q Human, not
mouse

,70

Pdha2 NM_005390 4q Pdha1 NM_000284 Xp Placentals �70

SRP46 NM_032102 11q PR264/
SC35

NM_003016 17q Human,
simians

,70

Supt4h2 NM_011509 10 Supt4 h NM_009296 11 Mouse ,70

Retrotransposed genes lack introns, and they often have flanking direct repeats and a polyadenine tail.

Abbreviations: Chr, chromosome; MYA, millions of years ago; ADAM, a disintegrin and metalloproteinase;
Cetn, centrin, EF-hand protein; Glud, glutamate dehydrogenase; Pdha2, pyruvate dehydrogenase
(lipoamide) alpha 2; Supt4h, suppressor of Ty 4 homolog (S. cerevisiae).

Sources: Adapted from Betrán and Long 2002 (see that article for additional genes and literature
references) and from a search of Entrez (NCBI) with the term retropseudogene.

RepBase Update has been devel-

oped since 1990 by Jerzy Jurka and

colleagues. RepeatMasker was

written by Arian Smit and Phil

Green. It is available at Q http://
www.repeatmasker.org/. The

Censor Server at the Genetic

Information Research Institute

(GIRI) is available at Q http://
www.girinst.org/censor/index.

php.

The 50,000 bases of genomic

DNA we are using is available as

web document 16.1 at Q http://
www.bioinfbook.org/chapter16.

Recall that a BLAST search uses

the SEG and/or DUST programs

to define and mask repetitive

DNA sequences and also to detect

and mask low-complexity protein

sequences (Chapter 4).
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FIGURE 16.6. Interspersed and
other repetitive DNA elements are
visualized using the UCSC
Genome Browser. (a) A region of
15,000 bases in the beta globin
region of chromosome 11 is
shown. The RepeatMasker track
is set to “full,” displaying the
location of several repetitive DNA
elements such as SINE, LINE,
LTR, and DNA transposons. (b)
A link from the Genome Browser
to the Table Browser allows you
to access this (or other) infor-
mation as a tabular output.

TABLE 16-7 Web ServersThat Provide Access to Software for Identifying Repetitive Elements in
Genomic DNA
Program Description URL

RepeatFinder A computational system for analysis of
repetitive structure of genomic
sequences

Q http://www.cbcb.umd.edu/
software/RepeatFinder/

RepeatMasker University of Washington Genome
Center

Q http://www.repeatmasker.
org/

RepeatMasker NCKU Bioinformatics Center (Taiwan) Q http://www.binfo.ncku.edu.
tw/RM/RepeatMasker.php

RepeatMasker For zebrafish; at the Wellcome Trust
Sanger Instiutte

Q http://www.sanger.ac.uk/
Projects/D_rerio/fishmask.
shtml

Censor Server Genetic Information Research Institute Q http://www.girinst.org/
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total length:      50000 bp  (50000 bp excl N/X-runs)
GC level:         38.87 %
bases masked:      17595 bp ( 35.19 %)
==================================================
               number of      length   percentage
               elements*    occupied  of sequence
--------------------------------------------------
SINEs:                9         2169 bp    4.34 %
      ALUs            7         1993 bp    3.99 %
      MIRs            2          176 bp    0.35 %

LINEs:               16        12381 bp   24.76 %
      LINE1          11        11160 bp   22.32 %
      LINE2           5         1221 bp    2.44 %
      L3/CR1          0            0 bp    0.00 %

LTR elements:         5         1591 bp    3.18 %
      MaLRs           2          669 bp    1.34 %
      ERVL            1          548 bp    1.10 %
      ERV_classI      2          374 bp    0.75 %
      ERV_classII     0            0 bp    0.00 %

DNA elements:         1          248 bp    0.50 %
      MER1_type       1          248 bp    0.50 %
      MER2_type       0            0 bp    0.00 %

Unclassified:         0            0 bp    0.00 %

Total interspersed repeats:    16389 bp   32.78 %

Small RNA:            0            0 bp    0.00 %

Satellites:           0            0 bp    0.00 %
Simple repeats:      11          519 bp    1.04 %
Low complexity:      12          700 bp    1.40 %

FIGURE 16.7. RepeatMasker
output. A summary of the ident-
ified repetitive elements is provided,
consisting primarily of interspersed
repeats.

FIGURE 16.8. The genomic DNA
in the beta globin locus includes an
Alu SINE element that is identified
by RepeatMasker and aligned to a
canonical member of that family.
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represent genes that were once functional, but they are defined by their lack of protein

product. They can be recognized because of the presence of a stop codon or frame-

shift that interrupts an open reading frame. There are two main classes of pseudo-

genes. Processed pseudogenes arise through retrotransposition events (i.e., random

insertion events mediated by LINEs having reverse transcriptase activity) via an

RNA intermediate. Nonprocessed pseudogenes are remnants of duplicated genes.

We describe mechanisms for the origin of pseudogenes later in this chapter, and in

Chapter 17 we discuss the duplication of entire yeast genomes followed by rapid, sub-

sequent gene loss to generate pseudogenes.

The number of pseudogenes in the human genome is remarkably close to the

number of predicted protein-coding genes. For example, chromosome 1 has 3141

protein-coding genes and 991 pseudogenes (Gregory et al., 2006); chromosome 2

has 1346 genes and 1239 pseudogenes (Hillier et al., 2005); while chromosome 7

has 1150 genes and 941 pseudogenes (Hillier et al., 2003); and the smallest

autosome, chromosome 21, has 225 known and predicted genes and 59 pseudogenes

(Hattori et al., 2000).

While pseudogenes are defined as nonfunctional, many recent studies have

emphasized their possible functional roles (Balakirev and Ayala, 2003; Castillo-

Davis, 2005; Pavlicek et al., 2006). These include gene expression, the regulation

of gene function, and roles in recombination. Evolutionary studies suggest that

some pseudogenes do not evolve at the neutral rate (compared for example to extinct

repeat elements), consistent with some functional role. The ENCODE Project

Consortium (2007) and Zheng et al. 2007 reported that there are 201 pseudogenes

in the ENCODE regions (124 processed and 77 nonprocessed). Of these, at least

19% are transcribed.

You can activate the pseudogene track at the UCSC Genome Browser. This is

shown for a segment of 100,000 base pairs within the ENCODE region for beta

globin (Fig. 16.10a). The RefSeq track shows six genes (five globin genes and

one other), while the UCSC genes track shows several additional gene models.

(The UCSC Genes track includes predictions from RefSeq, GenBank, and

UniProt, and is somewhat less conservative than the RefSeq annotations.) The

Pseudogenes track is also displayed, showing three pseudogenes as a consensus

from several independent prediction methods. As for any UCSC Genome Browser

FIGURE 16.9. Example of a DNA
transposon (transposable element)
in the beta globin locus. As ident-
ified by RepeatMasker, this region
matches the MER80 element
called CHARLIE4A, a 508 base
pair sequence having 16 base pair
terminal inverted repeats.

Mark Gerstein’s laboratory offers

a website on pseudogenes

(Q http://www.pseudogene.org/).

This includes a browser and

descriptions of pseudogenes in

human, worm, fly, yeast, and

plant.

Web document 16.2 shows a

pairwise alignment between HBB

and its pseudogene HBBP1

(Q http://www.bioinfbook.org/
chapter16).
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track, you can click on the title “pseudogenes” above the pull-down menu to access

more details on the methodology as well as literature citations. The first of the three

pseudogenes in this region, between HBD (delta globin) and HBG1, corresponds to

accession NR_001589 and is annotated in Entrez Gene as beta hemoglobin pseudo-

gene 1 (official symbol HBBP1). Viewing HBBP1 at higher magnification (a 2000

base pair view; Fig. 16.10b) shows more details of the structure of the pseudogene,

and by clicking it one accesses details of a model of the gene and information on its

expression and RNA folding properties.

3. Simple Sequence Repeats. These microsatellites (typically from

1 to 6 bp in length) and minisatellites (typically from a dozen to 500 bp repeats)

include short sequences such as (A)n, (CA)n, or (CGG)n. An example of a CA

repeat from our RepeatMasker analysis of human genomic DNA is shown in Fig.

16.11. Replication slippage is a mechanism by which simple sequence repeats may

occur. Many functions have been ascribed to simple sequence repeats, from

FIGURE 16.10. Viewing pseudo-
genes at the UCSC Genome
Browser. (a) 100,000 base pair
view of the ENCODE beta
globin region (chr11:5,200,001-
5,300,000). Note that a consensus
annotation track for pseudogenes
is activated as well as a RefSeq
gene track. Three pseudogenes are
evident, one of which matches tran-
script NR_001589. This is beta
globin pseudogene 1 (HBBP1).
(b) View of HBBP1 in a 2000
base pair window. The structure
of the pseudogene is indicated by
blocks, and its orientation (with
transcription from right to left).

FIGURE 16.11. Simple sequence
repeats. A region of 50,000 base
pairs of genomic DNA from the
beta globin locus includes simple
sequence repeats such as the CA
motif identified by RepeatMasker
by comparison of the query to its
database of known repeats.

Some authors define microsatel-

lites as having a length of 1 to 6 bp,

while others suggest 1 to 12 bp.
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influencing transcription factor binding to influencing morphological traits in dogs

and yeast (reviewed in Kashi and King, 2006).

Simple sequence repeats of particular length and composition occur preferen-

tially in different species. For example, (AT)n is especially common in A. thaliana,

and (CT/GA)n occurs preferentially in C. elegans (Schlötterer and Harr, 2000).

In Drosophila virilis, the density and length of microsatellites are considerably

greater than in D. melanogaster or H. sapiens (Schlötterer and Harr, 2000). In

humans, simple sequence repeats are of particular interest because they are highly

polymorphic between individuals and thus serve as useful genetic markers. Also,

the expansion of triplet repeats such as CAG is associated with over a dozen

diseases, including Huntington disease (Cummings and Zoghbi, 2000). We will

discuss these issues in Chapter 20 (on human disease). A disease characterized

by cerebellar ataxia and seizures (spinocerebellar ataxia type 10; SCA10) is caused

by the expansion of the sequence ATTCT in intron 9 of the ataxin 10 gene on

chromosome 22q13.31 (Matsuura et al., 2000). While there are 10 to 29 repeats in

apparently normal individuals, those with SCA10 have from hundreds to as many as

4500 repeats.

4. Segmental Duplications. Segmental duplications are often defined as

two genomic regions sharing at least 90% nucleotide identity over a span of one kilo-

base, although they sometimes consist of blocks of 200 or 300 kilobases (kb) in length

(Bailey et al., 2001). These duplications occur both within and between chromo-

somes (intra- and interchromosomally). The euchromatic portion of the human

genome consists of about 5.3% duplicated regions (She et al., 2004). This includes

about 150 megabases. Later in this chapter we will discuss mechanisms by which seg-

mental duplications (also called low copy repeats) may cause genes to become

deleted, duplicated, or inverted. A practical consideration is that after whole

genome shotgun sequencing, the assembly of segmentally duplicated regions

(especially those .15 kilobases in length and sharing .97% sequence identity) is

problematic (She et al., 2004). As a consequence, assemblies based on whole

genome shotgun assembly may underestimate the extent of duplications (including

duplicated genes), underestimate the length of euchromatin, and underrepresent

duplication-rich regions including pericentromeric and subtelomeric areas.

As an example of a segmental duplication, we will consider a cluster of lipocalin

genes on human chromosome 9. The lipocalins of all species have been divided into

14 monophyletic clades (Gutierrez et al., 2000). In humans, the lipocalins include at

least 10 genes localized to chromosome 9q32-34. Figure 16.12 presents a schematic

view of the genomic DNA, including the tear lipocalin (LCN1) and odorant-binding

protein genes (adapted from Lacazette et al., 2000). Based on their analysis of

this genomic region, Lacazette et al. (2000) proposed a model to account for the

lipocalin genes and pseudogenes observed today in a portion of chromosome 9q34

(Fig. 16.12, bottom). A hypothetical ancestral lipocalin gene had seven exons and

six introns (Fig. 16.12, top), a gene structure typical of mammalian lipocalins

(Salier, 2000). This gene duplicated by tandem duplication (Fig. 16.12, step 1),

after which the two ancestral genes differentiated to assume distinct functions

(step 2). This locus then duplicated twice, generating LCN1 and OBPII paralogs

(step 3). However, only two OBPII genes are present in this locus today

(Fig. 16.12, bottom), and the LCN1 gene is accompanied by two pseudogenes

(LCN1b and LCN1c). Thus, partial duplications may have occurred (Fig. 16.12,

To see specific examples of simple

sequence repeats, go to Entrez

Nucleotide and enter “microsa-

tellite.” There are over 150,000

entries from which to choose. For

more information on SCA10 and

its repeats, enter the query SCA10

at NCBI and see the Online

Mendelian Inheritance in Man

(OMIM) entry #603516.

The Tandem Repeats Finder is an

online tool that allows you to

search a sequence for tandem

repeats of up to 2000 bp

(Q http://tandem.bu.edu/trf/trf.

html) (Benson, 1999).

A duplication browser from Evan

Eichler’s group allows you to

identify segmental duplications in

the human genome. It is available

at Q http://humanparalogy.gs.

washington.edu/SDD/, and it

uses a locally installed version of

the UCSC Genome Browser. This

site offers a database of over 8500

segmental duplications in the

human genome.

Lipocalins localized to human

chromsome 9q32-34 include a-1-

microglobulin/bikunin

(NM_001633), complement

component 8, gamma polypeptide

(NM_000606), lipocalin 1

(protein migrating faster than

albumin, tear prealbumin; LCN1)

(NM_002297), lipocalin 2 (onco-

gene 24p3)(NM_005564), odor-

ant-binding protein (OBP) 2A

(NM_014582) and 2B

(NM_014581), orosomucoid 1

(NM_000607) and 2

(NM_000608), progestagen-

associated endometrial protein

(NM_002571), and prostaglandin

D2 synthase (NM_000954). See

Chan et al. (1994) and Dewald

et al. (1996).

The function of LCN1 is not

known; it was identified by cloning

a cDNA from a tear gland library.

Rat and bovine OBPs selectively
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step 3) followed by disruption of the LCN1b gene in human (but not mouse) (step 4).

Finally, the presence of new exons in human OBPIIa and OBPIIb suggests a selective

duplication of individual exons (step 5).

We can view segmental duplications using the UCSC Genome Browser for both

the alpha globin locus (Fig. 16.13a) and the beta globin locus (Fig. 16.13b). For the

alpha globin locus on chromosome 16, the HBZ gene (zeta globin) is tandemly dupli-

cated to generate a pseudogene less than 10,000 base pairs apart. At the beta globin

locus, the immediately adjacent HBG1 and HBG2 genes represent a segmental dupli-

cation. By clicking on the segmental duplication block on the Genome Browser

output, you can access the exact genomic coordinates of the duplicated blocks as

well as a global pairwise alignment of the two.

ancestral lipocalin gene (seven exons)

tandem duplication

differentiation of the two ancestral genes

ancestral lipocalin 
gene (seven exons)

duplicated lipocalin 
gene (seven exons)

LCN1-like
ancestor gene

OBPII-like
ancestor gene

LCN1-VEGP
gene

1

2

3

4

5

LCN1c 
pseudogene

OBPIIa gene

complete and partial duplications of the 50 kilobase 
locus; differentiation of genes between loci

human-specific LCN1b disruption

recruitment of new exons

LCN1 gene

LCN1 gene LCN1 pseudo-
gene (human)

OBPIIa gene

hOBPIIa gene
with additional
exons 5b, 5c

LCN1b-VEGP
gene (rat)

LCN1c-VEGP
pseudogene

OBPIIb gene OBPIIc gene?

LCN1b pseudo-
gene (human)

OBPIIb gene

OBPIIb gene
with additional

exon 3b

LCN1c 
pseudogene

FIGURE 16.12. Genes evolve by
successive tandem duplications.
Lacazette et al. (2000) proposed
this model to explain how a
hypothetical lipocalin gene (top of
figure) could have evolved to
account for the extant pattern of
genes and pseudogenes determined
by sequence analysis of this locus.
First, an ancestral lipocalin
having seven exons duplicated
(step 1) and functionally diverged
(step 2). This region, containing
two genes, duplicated twice (step
3) after which one gene was deleted
(the hypothetical OBPIIc gene)
and portions of an LCN1 gene
were deleted (step 4). Finally, sev-
eral new exons were recruited
(step 5). Used with permission.

bind odorants of many diverse

chemical classes (e.g., terpenes,

aldehydes, esters, and musks)

(Pevsner et al., 1990; Pelosi,

1996). Thus, it is assumed that

human OBP gene products also

transport hydrophobic ligands.

The Mouse Genome Sequencing

Consortium (2002) described a

group of eight lipocalin genes on

the mouse X chromosome that are

absent from primates. These may

have been generated by local gene

duplication.
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5. Blocks of Tandemly Repeated Sequences Such as
Are Found at Telomeres, Centromeres, and Ribosomal
Gene Clusters. Several telomere repeat sequences are listed in Table 16.8.

In human telomeres, the short sequence TTAGGG is repeated thousands

of times. Try a blastn search using TTAGGG TTAGGG TTAGGG as a query,

restricting the output to human, and remove the filter for low complexity. The

result is several thousand BLAST hits, most from telomeric sequences such as that

shown in Fig. 16.14.

The centromere is a constricted site of a chromosome that serves as an attachment

point for spindle microtubules, allowing chromosomal segregation during mitotic and

meiotic cell divisions (Choo, 2001). All eukaryotic chromosomes have a functional

centromere, although the primary nucleotide sequence is not well conserved between

species. In humans, this DNA consists largely of a 171 bp repeat of a-satellite DNA

extending for 1 to 4 Mb. Almost all eukaryotic centromeres are able to bind a histone

H3-related protein (called CENP-A in vertebrates). This protein–DNA complex

forms a building block of centromeric chromatin that is essential for the function of

the kinetochore, the site of attachment of the spindle fiber.

The GenBank accession number for a human a-satellite consensus sequence

is X07685. An alignment of this sequence (171 base pairs) with a typical bacterial

artificial chromosome (BAC) clone from a pericentromeric region dramatically

shows how often the satellite sequence is repeated (Fig. 16.15). A blastn search of

the nonredundant database, using this as a query and turning off filtering, results

in over 30,000 database hits (December 2007). If you exclude human entries

from the output of your search (with the Entrez command “satellite NOT human[or-

ganism]”), you will find that the human a-satellite sequence matches other primates.

FIGURE 16.13. Segmental dupli-
cations visualized at the UCSC
Genome Browser. (a) The alpha
globin locus. In the Variation and
Repeats category of annotation
tracks, the Segmental Duplication
track was set to full for genomic
coordinates 140,001–175,000 on
chromosome 16. Note that there
are two segmental duplications of
size .1000 bases for non-
RepeatMasked sequence. One cor-
responds to the HBZ gene and the
other matches a pseudogene. (b)
The beta globin locus. The adjacent
HBG1 and HBG2 genes are seg-
mentally duplicated.

Web document 16.3 shows a

global pairwise alignment between

the two segmentally duplicated

blocks at the beta globin locus. See

Q http://www.bioinfbook.org/
chapter16.

Telomeric repeats are synthesized

by telomerase, a ribonucleopro-

tein that has specialized reverse

transcriptase activity.
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However, the human sequence has only very little conservation to nonprimate

sequences, with nonsignificant expect values.

Satellite DNA is a feature of every known eukaryotic centromere, with only two

documented exceptions. In the yeast S. cerevisiae, the entire centromere sequence

extends only several hundred base pairs. A second exception is the neocentromere,

an ectopic centromere that assembles a functional kinetochore, is stable in mitosis,

but lacks a-satellite DNA (Amor and Choo, 2002). About 60 human neocentro-

meres have been described, many involving trisomy or tetrasomy (extra chromosomal

copies). As part of the analysis of the genome of the rhesus macaque Macaca mulatta,

Ventura et al. (2007) described evolutionarily new centromeres that appeared

while the conventional centromere was inactivated. They reported that in the 25

million years since macaque and human lineages diverged, 14 evolutionarily new

centromeres have emerged and become fixed in one or the other species.

TABLE 16-8 Telomeric Repeat Sequences from Several Eukaryotic Organisms
Organism Telomeric Repeat Reference

Arabidopsis thaliana, other plants TTTAGGG McKnight et al., 1997

Ascaris suum (nematode) TTAGGC Jentsch et al., 2002

Euplotes aediculatus, Euplotes crassus, Oxytricha
nova (ciliates)

TTTTGGGG Jarstfer and Cech, 2002; Shippen-Lentz and
Blackburn, 1989; Melek et al., 1994

Giardia duodenalis, Giardia lamblia TAGGG Upcroft et al., 1997; Hou et al., 1995

Guillardia theta (cryptomonad nucleomorph) [AG]7AAG6A Douglas et al., 2001

Homo sapiens, other vertebrates TTAGGG Nanda et al., 2002

Hymenoptera, Formicidae (ants) TTAGG Lorite et al., 2002

Paramecium, Tetrahymena TTGGGG, TTTGGG McCormick-Graham and Romero, 1996

Plasmodium falciparum AACCCTA Gardner et al., 2002

Plasmodium yoelii yoelii AACCCTG Carlton et al., 2002

>gnl|ti|1745943411 name:1094791574190 mate:1745266475
AGGGTGGCGAATACGCGACTACCTACCTACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC
TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAAC
CCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCC
TAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAACCCTAA CCCGAACCCTAACCCTAAC
CCTAACCCTAACCCTAACCCTAACCCTAACCCTAA CCCGAACGCTAACCCTGACCCTAGCCCTAACCCTA
ACCCTAACCCTAACCCTAACCCTAA GCCTAACCCTAACCCTAA CCGTAAGCCTAACCCTAA GCCTAACCC
TAACCCTAACCCTAA CCCTAGCCGTAACCCTAA CCGGAACCCTAA CCCTAGCGCTAGCCGTAGCCCTAGC
CGTAACCCTAA CGCTGACCCTAGCGGTAGCCCGAACCCTAACCCTAACCCTAACCCTAA CCCTGACCCTA
A CCCTGACCCTAA GCGTAACCCTAA CCCTGACCCTAA GCGTAACCCTAA CGCTAACCCTAA CGGTAACCC
TAACCCTAA GCCTAACCGTAACGCTAACCCTGACCCTAA CTCTGAGCCTGAGCCGGCCCGTAATCCTAAC
GGGACGGTACGCTAACGCAGAGTGTGCGGTAGCCCTGCGGCTGACCGTAACCCGAGGCCTAACCGAGCCC
GACCGTAGGCCGAGGCCTAGCCTGAGCGGTGACCTGAGGCATAGCCCTAGGGTATCGCGTAACGTGAGCC
TAACC

FIGURE 16.14. A blastn search of the Trace Archives was performed using
TTAGGGTTAGGGTTAGGG as query, setting the database to Homo sapiens WGS, with a
word size of 15 and removing the filtering. There were over 4000 matches, including the one
shown here. Note the many TTAGGG repeats; this clone matches the query on the reverse
strand orientation so the observed repeat pattern is CCCTAA. Thousands of such repeats
occupy the telomeres.

We described expect values in

Chapter 4.

We discuss a possible mechanism

for neocentromere formation in

Fig. 16.25 below.
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GENE CONTENT OF EUKARYOTIC CHROMOSOMES

Definition of Gene
We have begun our analysis of eukaryotic genomes by considering noncoding and

repetitive DNA. The coding portions of a genome are of particular interest, as they

largely determine the phenotype of all organisms. Two of the biggest challenges in

understanding any eukaryotic genome are defining what a gene is and identifying

genes within genomic DNA. We will first define the variety of genes and then give

the criteria for identifying them:

† Protein-coding genes form a major category of genes. Several criteria are

applied to the assignment of a DNA sequence as a protein-coding gene.

The principal requirement is that there must be an open reading frame

(ORF) of at least some minimum length such as 90 bp (corresponding to

30 codons encoding amino acids, or a 3 kDa protein). Frith et al. (2006) ident-

ified large numbers of short proteins (less than 100 amino acids). Of 3701

proteins they identified, only 232 matched a mouse International Protein

Index or Swiss-Prot database.

† Pseudogenes do not encode functional gene products, although as discussed

above some important exceptions have been reported.

† Many kinds of noncoding genes do not encode protein, but instead encode

functional RNA molecules (Eddy, 2001, 2002). These include transfer

RNA (tRNA) genes. These translate information from the triplet codons

in mRNA to amino acids. tRNAscan-SE identifies 99% to 100% of RNA

genes in genomic DNA sequence with an error rate of one false positive

per 15 Gb (Lowe and Eddy, 1997). We showed an example of the

tRNAscan-SE server in Fig. 8.5.

† We discussed a variety of other noncoding genes in Chapter 8. These include

ribosomal RNA (rRNA) genes that function in translation; small nucleolar

RNAs (snoRNAs) that function in the nucleolus; small nuclear RNAs that

function in spliceosomes to remove introns from primary RNA transcripts;

and microRNAs (miRNAs) of about 21 to 25 nucleotides in length that are

widely conserved among species and may serve as antisense regulators of

other RNAs (Ambros, 2001; Ruvkun, 2001).

FIGURE 16.15. The repetitive
nature of a-satellite DNA. A con-
sensus sequence for human
a-satellite DNA (X07685) was
compared to a BAC clone
(AC125634) assigned to a pericen-
tromeric region of chromosome 9q.
Pairwise BLAST at NCBI was
used, and the dotplot is shown.
Note that a consecutive 60 kilo-
bases of the BAC clone (y axis)
matches the satellite consensus
sequence repeatedly.

Human alpha-satellite consensus 
sequence X07685  (171 base pairs)

Bacterial artificial 
chromosome (BAC) 
clone AC125634
(162,478 base pairs)

1 171

1

100,061

162,478
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In annotating genomic DNA, an emphasis is often placed on describing the

protein-coding genes. However, it is now clear that noncoding genes encoding

various types of RNA products have diverse and important functions.

Furthermore, it is not as straightforward to identify noncoding RNAs (Eddy,

2002). Their full size might be extremely small, as in the case of miRNAs. There is

no ORF to help define the boundaries of noncoding genes. Database searches may

be less sensitive than is possible for protein-coding genes, because the scoring

matrices for amino acids are more sensitive and specific. We discussed databases of

noncoding RNAs such as Rfam (Griffiths-Jones et al., 2003) in Chapter 8.

Given the insights of the ENCODE project (ENCODE Project Consortium,

2007) as well as the analysis of completed genome sequences, Gerstein et al.

(2007) reviewed the historical definitions of a gene. Classically, a gene has been

defined as a unit of hereditary information localized to a particular chromosome

position and encoding one protein. More recently, we have become aware of alterna-

tive splicing to produce multiple transcripts from one gene locus, we have identified

large numbers of noncoding RNAs, and we have observed pervasive transcription

throughout the genome (including transcriptionally active regions or transfrags

that have not been annotated as genes). The ENCODE project revealed many

previously unknown transcription start sites. Gerstein et al. (2007, p. 677) thus pro-

posed a new definition. They noted that a gene is a nucleotide sequence that

encodes functional products, whether RNA or protein (or both), and they con-

sidered that one gene structure may have multiple functional products. They then

proposed that “the gene is a union of genomic sequences encoding a coherent set

of potentially overlapping functional products.” In the simplest scenario a gene is a

DNA sequence that codes for an RNA and/or protein product. The genomic

sequence constitutes the genotype that is related to the phenotype of a cell or ulti-

mately of an organism. The ENCODE project has helped to redefine the complexity

of the genotype.

Finding Genes in Eukaryotic Genomes
Finding protein-coding genes in eukaryotic genomes is a far more complex problem

than for prokaryotes (Burge and Karlin, 1998; Mural, 1999; Claverie, 1997). While

bacterial genes typically correspond to long ORFs, most eukaryotic genes have exons

and introns. The structure of a typical eukaryotic gene that is transcribed by RNA

polymerase II is summarized in Fig. 16.16. Distal upstream and/or downstream

enhancers and silencers as well as proximal (more neighboring) promoter elements

regulate transcription. A CCAAT box and a TATA box are promoter elements,

with the TATA box typically located 20 to 30 base pairs upstream of the transcription

start site and the CCAAT box further to the 50 side. There are several kinds of exons

(Fig. 16.16):

1. Noncoding exons correspond to the untranslated 50 or 30 region of DNA.

2. Initial coding exons include the start methionine and continue to the first 50

splice junction.

3. Internal exons begin with a 30 splice site and continue to a 50 splice site.

4. Terminal exons proceed from a 30 splice site to a termination codon.

5. Single-exon genes are intronless, beginning with a start codon and ending

with a stop codon (Table 16.6).

RNA polymerase I synthesizes

most ribosomal RNAs; RNA

polymerase II synthesizes

messenger RNAs and small

nuclear RNAs (snRNAs); and

RNA polymerase III synthesizes

5S rRNA and transfer RNAs

(Chapter 8).
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Introns have been categorized into four groups based on their splicing mechan-

ism: (1) autocatalytic group I, found in protists, bacteria, and bacteriophages; (2)

group II, found in fungal and land plant mitochondria and in prokaryotes; (3) spli-

ceosomal introns, found in nuclear pre-mRNA genes; and (4) tRNA introns,

found in eukaryotic nuclei and in archaea (Haugen et al., 2005; Roy and Gilbert,

2006). Eukaryotic spliceosomal introns vary by two orders of magnitude in their

density, from ,0.1 to 5.5 introns per gene in fungi to 2.6–9.3 introns per gene in

the metazoans (Roy, 2006). Fascinating questions include the mechanisms by

which introns are gained and lost, the selective pressures on intron size, and their

evolutionary history (Jeffares et al., 2006; Pozzoli et al., 2007). While introns were

thought to have arisen late in eukaryotic evolution, a single intron was discovered

in the genome of the primitive protozoan Giardia lamblia (see Chapter 18), as well

as several introns in its close relative Carpediemonas membranifera (Nixon et al.,

2002; Simpson et al., 2002).

In addition to the issue of introns, eukaryotic genes also occupy a far smaller

proportion of the genome than do prokaryotic genes. Eukaryotic protein-coding

genes occupy just 25% of the nematode and insect genomes and less than 3% of

the human and mouse genomes. In the human genome, exons span 1.5% of the

genome. Chromosome 13 has the lowest gene density (6.5 genes per megabase,

with a region of 38 megabases having just 3.1 genes/Mb) (Dunham et al., 2004).

Chromosome 19 has the highest gene density, with 26 loci per megabase

(Grimwood et al., 2004).

Algorithms for finding protein-coding genes in eukaryotes can be divided into

three categories: homology based (also called extrinsic), algorithm based (also

called intrinsic), and comparative (Stein, 2001). These approaches are outlined in

Fig. 13.17. Homology-based approaches typically involve the alignment of expressed

genes (ESTs from cDNA libraries; see Chapters 2 and 8) with genomic DNA.

In these cases, the ESTs can help to define the exon/intron structure in genomic

DNA. Thus, homology-based approaches are generally very successful. An

additional form of homology-based gene identification is to compare genomic

DNA of two related organisms (Morgenstern et al., 2002; Novichkov et al., 2001).

By comparing human DNA to pufferfish (F. rubripes) DNA, it was possible to

FIGURE 16.16. (a) Eukaryotic
gene prediction algorithms differ-
entiate several kinds of exons,
including those in noncoding
regions; initial coding exons that
include a start codon; internal
exons; and terminal exons that
include a stop codon. These exons
are built into a model for a pre-
dicted gene. (b) In some cases,
genes have a single exon and are
intronless. The border of exons
and introns typically has a GT/
AG boundary, but the structure of
genes is still difficult to predict ab
initio.
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(a) gene with multiple exons

(b) single exon gene

transcription start site

start codon 
(ATG)

5′ untranslated 
region

3′ untranslated 
region

enhancer
(distal)

promoter
(proximal)

exon

TATA
box

enhancer
(distal)

stop codon 
(ATG)

About one-third of all human

genes are alternatively spliced. If

ESTs are available corresponding

to alternatively spliced isoforms,

these sequences can be mapped to

exons.
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discover nearly 1000 putative human genes (Hedges and Kumar, 2002; Aparicio

et al., 2002).

While the use of EST data is extremely helpful in annotating eukaryotic genes,

there are notable limitations to this approach.

† The quality of EST sequence is sometimes low, as clones are often sequenced

on only one strand and sequencing errors are common.

† Highly expressed genes are often disproportionately represented, although

some cDNA libraries are normalized (Chapter 8).

† ESTs provide no information regarding the genomic location.

Intrinsic programs are also widely used to annotate genomic DNA. A

large fraction of predicted genes do not have identifiable orthologs, nor are EST

sequences available. It is thus essential to identify protein-coding genes using ab

initio (intrinsic) approaches. We discussed the GLIMMER program for prokaryotes

in Chapter 15.

Many web-based eukaryotic gene prediction programs are available (Table 16.9).

These include GENSCAN (Burge and Karlin, 1997) and GRAILEXP, and several

studies have compared their accuracy (Rogic et al., 2001; Makarov et al., 2002).

These programs typically produce models of gene structures (exons, introns, alterna-

tive splicing) and identify other features such as CpG islands (regions of a higher

than expected occurrence of CpG dinucleotides over a particular distance such as

300 base pairs). Often these programs include searches with RepeatMasker to ident-

ify classes of repetitive DNA as well as BLAST or BLAST-like searches to identify

known genes, proteins, and expressed sequence tags that help to model the gene

structure.

The difficulty of finding protein-coding genes in genomic DNA is illustrated by

the efforts to annotate a typical eukaryotic genome: the indica and japonica subspecies

of the rice genome. Yu et al. (2002) obtained 75,659 gene predictions when

they submitted their assembled draft version of the rice genome (indica) to an

FGeneSH web server (see Table 16.9). Only 53,398 of these predictions were

complete (having both initial and terminal exons): about 7500 had only an initial

exon, 11,000 had only a terminal exon, and 3400 predicted genes had neither.

Additionally, they reported that exon–intron boundaries were often not precisely

defined. However, when the finished sequence was obtained rather than the draft

sequence, the estimate of gene content improved dramatically. Sasaki et al. (2002)

obtained the finished sequence of rice chromosome 1 (subspecies japonica) and

predicted 6756 genes on this chromosome. In contrast, the draft version of this

genome predicted just 4467 genes. Sasaki et al. (2002) suggest that the presence of

several thousand gaps in the draft sequence precluded the ability to accurately predict

complete genes.

As another example of an approach to annotating genes, the Drosophila 12

Genomes Consortium (2007) reported the sequencing of ten Drosophila species

yielding a total of 12 Drosophila-related genomes. The genomes were sequenced to

varying depths, from over 10X coverage to just 2.9X coverage. They used four differ-

ent de novo gene prediction algorithms, three homology-based predictors that relied

on the well-annotated Drosophila melanogaster genome sequence, one predictor

(called Gnomon) that combined de novo and homology-based evidence, and a

gene model combiner (called GLEAN) that reconciled all the predicted genes into

The Oak Ridge National

Laboratory (ORNL) Genome

Analysis Pipeline is a web-based

tool for the annotation of genomic

DNA from several species. It

includes the GrailEXP program.

This pipeline is available at

Q http://compbio.ornl.gov/
tools/pipeline/.
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a set of consensus models. Quality was assessed in part by measuring RNA transcript

levels with microarrays (Chapter 9).

EGASP Competition and JIGSAW
The ENCODE Genome Annotation Assessment Project (EGASP) was a compe-

tition designed to objectively test the performance of a set of gene-finding software.

The GENCODE consortium created a “gold standard” by rigorously mapping all

the protein-coding genes with the ENCODE regions (Harrow et al., 2006). This

was achieved by carefully applying a range of experimental techniques such as 50

rapid amplification of complementary DNA ends (RACE) and the polymerase

chain reaction with reverse transcription (RT-PCR); 434 coding loci were annotated

as part of the GENCODE reference set. Only 40% of the GENCODE annotations

were within the RefSeq and Ensembl annotation sets, reflecting the discovery of a

large number of alternatively spliced isoforms with unique exons.

TABLE 16-9 Algorithms for Finding Genes in Eukaryotic DNA
Program Description URL

AAT Analysis and Automation Tool; web-
based server

Q http://www.tigr.org/
software/alignment.shtml

AUGUSTUS University of Göttingen Q http://augustus.gobics.de/

FgeneSH Ab initio gene finder Q http://www.softberry.com/
berry.phtml

Gene Finder For human, mouse, Arabidopsis, and
fission yeast

Q http://argon.cshl.org/
genefinder/

Geneid Roderic Guigó and colleagues Q http://www1.imim.es/
geneid.html

GeneMark Georgia Institute of Technology Q http://exon.gatech.edu/
GeneMark/

Genie Based on HMMs Q http://www.cse.ucsc.
edu/�dkulp/cgi-bin/genie

GenLang Syntactic pattern recognition system;
uses computational linguistics to find
genes

Q http://www.cbil.upenn.
edu/genlang/genlang_
home.html

Genscan Based on HMMs; rule based rather
than homology based

Q http://genes.mit.edu/
GENSCAN.html

GlimmerM From TIGR and the University of
Maryland

Q http://www.cbcb.umd.edu/
software/glimmerm/index.
shtml

GlimmerM web
server

Trained for Arabidopsis thaliana, Oryza
sativa (rice), Plasmodium falciparum
(malaria parasite)

Q http://www.tigr.org/
software/glimmerm/

GRAILEXP One of the most widely used algorithms Q http://compbio.ornl.gov/

MORGAN A decision tree system for finding genes
in vertebrate DNA

Q http://www.tigr.
org/ � salzberg/morgan.
html

WebGene Consiglio Nazionale delle Ricerche,
Milano

Q http://www.itba.mi.cnr.it/
webgene/

Xpound A probabilistic model for detecting
coding regions

Q http://bioweb.pasteur.fr/
seqanal/interfaces/xpound-
simple.html

Abbreviation: HMM, hidden Markov model.

We have discussed other compe-

titions for proteomics (Chapter

10) and protein structure (CASP,

Chapter 11). The GENCODE

Project website is Q http://
genome.imim.es/gencode/,

including a genome browser. The

GENCODE team worked in col-

laboration with the Human And

Vertebrate Analysis aNd

Annotation (HAVANA) team at

the Sanger Institute (Q http://
www.sanger.ac.uk/HGP/havana/).
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Given this deep level of annotation of ENCODE regions based on experimental

evidence, the EGASP competition consisted of groups that predicted gene structures

with the raw sequence data but without prior access to the annotation results (Harrow

et al., 2006; Guigo et al., 2006). This allowed false positive and false negative

error rates to be assessed. Sensitivity was defined as the proportion of annotated

features (nucleotides, exons, or genes) that are predicted correctly, while specificity

was defined as the proportion of predicted features that are annotated. The most

successful gene prediction methods achieved a maximum sensitivity of 70% at the

gene level (for finding at least one correct exon/intron structure), 45% at the tran-

script level (for correctly predicting all alternatively spliced variants), and 90% at

the coding nucleotide level. Only about 3% of the many computationally predicted

exons could be experimentally validated, suggesting that overprediction remains a

fundamental problem.

We can view the results of the EGASP competition at the UCSC Genome

Browser website (Fig. 16.17). There is generally good agreement on the identifi-

cation of exons, although there is considerable variation in the prediction of complete

gene models.

One of the best-performing programs in the GENCODE competition was

JIGSAW from Jonathan Allen, Steven Salzberg and colleagues (Allen and

Salzberg, 2005; Allen et al., 2004, 2006). JIGSAW is an integrative program that

combines different sources of evidence into a model of a gene structure. It incorpor-

ates models from other gene prediction programs (typically three or more) as well as

sequence alignment data and intron splice site prediction programs. It allows separate

signal types, including start codons, stop codons, and splice junctions (acceptor and

donor sites at the 50 and 30 ends of introns). In one mode JIGSAW uses a linear

combiner to assign a weight to each evidence source, and it maximizes the sum of

the evidence (Fig. 16.18) (Allen et al., 2004). This can be accomplished without

FIGURE 16.17. In the EGASP
competition, protein coding genes
were experimentally validated in
ENCODE regions. Various gene-
finding software tools were used to
independently predict gene struc-
tures. The beta globin ENCODE
region consists of one million base
pairs on human chromosome 11p.
A portion of 200,00 base pairs is
shown (x axis) with tracks for
RefSeq genes and EGASP predic-
tions from 19 software programs
(y axis tracks). Many of the pro-
grams predict exons and/or entire
gene structures that are not exper-
imentally confirmed; examples
are shown (arrows). Thus overfit-
ting remains a problem for predic-
tion software. An even greater
problem is that a complete, correct
gene model is generated for fewer
than half of all genes.

JIGSAW can be downloaded from

Q http://cbcb.umd.edu/
software/jigsaw/.
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using a training set. In another mode JIGSAW uses a statistical combiner which

requires a training set (with examples of known genes) that are used to evaluate

the accuracy of various combinations of evidence. Once a model is trained it is

applied to a data set.

For the EGASP competition, JIGSAW predictions were based on training with a

variety of inputs including gene finders used by the UCSC annotation database

(GENEID, SGP, TWINSCAN, and GENSCAN) as well as the GeneZilla

and GlimmerHMM programs. It further incorporated expression evidence from

human and nonhuman sources, GC percentage, sequence conservation, and a var-

iety of genomic features such as TATA box and signal peptide sequences, intron

phase, and CpG islands. Surprisingly, adding some categories of information

(such as training on untranslated regions) diminished rather than improved accuracy

(Allen et al., 2006).

Protein-Coding Genes in Eukaryotes: New Paradox
The C value paradox is answered based on the variable amounts of noncoding DNA

in a variety of eukaryotes. A new paradox is introduced: Why are the proteomes of

various eukaryotes similar in size, given the enormous phenotypic differences

between eukaryotes? Claverie (2001) calls this the N value paradox (N is for

number), while Betrán and Long (2002) call this the G value paradox (G is for

genes). As we survey eukaryotic genomes in Chapters 18 and 19, we will see that

organisms such as worms and flies appear to have about 13,000 to 20,000 protein-

coding genes, while plants, fish, mice, and humans have only slightly more (about

interval
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Gene prediction 2

Protein alignment 1

Protein alignment 2
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32%
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FIGURE 16.18. Combining sources of information in gene-finding software. The JIGSAW pro-
gram accepts different sources of evidence to generate a gene model. These sources may include
output from a splice prediction program, varying gene prediction programs (two are indicated,
the first of which includes an exon prediction confidence score and the second of which does not
provide a confidence score), alignments to two different proteins based on BLAST, and align-
ments to expressed sequence tags sharing varying percent identity between the genomic DNA
sequence S and the human (or nonhuman) EST. The Combiner algorithm used by JIGSAW
divides the genomic sequence into intervals (here I1 to I7) with boundaries x1 . . . x8. These
are used to compile a model of a gene structure including start and stop sites, exons and introns.
From Allen et al. (2006). Used with permission.
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20,000 to 40,000 genes) (Harrison et al., 2002). Why do organisms such as humans,

having so much greater biological complexity than insects and nematodes, have not

even twice as many genes? The genes of higher eukaryotes employ more complex

forms of gene regulation, such as alternative splicing. Also the architecture of individ-

ual genes tends to be more complex, for example with more domains present in an

average human protein relative to insect.

REGULATORY REGIONS OF EUKARYOTIC CHROMOSOMES

Transcription Factor Databases and Other Genomic
DNA Databases
In addition to predicting the presence of genes, it is also important to predict the

presence of genomic DNA features such as promoters, enhancers, silencers, insula-

tors, and locus control regions (Maston et al., 2006). Such regulatory elements

are sometimes called cis-regulatory modules (CRMs). Identifying them is difficult

compared to finding protein-coding genes because the DNA sequences of interest

may be very short (e.g., fewer than a dozen base pairs for transcription factor binding

sites), and conserved between species to variable extents. Algorithms are available for

identifying regulatory elements, as well as databases storing compilations of genomic

features (Table 16.10).

CpG islands represent an example of a regulatory element. The dinucleotide

cytosine followed by guanosine (CpG) is approximately fivefold underrepresented

in many genomes, in part because the cytosine residue can be exchanged for thymi-

dine by spontaneous deamination. Cytosine residues on CpG dinucleotides are often

methylated. This in turn leads to the recruitment of protein complexes that include

histone deacetylases capable of removing acetyl groups of histones and thus inhibit-

ing active transcription. CpG islands are regions of high density of unmethylated

CpG dinucleotides and are commonly found in upstream (50) regulatory regions

near the transcription start sites of constitutively active “housekeeping” genes. By

one criterion, a CpG island is defined as having a GC content �50%, a length

�200 base pairs, and a ratio of observed to expected number of CpG dinucleotides

.0.6. Figure 16.19a shows five CpG islands in the human alpha globin locus,

visualized using the UCSC Genome Browser, each in the vicinity of an alpha

globin gene. The extraordinarily dense number of CpG dinucleotides is evident in

one of these islands (Fig. 16.19b).

The UCSC Genome Browser offers access to dozens of additional resources

related to transcriptional regulation in the “Expression and Regulation” category

of annotation tracks (Fig. 16.20a). Some of these elements are shown for a small

region (15,000 base pairs) of the beta globin locus (Fig. 16.20b). For example,

the Open REGulatory ANNOtation database (ORegAnno) compiles regulatory

elements from the literature and includes a validation process by expert curators

(Griffith et al., 2008). Information in ORegAnno includes promoters, enhancers,

transcription factor bindings sites, and regulatory polymorphisms. Eight

ORegAnno features are included in the UCSC Genome Browser output in

Fig. 16.20b. As another example, that figure illustrates the 7� regulatory potential

track based on regulatory potential scores computed from alignments of seven

organisms (human, chimpanzee, rhesus macaque, mouse, rat, dog, and cow)

ORegAnno is available online at

Q http://www.oreganno.org. Web

document 16.4 lists definitions of

several categories of regulatory

elements within ORegAnno.

Evolutionary and sequence

pattern extraction through

reduced representation

(ESPERR) software and data sets

are available at Q http://www.bx.

psu.edu/projects/esperr.
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TABLE 16-10 Software for Identifying Features of Promoter Regions in Genomic DNA
Program Description URL

Ancient conserved
untranslated DNA
sequences (ACUTS)

Analyzes genes from metazoan species Q http://pbil.univ-lyon1.fr/acuts/
ACUTS.html

AliBaba2 Predicts binding sites of transcription factor binding
sites in an unknown DNA sequence

Q http://www.gene-regulation.com/
pub/programs.html

Eukaryotic Promoter
Database (EPD)

Annotated nonredundant collection of eukaryotic
POL II promoters, for which the transcription start
site has been determined experimentally

Q http://www.epd.isb-sib.ch/

Open REGulatory
ANNOtation database
(ORegAnno)

Comprehensive, open access, community-based
resource

Q http://www.oreganno.org

PlantProm Plant promoter database Q http://mendel.cs.rhul.ac.uk

Promoter 2.0 Prediction
Server

Technical University of Denmark Q http://www.cbs.dtu.dk/services/
promoter/

Regulatory Sequence Analysis
Tools (RSAT)

Université Libre de Bruxelles Q http://rsat.ulb.ac.be/rsat/

TESS Transcription Element Search System, University of
Pennsylvania

Q http://www.cbil.upenn.edu/cgi-bin/
tess/tess

Transcriptional Regulatory
Element Database (TRED)

Cold Spring Harbor Laboratory Q http://rulai.cshl.edu/cgi-bin/
TRED/tred.cgi?process¼home

TRANSFAC Database of transcription factors, their genomic
binding sites, and DNA-binding profiles

Q http://www.gene-regulation.de/

Note: Additional resources are summarized at Q http://www.oreganno.org/oregano/OtherResources.jsp.

FIGURE 16.19. CpG islands are
associated with the regulation of
expression of many eukaryotic
genes. (a) The alpha globin gene
cluster on human chromosome 16
is shown (in a window of 35,000
base pairs from chr16:140,001-
175,000 on the UCSC Genome
Browser). Each of the five genes
has an associated CpG island,
defined as having a GC content of
50% or greater, a length greater
than 200 base pairs, and a ratio
.0.6 of observed to expected CpG
dinucleotides. (b) By clicking on
the HBA2 CpG island, one accesses
its DNA sequence. CpG dinucleo-
tides are highlighted in red.

(a)

(b) >hg18_cpgIslandExt_CpG: 108 range=chr16:162370-163447 
CG TCCG GGTGCGCG CATTCCTCTCCG CCCCAGGATTGGGCG AAGCCCTCCG GCTCG CACTCG CTCG CCCG TG
TGTTCCCCG ATCCCG CTGGAGTCG ATGCGCG TCCAGCGCG TGCCAGGCCG GGGCG GGGGTGCG GGCTGACTT
TCTCCCTCG CTAGGGACG CTCCG GCG CCCG AAAGGAAAGGGTGGCG CTGCG CTCCG GGGTGCACG AGCCG AC
AGCG CCCG ACCCCAACG GGCCG GCCCCG CCAGCG CCG CTACCG CCCTGCCCCCG GGCG AGCG GGATGGGCG G
GAGTGGAGTGGCG GGTGGAGGGTGGAGACG TCCTggcccccg ccccgcg tgcacccccaggggaggccg agc
ccg ccg cccg gccccgcg caggccccg cccg ggACTCCCCTGCG GTCCAGGCCGCG CCCCG GGCTCCGCG CC
AGCCAATGAgcg ccg cccg gccg ggcg tgcccccgcg ccccAAGCATAAACCCTGGCGCG CTCGCG GGCCG G
CACTCTTCTGGTCCCCACAGACTCAGAGAGAACCCACCATGGTGCTGTCTCCTGCCG ACAAGACCAACG TCA
AGGCCG CCTGGGGTAAGGTCG GCGCG CACG CTGGCG AGTATGGTGCG GAGGCCCTGGAGAGGTGAGGCTCCC
TCCCCTGCTCCG ACCCG GGCTCCTCG CCCG CCCG GACCCACAGGCCACCCTCAACCG TCCTGGCCCCG GACC
CAAACCCCACCCCTCACTCTGCTTCTCCCCG CAGGATGTTCCTGTCCTTCCCCACCACCAAGACCTACTTCC
CG CACTTCG ACCTGAGCCACG GCTCTGCCCAGGTTAAGGGCCACGGCAAGAAGGTGGCCG ACGCG CTGACCA
ACG CCG TGGCG CACG TGGACG ACATGCCCAACGCG CTGTCCG CCCTGAGCG ACCTGCACGCG CACAAGCTTC 
G GGTGGACCCG GTCAACTTCAAGGTGAGCG GCG GGCCG GGAGCG ATCTGGGTCG AGGGGCG AGATGGCG CCT
TCCTCTCAGGGCAGAGGATCACGCG GGTTGCG GGAGGTGTAGCG CAGGCG GCG GCTGCG GGCCTGGGCCG 
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(King et al., 2005; Taylor et al., 2006). Scores are based on log ratios of transition

probabilities from variable order Markov models, based on the use of a training

set. Constrained (conserved) residues in a multiple sequence alignment may have

regulatory potential if they are more similar to known regulatory elements than to

ancestral repeats (which serve as a model for neutrally evolving DNA). King et al.

evaluated regulatory regions of the beta globin locus, which includes 23 experimen-

tally determined CRMs, all but three or four of which are conserved in rat and mouse,

and of which just four are conserved in chicken. The regulatory potential method per-

formed better (based on estimates of sensitivity and specificity) than other methods

that rely exclusively on conservation of loci among species. Figure 16.20b also shows

a conservation track that has partially overlapping results with the 7� regulatory

potential track.

In addition to the standard UCSC Genome Browser options for the “Expression

and Regulation” category, there are many additional tracks in the ENCODE regions

(Fig. 16.21). Clicking on any of these headers provides access to track display features

as well as the methodology and literature citations. These options include chromatin

immunoprecipitation (ChIP) experiments, in which antisera directed against

specific proteins (such as DNA-binding transcription factors) are used to immuno-

precipitate those proteins with their target DNA. This DNA can be amplified by

(a)

(b)

FIGURE 16.20. Regulatory ele-
ments in genomic DNA. (a) The
UCSC Genome Browser (March
2006 assembly) includes two
dozen annotation tracks in the
“expression and regulation” cat-
egory, many of which include ana-
lyses of transcriptional regulation.
(b) The beta globin and delta
globin gene loci are shown
(15,000 bases at the location
chr11:5,200,001-5,215,000) with
some of these annotation tracks
opened. This highlights regulatory
elements surrounding these genes.
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the polymerase chain reaction (PCR) to be identified. In another scenario, the

immuno-precipitated DNA is amplified, labeled with fluorescence, and hybridized

to tiling oligonucleotide arrays. Mikkelsen et al. (2007) mapped precipitated DNA

by Solexa sequencing (Chapter 13), and thus described distinct categories of promo-

ters in different cell populations (embryonic stem cells, neural progenitor cells, and

embryonic fibroblasts) based on their chromatin state including histone methylation

profile. ChiP data using a variety of approaches can be displayed on the UCSC

Genome Browser.

Another set of data are from DNase I sensitivity experiments. DNase I hypersen-

sitive sites reveal accessible genomic regions that are characteristic of active cis-

regulatory sequences and transcription start sites in particular. Sabo et al. (2006)

developed a tiling microarray to detect such sites on a genome-wide basis with

high sensitivity (.91%) and specificity (.99%).

Ultraconserved Elements
Comparisons of eukaryotic genome sequences have revealed some highly conserved

coding and noncoding DNA sequences. The UCSC Genome Browser offers a set

of comparative genomics annotation tracks including one for conservation. That

track shows the extent of conservation in 17 vertebrate species (including mammals,

amphibians, birds, and fish) based on phastCons, a phylogenetic hidden Markov

model (Siepel et al., 2005). We showed an example of the conservation track in

Chapter 5.

Comparison of the human and Fugu rubripes genomes that last shared a common

ancestor about 450 million years ago revealed many ultraconserved sequences (also

called highly conserved elements). Ultraconserved elements are sometimes defined

as having a length �200 base pairs that match identically with corresponding regions

of the human, mouse, and rat genomes. Bejerano et al. (2004) identified 481 such

segments, most of which were also highly conserved with the dog and chicken

genomes. Many of these elements are distant from any protein-coding gene. These

regions are highly constrained evolutionarily (Katzman et al., 2007). Dermitzakis

et al. (2002) also described ultraconserved sequences on human chromosome 21.

In a computer laboratory exercise at the end of this chapter, we will identify a

FIGURE 16.21. Annotation tracks
available at the UCSC Genome
Browser site for functional studies
of regulatory elements in the
ENCODE project. A variety of
tracks can be viewed and analyzed
in the ENCODE categories of tran-
script levels, chromatin immuno-
precipitation, and chromosome,
chromatin and DNA structure.

672 THE EUKARYOTIC CHROMOSOME



series of DNA sequences that share 100% nucleotide identity between human and

chicken (species that last shared a common ancestor over 300 million years ago).

Nonconserved Elements
In analyzing regulatory regions of genomic DNA, a focus has been on identifying

conserved noncoding regions as candidates for functionally important loci. Fisher

et al. (2006) studied regulatory regions near the RET gene in zebrafish, and used a

transgenic assay to identify a series of teleost sequences that direct ret-specific repor-

ter gene expression. Surprisingly, a series of human noncoding sequences were also

able to drive zebrafish gene expression, even though there was no detectable conser-

vation between the human and zebrafish sequences. This highlights how little we

understand about transcription factor binding, and suggests that vast amounts of

functionally important regulatory sequences are not detectable based on sequence

conservation (Elgar, 2006).

We gain another perspective on the importance of conserved elements by asking

the consequence of deleting them. Nóbrega et al. (2004) deleted two large noncoding

regions from the mouse genome (consisting of 1511 and 845 kilobases) and created

viable homozygous deletion mice. They detected no altered phenotype (and only

very minor differences in the expression of neighboring genes). These deletion

regions harbored over 1200 noncoding sequences conserved between humans and

rodents. It is possible that under some physiological conditions the deletions

would have large phenotypic consequences, but nonetheless this study suggests

that large portions of chromosomal DNA are potentially dispensible.

COMPARISON OF EUKARYOTIC DNA

Comparative genomics is a powerful approach to annotating and interpreting the

meaning of genomic DNA from multiple organisms. When we analyze the genomes

of organisms that diverged recently (e.g., humans and chimpanzees diverged 5 MYA)

or in the distant past (e.g., mosquitoes and fruit flies diverged 250 MYA; Zdobnov

et al., 2002), it is helpful to align the genomic sequences in order to define conserved

regions. Such analyses can provide a wealth of information about the existence and

evolution of protein-coding genes and other DNA features as well as information

about chromosomal evolution.

Genes from different organisms that are derived from a common ancestor and

that share a common function are orthologs (Chapter 3). In comparing genomic

sequences from two (or more) organisms, we may wish to analyze regions in each

species having orthologous genes. Such regions are said to have conserved synteny.

Synteny denotes the occurrence of two or more gene loci on the same chromosome,

regardless of whether or not they are genetically linked. This definition refers to an

arrangement of genes along a chromosome within a single species. “Conserved

synteny” refers to the occurrence of orthologous genes (i.e., in two species) that

are syntenic. As an example, the occurrence of the neighboring genes RBP4 and

CYP26A1 on human chromosome 10 and mouse chromosome 19 represents con-

served synteny.

In order to analyze regions of conserved synteny—or even larger regions of geno-

mic DNA that do not necessarily contain protein-coding genes—it is necessary to

perform pairwise alignment and multiple sequence alignment of genomic DNA.

Synteny derives from Greek roots

meaning “same thread” or “same

ribbon.” A common error is to

refer to orthologous genes as being

syntenic when instead they share

conserved synteny (Passarge et al.,

1999). The National Institutes of

Health Intramural Sequencing

Center (NISC) is currently

sequencing BAC contig genomic

DNA from dozens of genomic

regions of conserved synteny in a

variety of species, including

human, baboon, chimpanzee,

cow, mouse, rat, dog, cat, chicken,

zebrafish, and Fugu. See Q http://
www.nisc.nih.gov.
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We discussed approaches to this for prokaryotes (Chapter 15), and in Chapter 5 we

discussed algorithms that are useful for the comparison of large DNA queries to data-

bases containing genomic DNA, including PatternHunter, BLASTZ, MegaBLAST,

BLAT, and LAGAN.

There are other powerful tools for the comparison of genomic DNA in

eukaryotes, including PipMaker (Schwartz et al., 2000), VISTA (Mayor et al.,

2000; reviewed in Frazer et al., 2003) and MUMmer (Kurtz et al., 2004). The

goal of each program is to align long sequences (e.g., thousands to millions of base

pairs) while visualizing conserved segments (exons and presumed regulatory regions)

as well as large-scale genomic changes (inversions, rearrangements, duplications). It

is important to learn both the order and orientation of conserved sequence features.

The VISTA browser output for human chromosome 11, including the beta globin

and delta globin genes, is shown in Fig. 16.22. This includes an alignment to the

chimpanzee, mouse, and chicken genomes, highlighting conserved exons and

conserved noncoding regions.

VARIATION IN CHROMOSOMAL DNA

We might think of chromosomes as unchanging entities that define the genome of

each species. However, they are dynamic in many ways across large time scales

(millions of years), between generations, between individuals in a population, and

even within individual lifetimes. A broad variety of cytogenetic changes occur in

eukaryotes, allowing an assessment of different types, mechanisms, and conse-

quences of rearrangement (Coghlan, 2005).

1 2

3

FIGURE 16.22. The VISTA program for aligning genomic DNA sequences is available through
a web browser that can be queried with text or DNA sequence (up to 300,000 bases). The output
for a query of the human beta and delta globin gene region is shown here. The x axis shows the
nucleotide position along human chromosome 11, and the y axis shows the percent nucleotide
identity between human and chimpanzee, mouse, and chicken. A variety of exons (e.g., arrow
1) and conserved noncoding sequences (e.g., arrow 2) are shown. Human and chimpanzee
have nearly identical sequences, but divergent regions are easily seen (e.g., arrow 3). By clicking
a link (not shown), VISTA data can be output on a version of the UCSC Genome Browser.

PipMaker and MultiPipMaker are

available at Q http://bio.cse.psu.

edu/pipmaker/. (“Pip” stands for

“percent identity plot.”) VISTA

(Visualization Tools for

Alignments) is at Q http://
genome.lbl.gov/vista/index.

shtml. mVISTA (main VISTA) is a

program for visualizing genomic

alignments, while rVISTA (regu-

latory VISTA) is used to align

transcription factor binding sites.

AVID is an alignment algorithm

used by the VISTA tools (Bray

et al., 2003). The Berekeley

Genome Pipeline includes a

VISTA browser (Q http://
pipeline.lbl.gov/). This allows

human–mouse, mouse–rat, and

human–rat genomic DNA com-

parisons. VISTA also offers a

browser for enhancer elements

(Q http://enhancer.lbl.gov/).
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Dynamic Nature of Chromosomes: Whole Genome Duplication
When we compare the genomes of related species, we can observe many types of

chromosomal changes. One level is ploidy. In eukaryotes, normal germ cells are hap-

loid while somatic cells are usually diploid. Thus, different cells within an individual

can have different ploidy. Ploidy is the number of chromosome sets in a cell. It can

vary in many ways. Some single-celled eukaryotes such as S. cerevisiae can grow in

either the haploid or diploid state. Triploid Drosophila are viable (but with reduced

fertility). Although we distinguish the ploidy state in germ cells and somatic cells,

ploidy can also vary in somatic cells within an individual. For example, in humans

a small fraction of liver cells is typically triploid. In general an extra germline copy

of even one chromosome is usually lethal in mammals.

One of the dramatic ways that ploidy can change for an entire species is through

whole genome duplication. Mechanistically, a mitotic or meiotic error may cause

diploid gametes to form, having two sets of chromosomes. These may fuse with

haploid gametes to form triploid zygotes, which are unstable but may lead to the

formation of stable tetraploid zygotes. When whole genome duplication occurs

within a species, the result is termed autopolyploidy. Such a massive event may have

happened in yeast; in Chapter 17 we will review evidence for whole genome duplication

and computational tools to analyze and visualize it. A variety of fish and plant genomes

also underwent whole genome duplication. In the case of the ciliate Paramecium tetra-

urelia, analysis of the genome sequence suggests that there have been at least three

whole genome duplication events (Aury et al., 2006; see Chapter 18).

The genomes of two distinct species may merge to generate a novel species

(allopolyploidy) (Hall et al., 2002). This phenomenon has been described in many

plants (Comai, 2000), animals, and fungi. For example, the plant Arabidopsis suecica

derives from the A. thaliana and Cardaminopsis aerenosa genomes (Lee and Chen,

2001; Lewis and Pikaard, 2001). Another example of allopolyploidy is the mule,

which is the result of a cross between a male donkey (Equus asinus, 2n ¼ 62) and a

female horse (Equus caballus, 2n ¼ 64). Mules cannot propagate because they are

sterile (they cannot produce functional halploid gametes) (see Ohno, 1970).

Ohno 1970 hypothesized that the increased complexity of vertebrates is due to

two rounds of whole genome duplication in early vertebrate evolution. This has

been called the 2R hypothesis (reviewed in Panopoulou and Poustka, 2005; Dehal

and Boore, 2005). Ohno argued that duplication provided the genetic material

that can be shaped by mutation and selection to introduce novel functions to organ-

isms (Prince and Pickett, 2002; Taylor and Raes, 2004). There are three advantages

of becoming polyploid (Comai, 2005). (1) Hybrids sometimes exhibit an increase in

performance relative to their inbred parents, a phenomenon termed heterosis. (2)

Gene redundancy occurs, offering the opportunity to mask recessive deleterious

alleles by dominant wild-type alleles. Also, one member of a duplicated gene pair

may be silenced, up- or downregulated in its expression level, or regulated in a

tissue-specific manner (Adams and Wendel, 2005; Li et al., 2005). The most

common fate of duplicated genes is that they become deleted (discussed in

Chapter 17), as has been shown in the plants Arabidopsis thaliana and Oryza sativa

(Thomas et al., 2006), and fish (Brunet et al., 2006; Paterson et al., 2006). (3)

Self-fertilization may become possible (asexual reproduction).

Another type of chromosomal change that can be fixed in a species is the fusion of

two chromosomes. For example, acrocentric chromosomes may be subject to

Robertsonian translocation, in which two centromeres fuse (Slijepcevic, 1998).

Paramecium tetraurelia is excep-

tional because most of its dupli-

cated genes have not been deleted

(Aury et al., 2006 and see Chapter

18).
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Human chromosome 2, the second largest human chromosome, is derived from two

ancestral great ape acrocentric chromosomes (chimpanzee chromosomes 2a and 2b

[formerly named 12 and 13]) (Fig. 19.19) (Ijdo et al., 1991a; Martin et al., 2002;

Fan et al., 2002). The human 2q13 band, near the centromere, contains telomeric

repeats in a head-to-head orientation. Over 50 interstitial telomeres have been

described (Azzalin et al., 2001).

In addition to fusion, chromosomes can split (fission). As an example, human

chromosomes 3 and 21 derive from a larger ancestral chromosome (Muzny et al.,

2006). Chromosomal inversions represent another change that can lead to specia-

tion. There are five distinct subtypes of the mosquito Anopheles gambiae having

varying kinds of paracentric inversions on chromosome 2 (Holt et al., 2002), and

these inversions may lead to speciation by preventing successful chromosomal

pairing among members of different subtypes.

The recent availability of draft sequences from dozens of eukaryotic genomes has

led to the reconstruction of many ancestral genomes. For example, Kohn et al. (2006)

decribed the eutherian karyotype from 100 million years ago, prior to the radiation of

mammalian species. Murphyet al. (2005) compared the chromosomal architecture of

eight species (human, horse, cat, dog, pig, cattle, rat, and mouse) and inferred the

structure of their ancestral chromosomes. They characterized the sites of evolutionary

breakages, which included subtelomeric and pericentromeric regions in particular.

Large-scale chromosomal changes may lead to the establishment of a new species

(speciation). Ohno (1970) provided an example. The karyotypes of the tobacco

mouse Mus poschiavinus (2n ¼ 26) and the house mouse Mus musculus (2n ¼ 40)

are shown (Fig. 16.23a and b). The ancestral M. poschiavinus may have become phys-

ically isolated from M. musculus and thus was not able to interbreed. At this time its

chromosomes underwent Robertsonian translocations, thus forming a new genome

with a reduced number of chromosomes. The F1 progeny form a series of seven

trivalents (each from one poschiavinus metacentric and two musculus acrocentrics;

Fig. 16.23c) which are not compatible with survival.

Chromosomal Variation in Individual Genomes
Comparison of closely related species has revealed many chromosomal changes

involving single chromosomes. At the level of the individual organism, many changes

to chromosomes occur, sometimes causing disease:

† An individual may acquire an extra copy of an entire chromosome. For

example, Down syndrome is caused by a trisomy (triplicated copy) of chromo-

some 21 (Fig. 16.1b). We discuss this type of disorder in Chapter 20.

Aneuploidy (the presence of an abnormal number of chromosomal copies)

occurs commonly and is often caused by nondisjunction (Hassold and

Hunt, 2001).

† Uniparental disomy may occur, in which both homologous chromosomes are

inherited from one parent. We discuss this in more detail below. Uniparental

disomy is often associated with disease in humans (Kotzot, 2001).

† A portion of a chromosome may be deleted. Deletions may be terminal or

interstitial; an example of a terminal deletion of chromosome 11q is shown

in Fig. 16.1 (arrow B).

† Segmental duplications commonly occur (see Chapter 19).

In human trisomy 21 (Down syn-

drome), it is not uncommon for a

copy of chromosome 21 to fuse

with another acrocentric

chromosome.
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† Normal chromosomes from any eukaryotic species can vary between individ-

uals in length, number, and position of heterochromatic segments. For

example, the ribosomal DNA repeat segments on the short arms of the five

human acrocentric chromosomes vary greatly in length between individuals.

A variety of human chromosomes show tremendous polymorphisms in the

population, such as portions of chromosome 7 (Chapter 19).

† Fragile sites often occur, sometimes causing chromosomal breaks. These

fragile sites can be inherited in a dominant Mendelian fashion.

† At least some eukaryotes display chromatin diminution, a form of develop-

mentally programmed DNA rearrangement. Remarkably, chromosomes in

somatic cells can fragment, then lose some chromosomal material. Thus

somatic chromosomes can have a different structural organization and a smal-

ler gene number than germline cells. Chromatin diminution could represent

(a) ordinary male house mouse (Mus musculus, 2n = 40)

(b) male tobacco mouse (Mus poschiavinus, 2n = 26)

(c) Male first meiotic metaphase from an interspecific F1-hybrid.

FIGURE 16.23. Robertsonian
fusion creates one metacentric
chromosome by the fusion of two
acrocentrics. (a) Karyotype of the
normal mouse, Mus musculus.
(b) Karytoype of the male tobacco
mouse (Mus poschiavinus, 2n ¼
26). Its smaller chromosome
number derives from Robertsonian
fusion events. (c) Male first meiotic
metaphase from an interspecific
F1-hybrid. Note seven trivalents
(indicated with arrows). Each rep-
resents one poschiavinus metacentric
and two musculus acrocentrics.
From Ohno (1970). Used with
permission.
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an unusual gene-silencing mechanism (Müller and Tobler, 2000). This

phenomenon has been observed in at least 10 nematode species, including

the horse intestinal parasite Parascaris univalens (also called Ascaris megaloce-

phala) and the hog parasite Ascaris suum.

Among the many functional changes that chromosomes undergo, dosage

compensation of the X chromosome is a prominent example. In human females,

one copy of each X chromosome is functionally inactivated through the action of

an X-chromosome inactivation center (XCI)(Latham, 2005). Genomic imprinting,

the selective silencing of either maternal or paternal copies of genes, is another

regulatory mechanism (Morison et al., 2005).

Chromosomal Variation in Individual Genomes: Inversions
A. H. Sturtevant (1921), a student of Thomas Hunt Morgan, mapped a series of

genes and reported that Drosophila simulans has an inversion on chromosome III

relative to Drosophila melanogaster. This example highlights another feature of chro-

mosomal plasticity: while 500 unique inversions are known in D. melanogaster

(a highly polymorphic species), only 14 unique inversions are known in D. simulans

(a monomorphic species) (Aulard et al., 2004). Different species present varying

propensities to undergo chromosomal changes.

In humans and other species, inversions commonly occur. They can be extra-

ordinarily difficult to detect, because even DNA sequencing may not reveal changes,

and they may be undetectable using conventional cytogenetics. Stefansson et al.

(2005) described an inversion polymorphism of 900 kilobases that occurs on

chromosome 17q21.31 (from 44.1 to 45.0 Mb). This inversion is common in

Europeans where it is under positive selective pressure. Surprisingly, the inverted

segment occurs in chromosomes having different orientations in two lineages (H1

and H2) which diverged as long as 3 million years ago. As another example, an inver-

sion of a single gene causes a severe form of hemophilia (Antonarakis et al., 1995).

In an innovative approach, Pavel Pevzner and colleagues have used small inver-

sions as evolutionary characters to perform phylogenetic analyses (Chaisson et al.,

2006). They estimate that one microinversion occurs per megabase per 66 million

years of evolution, and they developed a method to distinguish microinversions

(local alignments between orthologous sequences on the reverse strand) from palin-

dromes and inverted repeats. This method is limited to analysis of sequences with

sufficient conservation to permit clear assignment of orthology, but its phylogenetic

reconstruction matches traditional approaches.

Models for Creating Gene Families
One prominent aspect of genomes is the occurrence of multigene families. Multigene

families (also called superfamilies) consist of a group of paralogs such as the globins.

Nei and Rooney (2005) reviewed this topic and described three separate models

for their evolution.

1. According to a divergent evolution model, members of a gene family gradu-

ally diverge as duplicate genes assume new functions (Fig. 16.24a). For

example, the alpha and beta globin groups each have multiple members, as

shown in the phylogenetic tree of Fig. 3.2. Some of these globins are

expressed at specific developmental stages.

You can read about this hemophi-

lia at the Online Mendelian

Inheritance in Man (OMIM) site

at NCBI (entry 306700). We

describe OMIM in Chapter 20.

678 THE EUKARYOTIC CHROMOSOME



2. According to the concerted evolution model, all the members of a gene family

evolve in a concerted manner, rather than independently (Fig. 16.24b).

An example of this scenario is the tandemly repeated ribosomal DNA

genes. We described the structure of human rDNA repeats in Chapter 8

(Fig. 8.7). Work by Donald Brown and others showed that intergenic regions

of ribosomal DNA clusters were more similar within a species than between

two related Xenopus (frog) species. When one member of such a gene cluster

acquires a mutation, that change spreads to other members. One mechanism

by which this can occur is unequal crossing over (discussed below). Another

proposed mechanism is gene conversion. In gene conversion, one gene (or

other DNA element) serves as a donor, and through a form of nonreciprocal

recombination, it mediates the conversion of a second gene to form a copy

of the first gene. Examples of gene families that have evolved by concerted

evolution include the primate U2 snRNA genes, 5S RNA genes in Xenopus

(which has 9000 to 24,000 members) or humans (which has �500 mem-

bers), and heatshock protein genes in Drosophila. The hsp70Aa and

hsp70Ab genes are a pair of inverted tandem repeats that are virtually identical

in D. melanogaster as well as in D. simulans. Their within-species identity could

provide an example of gene conversion.

3. The birth-and-death evolution model was proposed by Masatoshi Nei and

others (reviewed in Nei and Rooney, 2005) (Fig. 16.24c). According to this

model, new genes are created by gene duplication. Some duplicates remain

in the genome, while others are inactivated (becoming pseudogenes) or

deleted. This model was proposed to explain the evolution of the major

histocompatibility complex (MHC) genes. MHC proteins bind foreign or

self peptides and present them to T-lymphocytes as part of the immune

response. MHC class I genes in particular are highly polymorphic due to

species 1 species 2species 1 species 2species 1 species 2

(a) Divergent evolution (b) Concerted evolution (c) Birth-and-death evolution

FIGURE 16.24. Three models for
the creation of duplicate genes in
multigene families. (a) Divergent
evolution; (b) concerted evolution;
(c) birth-and-death evolution. Red-
shaded circles refer to functional
genes; unfilled circles correspond
to pseudogenes. Redrawn from
Nei and Rooney (2005). Used
with permission.

The DNA and protein RefSeq

accession numbers for hsp70Aa

are NM_169441 and

NP_731651, while for hslp70Ab

they are NM_080059 and

NP_524798.
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positive selection on the peptide-binding region (Hughes and Nei, 1989).

The birth-and-death model presents a mechanism for the generation of

gene diversity that is distinct from concerted evolution or divergent evolution,

and explains how new functions can be acquired by duplicate genes.

According to Nei and Rooney, most gene families are subject to birth-and-death

evolution. Some examples are listed in Table 16.11. In some cases such as histone

genes and the ubiquitins, the birth-and-death process is accompanied by very

strong purifying selection that conserves the protein seqences. This selective

pressure, rather than the homogenizing properties of gene conversion or unequal

crossover, accounts for the tremendous conservation of these proteins. In other

cases a mixed process of concerted evolution and birth-and-death evolution

occurs, such as in the alpha globin genes in which HBA1 and HBA2 genes encode

identical proteins, possibly because of gene conversion.

Mechanisms of Creating Duplications, Deletions, and Inversions
In the first half of the twentieth century, a variety of detailed models were proposed

to explain how genes become duplicated, deleted, or inverted (Darlington, 1932). A

major current model is nonallelic homologous recombination mediated by low-copy

TABLE 16-11 Examples of Multigene Families that Undergo Birth-and-Death Evolution
Category Family Organism

Immune system MHC Vertebrates

Immunoglobulins Vertebrates

T-cell receptors Vertebrates

Natural killer cell receptors Mammals

Eosinophilic RNases Rodents

Disease resistance (R) loci Plants

a-Defensins Mammals

Sensory system Chemoreceptors Nematodes

Taste receptors Mammals

Sex pheromone desaturases Insects

Olfactory receptors Mammals

Development Homeobox genes Mammals

MADS-box Plants

WAK-like kinase Arabidopsis

Highly conserved Histones Eukaryotes

Amylases Drosophila

Peroxidases All kingdoms

Ubiquitins Eukaryotes

Nuclear ribosomal RNA Protists, Fungi

Miscellaneous DUP240 genes Yeast

Polygalacturonases Fungi

3-Finger venom toxins Snakes

Replication proteins Nanoviruses

ABC transporters Eukaryotes

Source: Nei and Rooney (2005). Used with permission.
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repeats (that is, by segmental duplications) (Stankiewicz and Lupski, 2002; Bailey

and Eichler, 2006). Repetitive DNA of about 10 kilobases to 500 kilobases that

occurs in two (or more) distinct chromosomal loci can lead to unequal crossing

over (Fig. 16.25). These crossovers can occur interchromosomally, intrachromo-

somally, or between sister chromatids (Fig. 16.25, columns). The orientation of

the low-copy repeats influences the nature of the rearrangement that occurs; these

repeats may occur in a direct orientation, they may be inverted repeats, or they

may have a complex structure (Fig. 16.25, rows).

We can examine the case of direct repeats in Fig. 16.25a. The phrase “nonallelic

homologous recombination” refers to meiotic recombination between chromo-

somes. One chromosome has two repeated segments labeled AB and CD, while
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FIGURE 16.25. Mechanisms of creating genomic rearrangements. Nonallelic homologous
recombination (NAHR) based on low-copy repeats (LCRs) or segmental duplications cause
these changes. The orientation of the LCRs may be head-to-head (top row), head-to-toe
(middle row), or complex (bottom row) involving DNA exchanges that are interchromosomal
(left column), intrachromosomal (middle column), or intrachromatid (right column). For
each of the nine scenarios the chromosomal configuration is shown as well as the products of
unequal crossing over. (a) Unequal crossovers between directly ordered repeats lead to a dupli-
cation and a deletion. (b) Mechanism of forming an inversion. (c) Interchromosomal exchange
between inverted repeats causes inversions and can result in duplications and deletions. (d)
Mispairing of direct repeats leads to an intrachromosomal deletion/duplication. (e) An inver-
sion results from intrachromosomal unequal exchange between inverted repeats. (f) Complex
repeats lead to an intrachromosomal deletion/duplication. (g) A deletion and an acentric frag-
ment result from intrachromatid mispairing due to direct low copy repeats.(h) An intrachroma-
tid loop of inverted repeats results in an inversion. (i) Complex repeats lead to intrachromatid
mispairing and an inversion. Adapted from Stankiewicz and Lupski (2002). Used with
permission.
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the other has ab cd. The repeats can combine even when they are nonallelic (e.g.,

example, AB and ab are allelic but AB and CD are nonallelic). Nonetheless they

are homologous and thus able to pair. Following the crossover event indicated by

the X in Fig. 16.25a, one copy contains ab cB CD and thus has a duplication,

while the other copy has Ad from the crossover event and thus has a deletion.

As indicated in Fig. 16.25, many other products can result from unequal

exchanges. In this way, segmental duplications (low-copy repeats) have been a

major force in shaping genome evolution, including the emergence of gene families.

In Chapter 20 we will present six models by which deletions (or duplications or

inversions) may cause disease (Lupski and Stankiewicz, 2005). In other cases, the

genomic rearrangements, such as altering the dosage of a gene or fusing two genes

together, may present an organism with an innovation that is advantageous and

selected for.

The boundaries of segmentally duplicated regions often contain Alu repetitive

sequences (Bailey and Eichler, 2006). Pericentromeric and subtelomeric regions

are also enriched for segmental duplications, with interchromosomal segmental

duplications present in 30 out of 42 subtelomeric regions (reviewed in Bailey and

Eichler, 2006).

TECHNIQUES TO MEASURE CHROMOSOMAL CHANGE

For several decades, karyotyping has been the preeminent technique to visualize

chromosomes. Today, clinical genetics laboratories routinely use karyotyping to

assess the occurrence of aneuploidy as well as smaller changes such as microdeletions

and microduplications. Typically, deletions that are smaller than about 3 million base

pairs are too small to detect. Chromosomal inversions can only be detected if they

are large enough to disrupt the banding pattern. Translocations may be balanced

(if two chromosomal regions exchange) or unbalanced (if material is gained or lost).

Fluorescence in situ hybridization (FISH) offers greatly increased resolution. A

bacterial artificial chromosome (BAC) clone, typically consisting of about 200,000

base pairs of genomic DNA inserted into a cloning vector of about 10,000 base

pairs, can be labeled with a fluorescent dye then used to probe a spread of metaphase

chromosomes on a microscope slide. FISH has been used to refine information

about chromosomal anomalies such as microdeletions and translocations.

In 1992 Kallioniemi and colleagues performed comparative genome hybriziation

(CGH) in which genomic DNA from two samples (such as one diseased and one

apparently normal) is isolated, labeled with a green or red fluorescent dye, and

hybridized to a normal chromosomal spread. This technique showed regions of

gain or loss of DNA sequences, including amplifications seen in tumor cell lines.

Array Comparative Genomic Hybridization
Array CGH (aCGH) is a high throughput extension of the CGH technique to micro-

arrays that is useful to detect copy number changes at defined chromosomal loci. It

combines the high resolution of FISH with the broad chromosome-wide perspective

of karyotyping. An aCGH platform may consist of thousands of BAC clones or

oligonucleotides immobilized on the surface of a glass microarray. Genomic DNA

is purified from a test sample (e.g., the DNA is isolated from a cell line or blood

sample) and a reference sample. If the test sample DNA is labeled with a red dye
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and the reference is labeled with a green dye, then upon hybridization the signal

intensities are comparable. If an amplification or deletion occurs, the log signal inten-

sities deviate from a value of zero. The region of copy number gain or loss may be as

small as one single probe (e.g., one base pair for an SNP array, or about 200,000 base

pairs for a BAC array). The change may also extend across an entire chromosome arm

or entire chromosome. Figure 16.26 shows an example of a microdeletion on

chromosome 2. This resulted in the hemizygous loss of many genes, and mental

retardation in the patient.

A simple approach has been to apply a ratio threshold to define a region of ampli-

fication or deletion. For a gain of one copy, the amount of signal is expected to

increase 1.5-fold (from two copies in the euploid state to three copies), while a hemi-

zygous deletion reduces the copy number twofold (from two copies to one). On a log2

scale, unchanged copy number corresponds to a value of 0 (i.e., a 1:1 ratio), while a

gain and loss correspond to þ1 and 21 log2 intensity values, respectively.

Many statistical approaches have been developed to analyze aCGH data. Two

estimation problems must be addressed: inferring the number of chromosomal

alterations and their statistical significance, and locating the boundaries of such

events. Lai et al. 2005 tested the accuracy of a group of 11 algorithms. Their com-

parative study included receiver operating characteristic (ROC curves) plotting the

false positive rate versus the true positive rate. For many test data sets, the 11 algor-

ithms produced dramatically different estimates of copy number changes. The algor-

ithms were all better at detecting large-scale aberrations with a good signal to noise

ratio, but faltered with smaller aberrations and noisy data. Some algorithms did

not detect particular amplifications or deletions; others either merged a group of

alterations or splintered them inappropriately. Overall, one of the best-performing

algorithms in this (Lai et al., 2005) and another comparative study (Willenbrock

and Fridlyand, 2005) was the circular binary segmentation method (CBS)(Olshen

et al., 2004; Venkatraman and Olshen, 2007). This method divides the genome

into regions of equal copy number, assuming that chromosomal gains or losses

occur in discrete, contiguous regions. The goal is to identify copy number change-

points which partition the chromosome into segments. A likelihood ratio statistic

tests the null hypothesis that there is no change against the alternative hypothesis

that there is one change at a given location. The null hypothesis is rejected if the

test statistic exceeds some threshold; the variance can be estimated from the data

by Monte Carlo simulations using a permuted reference distribution.

aCGH is one of the techniques that has been used to discover copy number

variants (CNVs) in the human genome. There is an astonishing amount of variation

between even apparently normal individuals, with large numbers of megabase-sized

deletions and duplications. We address this topic in Chapter 19.

Single Nucleotide Polymorphism (SNP) Microarrays
SNPs represent one of the most commonly occurring forms of variation in all

genomes. Figure 16.27 shows an example of two SNPs from the beta globin gene

at the Entrez database of SNPs (dbSNP) at NCBI. By convention, each of the var-

iants (C or G in these two cases) is represented as A or B for the major and minor

alleles in the population. Most SNPs are biallelic (i.e., there are two rather than

three or four variants at a given position) with a range of population frequencies.

Thus possible genotype calls for a diploid sample (such as human) are AA or BB

(homozygous) or AB (heterozygous) (Fig. 16.28). In regions of hemizygous deletion
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FIGURE 16.26. Array comparative genome hybridization (aCGH) allows detections of
chromosomal gains and losses. (a) Experimental design. Genomic DNA is isolated
from a test sample (e.g., from a patient) and a reference (e.g., from a pool of apparently
normal controls). The DNA is fragmented then labeled with differently colored fluor-
escent dyes such as Cy3 and Cy5. In a parallel dye swap experiment, the test and refer-
ence samples are labeled with opposite dyes. The samples are coincubated with a
microscope slide containing up to tens of thousands of bacterial artificial chromosome
(BAC) clones, each of which typically spans 200,000 base pairs and has known chromo-
somal position. Following hybridization, washing, and image analysis, most BACs on the
array have a comparable amount of Cy3 and Cy5 dye (indicated as gray spots on the two
slides). A deletion in the test sample is associated with relatively more Cy5 dye in the
reference; see the two red spots in the slide at the left. In the dye swap, these two
spots appear black, providing an independent validation. An amplification in the test
sample results in relatively more Cy3 dye (see the black spot in the slide at left, which
appears red in the dye swap experiment to the right). (b) Example of an aCGH
image from a scanner. The output includes a spreadsheet that includes quantities of
the signal intensities in the Cy3 and Cy5 channels for each BAC clone. (c) Example
of the output for chromosome 2. The x axis corresponds to chromosome 2 (from the p
terminus to the q terminus). The y axis corresponds to the Cy3/Cy5 ratio from the initial
experiment and from the dye swap. Thus there are two sets of data points that are super-
imposed. The test sample is from a patient who has a deletion of about 23 megabases
(from 190.5 to 213.8 Mb in chromosome 2q32.2-q34). This deletion is evident as a
reduced signal intensity ratio across a group of adjacent BACs (arrow 1). As expected
the dye swap experiment shows a mirror image deviation (arrow 2).
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FIGURE 16.27. Example of two
single nucleotide polymorphisms
(SNPs) from the database of
SNPs at NCBI (dbSNP). A portion
of the Entrez SNP results for
human beta globin is shown. For
the two SNPs, the nucleotide C or
G occurs in the population (indi-
cated [C/G]). The flanking
sequence is also shown, as well as
the RefSNP accession number
(e.g., rs17656961) and a variety
of links.

del(3) 3

del(3) 3

Possible genotype calls
in a typical euploid locus
AA (homozygous)
BB (homozygous)
AB (heterozygous)
NC (no call)

Possible genotype calls
in a hemizygous 
deletion region
A (interpreted as AA)
B (interpreted as BB)
NC (no call)

(a)

(b)

FIGURE 16.28. SNP microarray experiments provide information about chromosomal copy
number (based on the intensity of hybridization) and genotype (based on alleles detected at
each SNP position). (a) Karyotype of chromosome 3 from a patient with a hemizygous deletion
(i.e., loss of a portion of one of the two chromosomal copies). The deletion region is indicated with
an arrow. (b) Ideogram of chromosome 3. Throughout most of the chromosome there are four
possible genotype calls: AA or BB (homozygous calls), AB (heterozygous), or NC (no call). In
the deletion region there are three possible calls: an underlying state of A (interpreted by current
software packages as a biallelic call, AA), B (interpreted as BB) or no call. There can be no AB
calls (unless there is a technical failure). Some software packages detect stretches of homozygous
SNPs, which in the presence of a reduced copy number corresponds to a hemizygous deletion.
Note that the human male X chromosome is by its nature hemizygous, and no AB calls are
expected other than those that represent genotyping errors (or, in some instances, pseudoauto-
somal regions).

TECHNIQUES TO MEASURE CHROMOSOMAL CHANGE 685



(where one of two chromosomal copies are deleted), or on the male X chromosome

which is by its nature hemizygous, the genotypes are A or B but should never be het-

erozygous (Fig. 16.28).

The HapMap project was created to identify SNPs in the human genome. It

resulted in the determination of over three million SNPs (International HapMap

Consortium, 2005, 2007). This resource, available through a HapMap database,

initially centered on genotyping of four diverse populations (from northern

Europe, Africa, Japan, and China). The SNP data are useful to describe variation

between and within populations, including the structure of shared alleles (haplo-

types), to characterize recombination rates, and to characterize the evolution of

both nonsynonymous and synonymous SNPs in coding regions.

There are many applications of SNPs, including mapping polymorphisms in

genes and genomes, selecting markers to identify individuals having alleles of interest

in large segregating populations, and finding associations between genomic regions

and segregating traits (Chapter 20). A basic application is to measure chromosomal

changes in genomic DNA samples. Several technologies exist to measure vast num-

bers of SNPs on microarrays, such as a single-base extension strategy from Illumina
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FIGURE 16.29. SNP profile from chromosome 7 in a patient with a hemizygous deletion. The
upper panel shows the B allele frequency from thousands of SNPs across the chromosome, includ-
ing BB calls (B allele frequency near 1.0; arrow 1), heterozygous AB calls (arrow 2), or homo-
zygous AA calls (arrow 3). In some heterochromatic regions such as the centromere (arrow 4),
there are no SNPs and thus the plot lacks data points (arrow 4). In the region of a hemizygous
deletion on 7p (arrow 5), there are essentially no AB calls. The lower panel shows the intensity
values corresponding to chromosomal copy number. The y axis is Log2(Rsub/Rref), correspond-
ing to the log2 ratio of the intensity value for the subject (i.e., this patient sample) to the intensity
values for a reference set, such as mean intensity values for a large set of apparently normal
individuals. Log2(Rsub/Rref) tends to have a value near 0.0 (thus the subject and reference
data have a one-to-one correspondence), but in the deletion region the log2 value is 21.0 (see
arrow 6). In regions of homozygous deletion (i.e., two copies deleted; not shown), the log2

value tends to be close to 25.0. In cases of trisomy (not shown), the extra copy causes the B
allele frequency to split into four tracks (corresponding to AAA, AAB, ABB, and BBB genotypes)
and the intensity values are elevated. Data are from an Illumina microarray with
550,000 SNPs.

The HapMap website is Q http://
www.hapmap.org.
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and an oligonucleotide-based hybridization strategy from Affymetrix. An example of

an SNP data set using the Illumina platform is shown in Fig. 16.29. The experiment

provides information on chromosomal copy number (based on hybridization inten-

sity measurements) and genotype (based on AA, AB, or BB calls). There is a charac-

teristic profile for hemizygous deletions (as shown in Fig. 16.29).

SNParrays can provide information on a variety of chromosomal changes beyond

those detectable by aCGH or conventional cytogenetics. An example is uniparental

disomy in which both homologous chromosomes are inherited from one parent. The

term disomy refers to two copies, as opposed to zero (nullsomy), one (monosomy),

three (trisomy), or four (tetrasomy). There are two copies of each chromosome, as

usual, but the two copies of a single chromosome are derived from just one parent

(uniparental disomy). Since each parent has two copies of a given autosome, the

result may be uniparental heterodisomy (in which the two copies derived from the

mother or the father are different) or uniparental isodisomy (in which the two

copies are identical). This is also associated with disease in humans (Kotzot,

2001). SNP arrays can show regions of homozygosity without copy number

change. In the absence of copy number change, the cause can be uniparental

disomy (Ting et al., 2007).

PERSPECTIVE

One of the broadest goals of biology is to understand the nature of each species of life:

What are the mechanisms of development, metabolism, homeostasis, reproduction,

and behavior? Sequencing of a genome does not answer these questions directly.

Instead, we must first try to annotate the genome sequence in order to estimate its

contents, and then we try to interpret the function of these parts in a variety of phys-

iological processes.

The genome sequences of representative species from all major eukaryotic div-

isions are now becoming available. This will have dramatic implications for all aspects

of eukaryotic biology. For studies of evolution, we will further understand mutation

and selection, the forces that shape genome evolution.

As complete genomes are sequenced, we are becoming aware of the nature of

noncoding and coding DNA. Major portions of the eukaryotic genomic landscape

are occupied by repetitive DNA, including transposable elements. The number of

protein-coding genes varies from about 6000 in fungi to tens of thousands in

plants and mammals. Many of these protein-coding genes are paralogous within

each species, such that the “core proteome” size is likely to be on the order of

10,000 genes for many eukaryotes. New proteins are invented in evolution through

expansions of gene families or through the use of novel combinations of DNA encod-

ing protein domains.

PITFALLS

A tremendous need in genomics research is the continued development of algorithms

to find protein-coding genes, noncoding RNAs, repetitive sequences, duplicated

blocks of sequence within genomes, and conserved syntenic regions shared between

genomes. We may then characterize gene function in different developmental stages,

body regions, and physiological states. Through these approaches we may generate

Jason Ting in my laboratory

developed SNPtrio, a program

that identifies uniparental disomy

using SNP data.

PITFALLS 687



and test hypotheses about the function, evolution, and biological adaptations of

eukaryotes. Thus, we may extract meaning from the genomic data.

We are now in the earliest years of the field of genomics. Many new lessons are

emerging:

† Draft versions of genome sequences are extremely useful resources, but gene

annotation often improves dramatically as a sequence becomes finished.

† It is extraordinarily difficult to predict the presence of protein-coding genes in

genomic DNA. This is especially true in the absence of complementary exper-

imental data on gene expression, such as expressed sequence tag information.

† We know little about the nature of noncoding RNA molecules.

† Large portions of eukaryotic genomes consist of repetitive DNA elements.

Segmental duplications offer a creative evolutionary opportunity to shuffle

DNA within and between chromosomes.

† Comparative genomics is extraordinarily useful in defining the features of each

eukaryotic genome.

Most publications describing genomes (both eukaryotic and prokaryotic) define

orthologs as descended by speciation from a single gene in a common ancestor.

Typically, the predicted proteins from an organism are searched by BLAST against

the complete proteome of other species using an E value cutoff such as 1024.

However, two orthologous proteins could have species-specific functions.

WEB RESOURCES

DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

We have presented key resources for many eukaryotic organisms

and their genome-sequencing websites. An excellent starting

point is the Ensembl website (Q http://www.ensembl.org/),

which currently includes gateways for the mouse, rat, zebrafish,

fugu, mosquito, and other genomes.

[16-1] If there were no repetitive DNA of any kind, how would the

genomes of various eukaryotes (human, mouse, a plant, a

parasite) compare in terms of size, gene content, gene

order, nucleotide composition, or other features?

[16-2] If someone gave you 1 Mb of genomic DNA sequence from

a eukaryote, how could you identify the species? (Assume

you cannot use BLAST to directly identify the species.)

What features distinguish the genomic DNA sequence of

a protozoan parasite from an insect or a fish?

[16-1]

(a) Retrieve a typical Arabadopsis thaliana bacterial artificial

chromosome (BAC) from Entrez (e.g., choose BAC

T18A20, GenBank accession AC009324).

† Note the approximate size (in kilobases). Is this a large or a

small BAC?

† Note the approximate number of protein products in it.

Bacteria have about one gene per kilobase. How many

genes are there per kilobase in this eukaryotic DNA?

(b) Go to the ORF Finder at NCBI:

† From the main page, look at the left sidebar. Choose “Tools

for data mining”; then you will see the ORF Finder.
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SELF-TEST QUIZ

[16-1] The C value paradox is that

(a) The nucleotide C is underrepresented in some genomes.

(b) The genome size of various eukaryotes correlates poorly

with the number of protein-coding genes of the organism.

(c) The genome size of various eukaryotes correlates poorly

with the biological complexity of the organism.

(d) The genome size of various eukaryotes correlates poorly

with the evolutionary age of the organism.

[16-2] Hundreds or thousands of sequence repeats, each consisting

of a unit of about four to eight nucleotides, are commonly

found where?

(a) In interspersed repeats

(b) In processed pseudogenes

(c) In telomeres

(d) In segmentally duplicated regions

[16-3] You are sequencing the genome of a newlydescribed organism (a

slime mold). What is likely to happen if you use RepeatMasker

to assess its repetitive DNA content? You set the default setting

of RepeatMasker to the settings for human DNA.

(a) RepeatMasker should successfully identify essentially all

of the repetitive DNA. Various repetitive DNA elements

are similar enough between organisms to allow this soft-

ware to work on your slime mold DNA.

(b) RepeatMasker should identify most of the repetitive

DNA. However, because some types of repeats are species

specific, it is likely that there will be many false positive

and false negative results.

(c) RepeatMasker would fail to identify most of the repetitive

DNA. Most types of repeats are highly species specific.

It is necessary for you to train the RepeatMasker

algorithm on your slime mold DNA in order for the

program to work.

(d) It is not possible to predict, because repetitive DNA may

or may not be variable between organisms.

[16-4] What is the definition of a gene? Use a recent definition intro-

duced as part of the ENCODE project.

(a) A gene is a unit of hereditary information localized to

a particular chromosome position and encoding one

protein.

(b) A gene is a unit of hereditary information localized to a

particular chromosome position and encoding one or

more protein products.

(c) A gene is a union of genomic sequences encoding

a coherent set of potentially overlapping functional

products.

(d) A gene is a unit of hereditary information encoding one or

more functional products.

† Alternatively, from the main page, look at the left sidebar at

the top. Choose “Site map” and you will also find a link to

the ORF Finder.

† Paste in the accession number for your BAC. Click

OrfFind.

(c) At the ORF Finder at NCBI, Click on the largest ORF.

† How many amino acids long is it?

† What is its molecular weight (in kilodaltons)?

† Is this protein small, average, or large?

† From which strand of the BAC is this putative gene tran-

scribed? Overall, are there more ORFs on the top or

bottom strand or is it about the same?

(d) Using the ORF Finder at NCBI, BLAST search the ORF of

(c) using the default parameters that are given to you.

† Note that the results page is NOTupdated automatically so

you may need to reload your page.

† This BLAST result reveals many matches to Arabidopsis

proteins. However, note that if you do a standard blastp

search using this ORF as a query, you will find matches

to many dozens of species. Also you will see a match to

the Conserved Domain Database. Thus, the BLAST tool

within OrfFinder is not as thorough as a regular BLAST

search.

[16-2] Human centromeres typically contain several thousand base

pairs of a 171 bp repeat called a-satellite (accession X07685).

First perform a blastn search against the nonredundant data-

base. What kinds of database matches do you observe?

Second, restrict your BLAST search to nonhumans. (In the

options section that allows you to limit by Entrez query, try

typing “satellite NOT human[organism].”) Are there matches

in primates, rodents, or plants? Why might centromeric repeats

have this phylogenetic distribution; would you expect each

species to have its own, unique centromeric signature?

[16-3] Identify ultraconserved elements that share 100% identity

between the chicken and human genomes. While there are sev-

eral approaches, try the following. (1) Go the the UCSC

Genome Bioinformatics site (Q http://genome.ucsc.edu).

Select the Table Browser. Set the clade to vertebrate clade,

the genome to Chicken, the group to “Comparative

Genomics,” and the track to “Most Conserved.” Under

“region” select whole genome. (2) If you get the summary stat-

istics at this point, there are over 950,000 items, which include a

range of conservation levels. The output format is “all fields

from selected table.” Click the filter button, and select scores

that are �900 (on a scale from 1 to 1000). There are now

only six items (on chicken chromosomes 1, 2, 5, and 7).

These are listed in web document 16.4 at Q http://www.

bioinfbook.org/chapter16. (3) Change the output format to

“hyperlinks to Genome Browser.” You can now access the

Genome Browser showing these ultraconserved elements,

and by clicking the annotation tracks you can view multiple

sequence alignments of the highly conserved DNA.
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[16-5] It is extremely difficult for intrinsic (ab initio) gene-finding

algorithms to predict protein-coding genes in eukaryotic

genomic DNA . What is the main problem?

(a) Exon/intron borders are hard to predict.

(b) Introns may be many kilobases in length.

(c) The GC content of coding regions is not always differen-

tiated from the GC content of noncoding regions.

(d) All of the above.

[16-6] What are some of the properties of ultraconserved elements?

(a) They have variable lengths (from 50 to .1000 base pairs)

and are nearly perfectly conserved.

(b) They have variable lengths (from 50 to .1000 base pairs),

are nearly perfectly conserved, and typically correspond to

protein-coding regions.

(c) They have lengths �200 base pairs and are perfectly or

nearly perfectly conserved between relatively closely

related species such as rats and mice.

(d) They have lengths �200 base pairs and are perfectly or

nearly perfectly conserved between relatively distantly

related species such as humans and rodents.

[16-7] The genomes of two distinct eukaryotic species can some-

times merge to create an entirely new species.

(a) True

(b) False

[16-8] According to Ohno’s 2R hypothesis, whole genome dupli-

cation (polyploidy) offers several advantages. Which of the

following is NOTan advantage?

(a) Hybrids may propagate more successfully than their parents.

(b) Genes may become redundant, allowing novel functions

to emerge.

(c) Self-fertilization may become possible.

(d) Self-fertilizing organisms may become able to interbreed.

[16-9] Several mechanisms have been proposed by which new gene

families are formed. According to the birth-and-death evol-

ution model,

(a) New genes arise by gene duplication followed by either

functional diversification or inactivation.

(b) Genes acquire novel functions as a gradual process that

follows gene duplication.

(c) Members of a gene family evolve in a concerted manner.

(d) New genes arise and acquire new functions in a coordi-

nated manner dependent on the death of other duplicated

genes.

[16-10] Single nucleotide polymorphism (SNP) arrays can reliably

detect all of the following phenomena except which one?

(a) Deletions

(b) Duplications

(c) Inversions

(d) Uniparental isodisomy
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Waldeyer, H., Über Karyokinese und ihre Beziehungen zu den

Befruchtungsvorgängen. Archiv für mikroskopische Anatomie

und Entwicklungsmechanik 32, 1–122 (1888).

Watt, W. B., and Dean, A. M. Molecular-functional studies of

adaptive genetic variation in prokaryotes and eukaryotes.

Annu. Rev. Genet. 34, 593–622 (2000).

Willenbrock, H. and Fridlyand, J. A comparison study: Applying

segmentation to array CGH data for downstream analyses.

Bioinformatics 21, 4084–4091 (2005).

Yasuhara, J. C., and Wakimoto, B. T. Oxymoron no more: The

expanding world of heterochromatic genes. Trends Genet. 22,

330–338 (2006).

Yu, J., et al. A draft sequence of the rice genome (Oryza sativa L.

ssp. indica). Science 296, 79–92 (2002).

Zdobnov, E. M., et al. Comparative genome and proteome analysis

of Anopheles gambiae and Drosophila melanogaster. Science 298,

149–159 (2002).

Zheng, D., Frankish, A., Baertsch, R., Kapranov, P., Reymond, A.,

Choo, S. W., Lu, Y., Denoeud, F., Antonarakis, S. E., Snyder,

M., Ruan, Y., Wei, C. L., Gingeras, T. R., Guigó, R., Harrow,
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Some 200 fungal species are known to be pathogenic for humans, distressing millions of people. From the times of Greek and Roman
antiquity to the middle of the nineteenth century only two fungal diseases were known: ringworm (tinea) and thrush (oral candidiasis)
(Ainsworth, 1993). Ringworm is caused by fungi of the genera Microsporum, Trichophyton, and Epidermophyton. Candidiasis (includ-
ing thrush) is caused by Candida albicans and other Candida species. This image from Kuchenmeister (1857, plate IV) shows the thrush
fungus, at that time called Oidium albicans (Figs. 3 to 8).



17

Eukaryotic Genomes: Fungi

INTRODUCTION

According to the classification system of Whittaker (1969), there are five kingdoms of

life: monera (prokaryotes), protoctists, animals, fungi, and plants. We have examined

the prokaryotes in Chapter 15, and introduced the eukaryotic chromosome in

Chapter 16. In this chapter we begin our exploration of eukaryotes by studying

one of the kingdoms, Fungi. This diverse and interesting group of organisms last

shared a common ancestor with plants and animals 1.5 billion years ago (BYA)

(Wang et al., 1999, discussed in Chapter 18). We may think of fungi as organisms

such as mushrooms that might be studied by botanists. Surprisingly, fungi are far

more closely related to animals than to plants. In Chapter 18 we will extend our

study to the entire kingdom of eukaryotes, including animals, plants, and a variety

of protozoa. We will then discuss humans (Chapter 19).

The first eukaryotic genome to be fully sequenced was the 13 million base pair

(Mb) genome of a fungus, the budding yeast Saccharomyces cerevisiae. Its genome

is very small compared with that of humans (3 billion base pairs, or gigabase pairs

[Gb]), and its size is only severalfold larger than a typical bacterial genome. This

yeast has served as a model eukaryotic organism for genetics studies because it

grows rapidly, it can be genetically modified easily, and many of its cellular functions

are conserved with metazoans and other eukaryotes. More recently, it has become a

model organism for functional genomics studies (Chapter 12). Every one of its

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

Mycology (from the Greek word

mukes, “fungus”) is the study of

fungi. Mycosis is a disease or ail-

ment caused by fungi. The suffix

–mycota refers to fungi: the king-

dom Fungi is also called the king-

dom Eumycota (“true fungi”).
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approximately 6000 genes has been characterized, deleted, overexpressed, and

characterized functionally using a variety of assays.

Now, as whole genome sequencing has become routine, the sequencing of yeasts

and other fungi has progressed at an accelerated pace. While the fungi are eukaryotes,

and share many properties in common with the metazoans (animals), most have rela-

tively small genome sizes. Through comparative analysis we are gaining new insights

into many basic properties of genome structure and evolution, including whole

genome duplications and the fate of duplicated genes (Dujon, 2006).

This chapter begins with an overview of the fungi. We will then describe bio-

informatic approaches to analyzing the S. cerevisiae genome. Finally, we will describe

the sequencing of other fungal genomes and the early lessons of comparative

genomics in fungi.

Description and Classification of Fungi
Fungi are eukaryotic organisms that can be filamentous (as in the case of molds) or

unicellular (as in the case of yeasts such as S. cerevisiae). The main criteria for classi-

fying fungi are based on morphology (e.g., ultrastructure), biochemistry (e.g., growth

properties or cell wall composition), and molecular sequence data (DNA, RNA, and

protein sequences). Most fungi are aerobic, and all are heterotrophs that absorb their

food. Fungi are typically very hardy, forming spores composed of chitin that are

immobile throughout their lifespan. They have a major role in the ecosystem in

degrading organic waste material. Fungi are important causative agents of disease

in humans, other animals, and plants. Fungi also have key roles in fermentation;

the fungal mold Rhizopus nigricans is used in the manufacture of steroids such as

cortisone, and Penicillium chrysogenum produces the antibiotic penicillin.

The relationships of many species throughout the tree of life have been described

in phylogenetic analyses based on small-subunit ribosomal RNA (Fig. 13.1). In a

complementary approach, W. F. Doolittle and colleagues defined a phylogeny of

the eukaryotes based on the concatenated amino acid sequences from four proteins:

elongation factor-1a, actin, a-tubulin, and b-tubulin (Baldauf et al., 2000). A por-

tion of the tree shows that fungi form a monophyletic clade that is a sister group to

Fungi

Microsporidia

Metazoa

KingdomPhylum

Ascomycota

Basidiomycota
Zygomycota

FIGURE 17.1. Phylogenetic analysis of the fungi reveals that they form a sister group with the
metazoa (animals). This tree is a detailed view of a broad analysis of the eukaryotes (see Fig.
18.1) by Baldauf et al. (2000). The tree was generated using a multiple sequence alignment
of four concatenated protein sequences: elongation factor 1a (EF-1a) (abbreviated E in tree),
actin (C), a-tubulin (A), and b-tubulin (B). Microsporidia were formerly classified as deep-
branching eukaryotes but are now grouped with fungi. The fungal phylum Chytridiomycota is
not shown in this tree.

Morphologically, fungi are

characterized by hyphae (fila-

ments) that grow and may branch.

The Museum of Paleontology at

the University of California,

Berkeley, offers an introduction to

fungi, including photographs of

many species (Q http://www.

ucmp.berkeley.edu/fungi/fungi.

html). The American Museum of

Natural History (New York) also

provides an overview of fungi

(Q http://ology.amnh.org/
biodiversity/treeoflife/pages/
fungi.html).
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animals (metazoa) (Fig. 17.1). This close relationship between fungi and animals has

been considered somewhat surprising, given the apparently simple, unicellular

nature of many fungi. However, fungi and animals share many similarities.

Chitin is the main component of the fungal cell wall, and it is also a constituent of

the arthropod exoskeleton. (Plant cell walls use cellulose.) Many of the fundamental

processes of yeast, such as cell cycle control, DNA repair, and intracellular vesicle

trafficking, are closely conserved with mammalian cells.

According to the phylogenetic classification of Hibbett et al. (2007), the king-

dom Fungi has seven phyla (Box 17.1). Of these the subkingdom Dikarya includes

the Ascomycota (including Saccharomyces cerevisieae) and Basidiomycota. The

Hibbett et al. classification was consistent with a sampling of nearly 200 fungal

species of every major clade of Fungi by James et al. (2006). Phylogenetic analysis

relied on a set of six genes (Box 17.1). Figure 17.2 presents a phylogenetic tree

based on James et al.

Box 17.1
Fungal Taxonomy

Approximately 70,000 fungal species have been described, although the total

number of species is estimated to be at least 1.5 million. These fungi were

classified in four phyla: Ascomycota, Basidiomycota, Chytridiomycota, and

Zygomycota (Guarro et al., 1999). (1) Ascomycota includes yeasts, blue-green

molds, truffles, and lichens; about 30,000 species are known, including

the genera Aspergillus, Candida, Cryptosporium, Histoplasma, Neurospora, and

Saccharomyces. (2) Basidiomycota includes rusts, smuts, and mushrooms;

they are distinguished by club-shaped reproductive structures called basidia.

(3) The phylum Chytridiomycota, sometimes classified in the kingdom

Protoctista (Margulis and Schwartz, 1998), includes the genera Allomyces and

Polyphagus. (4) Finally, fungi of the phylum Zygomycota lack septa (cross

walls), typically feed on decaying vegetation, and include the genera Glomus,

Mucor, and Rhizopus.

The phylum Ascomycota is of particular interest because it includes

the yeasts. The phylum is further divided into four classes:

Hemiascomycetae (e.g., S. cerevisiae), Euascomycetae (e.g., Neurospora crassa),

Loculoascomycetae (e.g., Elsinoe proteae), and Laboulbeniomycetae (parasites

of insects).

Recently Hibbett et al. (2007), in a paper with 67 authors, proposed a

reclassification of the Fungi into one kingdom (Fungi), one subkingdom

(Dikarya, encompassing the clade containing Ascomycota and Basidiomycota),

seven phyla, 35 classes, and 129 orders. The seven phyla are the

Chytridiomycota, Neocallimastigomycota, Blastocladiiomycota, Microsporidia,

Glomeromycota, Ascomycota, and Basidiomycota.

The Dikarya encompass about 98% of all known fungal species. The Hibbett

et al. classification is consistent with the phylogeny of James et al. (2006), who

analyzed sequence data from six genes in 199 taxa: 18S rRNA, 28S rRNA,

5.8S rRNA, elongation factor 1-a, and the two RNA polymerase II subunits

RPB1 and RPB2.

For web resources that address fungal taxonomy, visit the Index

Fungorum (Q http://www.indexfungorum.org/), MycoBank (Q http://www.

mycobank.org/), and the Global Biodiversity Information Facility (Q http://
www.gbif.org).

See Box 17.1 for a discussion of

fungal taxonomy.

Fungi are grown on food products

such as Camembert and Brie

cheeses to provide flavor. Fungi

are used to produce soy sauce and

many other foods and medicines.
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INTRODUCTION TO BUDDING YEAST

SACCHAROMYCES CEREVISIAE

The budding yeast S. cerevisiae was the first species domesticated by humans at least

10,000 years ago. It is commonly called brewer’s yeast or baker’s yeast, and it fer-

ments glucose to ethanol and carbon dioxide. For more than 100 years, researchers

have exploited this organism for biochemical, genetic, molecular, and cell biological

studies. Because many of its characteristics are conserved also in human cells, yeast

has emerged as a powerful instrument for basic research.

FIGURE 17.2. Fungal phylogeny.
Nearly 200 fungal species were
sampled, and six molecules were
analyzed (see Box 17.1). The
majority of known fungal species
are from the phyla Ascomycota
and Basidiomycota of the subking-
dom Dikarya. Adapted from
James et al. (2006). Used with
permission.

  Neurospora crassa
 Sordaria fimicola
     Podospora anserina
  Chaetomium globosum
          Magnaporthe grisea
  Diaporthe eres
     Gnomonia gnomon
    Xylaria hypoxylon
   Xylaria acuta
     Fusarium graminearum
 Fusarium aff. solani
       Hydropisphaera erubescens
Hypocrea citrina
  Microascus trigonosporus
     Lindra thalassiae
             Lulworthia grandispora

           Leotia lubrica
          Coccomyces dentatus
  Potebniamyces pyri
      Chlorociboria aeruginosa
      Mollisia cinerea
          Monilinia fructicola
          Botryotinia fuckeliana
   Dermea acerina
        Cudoniella clavus
     Lachnum virgineum
Geoglossum nigritum
Trichoglossum hirsutum
Pleopsidium chlorophanum
 Acarospora schleicheri
 Acarospora laqueata
                                  Echinoplaca strigulacea
                  Diploschistes ocellatus
           Acarosporina microspora
             Stictis radiata
        Orceolina kerguelensis
        Trapelia placodioides
       Pertusaria dactylina
            Dibaeis baeomyces
     Umbilicaria mammulata
   Hypocenomyce scalaris
          Peltigera degenii
       Mycoblastus sanguinarius
         Lecanora hybocarpa
       Canoparmelia caroliniana
        Cladonia caroliniana
             Bacidia schweinitzii
              Physcia aipolia

Aspergillus fumigatus
     Aspergillus nidulans
 Monascus purpureus
Histoplasma capsulatum
        Coccidioides immitis
 Spiromastix warcupii
              Capronia pilosella
              Exophiala dermatitidis
              Ramichloridium anceps
            Exophiala pisciphila
         Agonimia sp.
           Dermatocarpon miniatum
            Endocarpon pallidulum
          Staurothele frustulenta
             Pyrgillus javanicus
               Pyrenula pseudobufonia

Peltula umbilicata
 Peltula auriculata
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   Trematosphaeria heterospora
        Westerdykella cylindrica
       Pyrenophora phaeocomes
        Cochliobolus heterostrophus
        Pleospora herbarum
        Trypethelium sp.
Dothidea sambuci
Dothidea insculpta
    Capnodium coffeae

   Dendrographa minor
Roccella fuciformis
 Simonyella variegata

      Cheilymenia stercorea
        Scutellinia scutellata
     Aleuria aurantia
     Pyronema domesticum
       Sarcoscypha coccinea
Caloscypha fulgens
    Gyromitra californica
     Disciotis sp.
      Morchella aff. esculenta
     Helvella compressa
    Ascobolus crenulatus
      Peziza vesiculosa
       Peziza proteana

Orbilia vinosa
 Orbilia auricolor

          Saccharomyces cerevisiae
           Saccharomyces castellii
            Candida glabrata
         Kluyveromyces waltii
           Ashbya gossypii
          Kluyveromyces lactis
 Candida albicans
  Candida tropicalis
Candida guilliermondii
Debaryomyces hansenii
  Candida lusitaniae
    Yarrowia lipolytica

   Schizosaccharomyces pombe
      Taphrina wiesneri
       Protomyces inouyei
Pneumocystis carinii
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      Physoderma maydis
                                           Coelomomyces stegomyiae
                  Allomyces arbusculus
                     Rhizoclosmatium sp.
       Polychytrium aggregatum
               Cladochytrium replicatum
          Batrachochytrium dendrobatidis
           Rhizophydium macroporosum
                  Rhizophlyctis rosea
        Spizellomyces punctatus
                                      Synchytrium macrosporum
             Monoblepharella sp.
               Hyaloraphidium curvatum
Neocallimastic sp.
                                                   Encephalitozoon cuniculi
                                          Antonospora locustae
    Rozella allomycis

         Coprinopsis cinerea
     Lycoperdon pyriforme 
     Coprinus comatus
                Clavaria zollingeri
        Amanita brunnescens
     Pluteus romellii
     Cortinarius iodes
      Pleurotus ostreatus
         Armillaria mellea
          Flammulina velutipes
      Marasmius alliaceus
      Ampulloclitocybe clavipes
    Collybia tuberosa
        Henningsomyces candidus
           Hygrocybe aff. conica
            Calostoma cinnabarinum
       Boletellus projectellus
     Hygrophoropsis aurantiaca
      Suillus pictus
    Fibulorhizoctonia sp.
       Echinodontium tinctorium
        Lactarius deceptivus
    Bondarzewia montana
  Stereum hirsutum
            Coltricia perennis
         Fomitiporia mediterranea
    Phlebia radiata
   Climacodon septentrionalis
   Phanerochaete chrysosporium
   Grifola sordulenta
  Grifola frondosa
   Fomitopsis pinicola
  Hyphoderma praetermissum
 Cotylidia sp.
    Gautieria otthii
   Ramaria rubella
  Hydnum albomagnum
       Calocera cornea
      Dacryopinax spathularia
                   Cryptococcus neoformans

                                                          Caenorhabditis elegans
                                            Ciona intestinalis
                                     Homo sapiens
                                                 Drosophila melanogaster
                            Monosiga brevicollis
                                       Dictyostelium discoideum
                                                   Cryptosporidium parvum
                                                  Toxoplasma gondii
                    Phytophthora sojae
                                         Thalassiosira pseudonana
                               Cyanidioschyzon merolae
    Arabidopsis thaliana
 Populus trichocarpa
 Oryza sativa
                   Chlamydomonas reinhardtii

                                  Ustilago maydis
                                   Cintractia sorghi vulgaris
                  Tilletiopsis sp.
                     Tilletiaria anomala
                                   Agaricostilbum hyphaenes
                     Colacogloea peniophorae
                    Rhodotorula hordea
                            Endocronartium harknessii
                               Puccinia graminis
                     Platygloea disciformis
 Scutellospora heterogama
  Glomus mosseae
    Glomus intraradices
 Geosiphon pyriformis
 Paraglomus occultum

     Mortierella verticillata
  Umbelopsis ramanniana
                 Phycomyces blakesleeanus
              Rhizopus oryzae
Endogone pisiformis
                                                    Dimargaris bacillispora
                                             Coemansia reversa
                                   Orphella aff. haysii
                              Smittium culisetae
                      Spiromyces aspiralis
                  Rhopalomyces elegans
                    Piptocephalis corymbifera
    Basidiobolus ranarum
  Olpidium brassicae
                                      Entomophthora muscae
                                Conidiobolus coronatus

Fungi

Dikarya

From the time of Anton van

Leeuwenhoek (1632–1723), yeast

was thought to be a chemical

substance that was not living.

Theodor Schwann (1810–1882)

and Baron Charles
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Sequencing the Yeast Genome
Currently, relatively small genomes are sequenced using the whole-genome shotgun

method and Sanger sequencing or relatively newer technologies such as pyrosequen-

cing (Chapter 13). In contrast, the yeast genome was sequenced in the early to mid-

1990s by chromosome. This was accomplished by a worldwide consortium of over

600 researchers (Mewes et al., 1997). The work proceeded in several phases. First,

a crude physical map of its 16 chromosomes was constructed using rare-cutter

restriction enzymes. Second, a library of �10 kilobase genomic DNA inserts was

constructed in phage lambda, and the inserts were fingerprinted using restriction

enzymes. Computer analysis identified clones with overlapping inserts, which were

then assembled into 16 large contigs. A set of clones covering the genome with

minimal overlap was selected and parsed out to individual laboratories for

sequencing followed by assembly and annotation using a standardized nomenclature.

(The final error rate was less than 3 per 10,000 bases, or 0.03% [Mewes et al., 1997].)

Today, this approach would be considered arduous, inefficient, and expensive.

However, the collaboration worked extremely well.

Features of the Budding Yeast Genome
The S. cerevisiae genome consists of about 13 Mb of DNA in 16 chromosomes. With

the complete sequencing of the genome, the physical map (determined directly from

DNA sequencing) was unified with the genetic map (determined by tetrad analysis to

derive genetic distances between genes) (Cherry et al., 1997). The final sequence was

assembled from 300,000 independent sequence reads (Mewes et al., 1997). Some of

the features of the S. cerevisiae sequence are listed in Table 17.1, based on the initial

annotation of the genome (Goffeau et al., 1996) as well as recent updates. In

the decade since the initial sequence analysis, the annotation was regularly updated

as models of genes were corrected and additional information (e.g., based on com-

parative analyses with other fungal genomes) allowed a more accurate assessment

of genome features.

A notable feature of the yeast genome is its high gene density (about one gene

every 2 kb). While bacteria have a density of about one gene per kilobase, most

higher eukaryotes have a much sparser density of genes. Also, only 4% of the genes

are interrupted by introns. In contrast, in the fission yeast S. pombe, 40% of the

genes have introns (see below). The lack of introns makes S. cerevisiae an attractive

model organism for the identification of genes from genomic DNA. The most

common protein families and protein domains in S. cerevisiae are listed in Tables

17.2 and 17.3. The EBI offers a variety of proteomics analyses of this and dozens of

other organisms, such as an analysis of protein composition and lengths (Fig. 17.3).

At the time the genomic sequence was initially annotated, there were 6275

predicted open reading frames (ORFs). An ORF was defined as �100 codons

(300 nucleotides) in length, thus specifying a protein of at least �11,500 daltons.

Of these, 390 were listed as questionable (Table 17.1) because they were short and

unlikely to encode proteins (Dujon et al., 1994). Questionable ORFs display an unli-

kely preference for codon usage based on a “codon adaptation index” of ,0.11.

How many protein-coding genes are present in S. cerevisiae? Is it possible that short

ORFs encode authentic proteins? These questions are fundamental to our understand-

ing of any eukaryotic genome. In annotating the yeast genome, there are false positives

(identified ORFs that do not encode an authentic gene) and false negatives (true genes

Cagniard-Latour (1777–1859)

independently discovered in 1836

to 1837 that yeast is composed of

living cells. Schwann studied

fermenting yeast and called it

Zuckerpilz (sugar fungus), from

which the term Saccharomyces is

derived (Bulloch, 1938).

Saccharomyces cerevisiae is often

called a “budding yeast” to dis-

tinguish it from a “fission yeast,”

Schizosaccharomyces pombe, the

second fungal genome to be

sequenced (see below).

Saccharomyces cerevisiae is a single-

celled organism that “buds” off in

the process of replication. The

sequence of S. cerevisiae was first

released April 24, 1996.

By definition, all ORFs begin with

a start codon (typically AUG

encoding methionine) and end

with a stop codon (usually UAG,

UAA, or UGA).
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TABLE 17-2 Fifteen Most Common Protein Families for S. cerevisiae

InterPro ID
No. of Proteins

Matched Name

IPR007114 66 Major facilitator superfamily

IPR011701 45 Major facilitator superfamily MFS-1

IPR005829 39 Sugar transporter superfamily

IPR001993 35 Mitochondrial substrate carrier

IPR005828 33 General substrate transporter

IPR001806 33 Ras GTPase

IPR003663 30 Sugar transporter

IPR000992 27 Stress-induced protein SRP1/TIP1

IPR013753 24 Ras

IPR002293 24 Amino acid/polyamine transporter I

IPR002067 24 Mitochondrial carrier protein

IPR001142 22 Yeast membrane protein DUP

IPR004840 21 Amino acid permease

IPR002085 21 Alcohol dehydrogenase superfamily, zinc-containing

IPR015609 19 Molecular chaperone, heat shock protein, Hsp40, DnaJ

Source: From Integr8 at the European Bioinformatics Institute (Q http://www.ebi.ac.uk/proteome/),
December 2007.

TABLE 17-1 Features of the S. cerevisiae Genome
Feature Amount

Sequenced length� 12,156,679 base pairs

Length of repeats 1321 kb

Total length 13,389 kb

Total ORFs� 6,608

Verified ORFs� 4,667

Uncharacterized ORFs� 1,127

Dubious ORFs� 814

Introns in ORFs 220

Introns in UTRs 15

Pseudogenes� 21

ARS� 274

Intact Ty elements� 50

tRNA genes� 299

snRNA genes � 6

snoRNA genes� 77

noncoding RNA� 9

Abbreviations: ARS, autonomously replicating sequences
(chromosomal replication origins); ORF, open reading
frame; snoRNA, small nucleolar RNA; tRNA, transfer
RNA; Ty, retrotransposons; UTR, untranslated region.

Source: Adapted from Goffeau et al. (1996). Entries that
were updated from the Saccharomyces Genome Database
(Q http://www.yeastgenome.org, December 2007) are
indicated with an asterisk and include the nuclear and
mitochondrial genomes.
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with short ORFs that are not annotated). The Saccharomyces Genome Database

(introduced below) lists categories of verified ORFs, uncharacterized ORFs, and

dubious ORFs. There are 40,000 ORFs longer than 20 codons (Mackiewicz et al.,

2002). Below the arbitrary cutoff of 100 codons, there are many ORFs that meet the

criteria of having a codon adaptation index of .0.11 and which do not overlap a

Protein length
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FIGURE 17.3. The European
Bioinformatics Institute offers pro-
teome analysis tools for S. cerevi-
siae and over 1000 other
organisms through the Integr8
project (Q http://www.ebi.ac.uk/
proteome/). This plot shows the
number of S. cerevisiae proteins
as a function of the length of the
protein. The average protein
length is 496 amino acid residues,
with a range of 25 to 4910 residues.
In the case of small predicted pro-
teins (e.g., ,100 codons) it is
important to confirm that the
gene is transcribed and translated
in vivo and does not represent a for-
tuitous open reading frame that is
not biologically meaningful.

TABLE 17-3 Fifteen Most Common Domains of the Completed Genome of Yeast S. cerevisiae
InterPro Proteins Matched Name

IPR011009 133 Protein kinase-like

IPR000719 124 Protein kinase, core

IPR011046 113 WD40 repeat-like

IPR015943 105 WD40/YVTN repeat-like

IPR016040 103 NAD(P)-binding

IPR016024 93 Armadillo-type fold

IPR003593 85 AAAþ ATPase, core

IPR002290 76 Serine/threonine protein kinase

IPR014001 74 DEAD-like helicase, N-terminal

IPR014021 72 Helicase, superfamily 1 and 2, ATP-binding

IPR001650 72 DNA/RNA helicase, C-terminal

IPR015820 68 Retrotransposon Ty1 A, N-terminal

IPR001042 68 Peptidase A11B, Ty1 B

IPR012337 58 Polynucleotidyl transferase, Ribonuclease H fold

IPR000504 56 RNA recognition motif, RNP-1

Source: From the European Bioinformatics Institute (EBI) Integr8 proteome analysis site (Q http://www.
ebi.ac.uk/proteome/, November 2007).
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longer ORF (Harrison et al., 2002). The main criteria for deciding whether they are

protein-coding genes are (1) evidence of conservation in other organisms and/or (2)

experimental evidence of gene expression (Chapter 16). For S. cerevisiae, Winzeler

and colleagues used a combination of gene expression profiling with oligonucleotide

arrays and mass spectrometry to verify the transcription of 138 and the translation of

50 previously nonannotated genes (Oshiro et al., 2002). Michael Snyderand colleagues

combined expression profiling, transposon-mediated gene trapping (Chapter 12), and

homology searching to identify 137 genes (Kumar et al., 2002).

In addition to protein-coding genes, there are many transcribed genes that

encode functional RNA molecules but are not subsequently translated into protein.

In addition to the 299 tRNA genes shown in Table 17.1, there are 140 tandemly

repeated copies of rRNA genes as well as small nucleolar (snoRNA) (Lowe and

Eddy, 1999) and other RNA species.

The S. cerevisiae genome encodes 50 intact retrotransposons (called Ty1, Ty2,

Ty3, Ty4, and Ty5). These are endogenous retrovirus-like elements that mediate

transposition (i.e., insertion into a new genomic location) (Roth, 2000). They are

flanked by long terminal repeats (LTRs) that function in integration of the retro-

transposon into a new genomic site. Retrotransposons have shaped the genomic

landscape of all eukaryotic genomes.

Exploring a Typical Yeast Chromosome
You can access the DNA sequence of any S. cerevisiae chromosome through several

websites. We begin with NCBI; click “Map Viewer” on the home page to link to

S. cerevisiae and then select any of the 16 chromosomes (Fig. 17.4). The result is an

entry similar to the one we saw in Fig. 16.2. Consider the specific features of chromo-

some XII, a typical chromosome consisting of just over 1 Mb (Johnston et al., 1997).

The NCBI page for this chromosome offers features such as TaxPlot and COG that

are similar to the features we have seen for prokaryotes (Chapter 15). You can also

FIGURE 17.4. The NCBI Entrez
Genomes site includes this page on
S. cerevisiae. Each of the 16
chromosomes can be explored sep-
arately. The left sidebar includes
links to major web resources for
S. cerevisiae and other fungi.
Additional links are to the COGs
database, protein structure links,
and TaxPlot that we have seen
for bacteria and archaea
(Chapter 15 and Fig. 17.11 below).

Over half the human genome is

composed of transposable

elements; we will explore them in

more detail in Chapter 19.

Chromosome XII (accession

number NC_001144) has

1,078,173 bp. To view a map of

chromosome XII at the MIPS site,

go to Q http://mips.gsf.de/genre/
proj/yeast/. For SGD, visit

Q http://www.yeastgenome.org/.

NCBI also offers specialized

resources on fungi (Q http://
www.ncbi.nlm.nih.gov/projects/
genome/guide/saccharomyces/).
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view chromosome XII at the major yeast-specific databases such as the MIPS

Comprehensive Yeast Genome Database (Mewes et al., 2002) (Fig. 17.5), the

Saccharomyces Genome Database (SGD) (Dwight et al., 2002) (Fig. 17.6), as well

as the UCSC Genome Browser (Fig. 17.7). Information in these databases is often

cross-referenced; for example, the UCSC tracks include SGD data. Computer lab

problem 17.1 at the end of this chapter describes how to download a General

Feature Format (.gff) file from the MIPS database and upload it as a custom track

FIGURE 17.5. MIPS offers the
Comprehensive Yeast Genome
Database (Q http://mips.gsf.de/
projects/fungi). Each chromosome
can be viewed on a map. The fea-
tures are clickable for detailed
information on each element, and
the genes are annotated. The
reports and analysis menu includes
options to download information
including a GFF file (see text).
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FIGURE 17.6. The Saccharomyces
Genome Database (SGD) is a cen-
tral resource for yeast genomics. It
includes a genome viewer allowing
you to browse by chromosome
using a GMOD browser (as
shown for the MIPS database, Fig.
17.5).

INTRODUCTION TO BUDDING YEAST SACCHAROMYCES CEREVISIAE 705



on the UCSC genome browser. Each of these various browsers offers unique features

(Box 17.2). Chromosome XII has the following properties:

† The overall G þ C content of chromosome XII is 38%. The G þ C content

tends to be highest in localized regions corresponding to a high density of

protein-coding genes. There are three regions of particularly low G þ C con-

tent (below 37%); one of these corresponds to the centromere. This feature is

typical of all eukaryotic centromeres.

† Overall, there is very little repetitive DNA throughout the S. cerevisiae genome.

The rDNA repeats are all on chromosome XII (encoding rRNAs). This region

of the chromosome has the highest G þ C content as well (approximately

42%). In addition, S. cerevisiae chromosomes have telomeric and subtelo-

meric repetitive DNA elements. This feature is typical of essentially all eukary-

otic chromosomes.

† There are few spliceosomal introns (�235 total). These are probably due to

homologous recombination of cDNAs produced by reverse transcription of

spliced mRNAs. On chromosome XII, 17 ORFs (3.2% of the total) contain

introns; half of these genes encode ribosomal proteins. The extreme lack of

introns contrasts with other fungi such as Cryptococcus neoformans (see

below) which averages 6.3 exons and 5.3 introns for its 6572 predicted

protein-coding genes (Loftus et al., 2005).

† There are six transposable elements (Ty elements) on chromosome XII.

Additionally there are hundreds of fragments of transposable elements.

† The density of ORFs is extremely high. Seventy-two percent of chromosome

XII contains protein-coding genes, a fraction that is typical of the other yeast

chromosomes. There are 534 ORFs of 100 or more codons on chromosome

XII, with an average codon size of 485 codons.

FIGURE 17.7. The UCSC
Genome Browser includes a data-
base for S. cerevisiae. Here
100,000 base pairs from chromo-
some XII are shown, highlighting
SGD gene annotations, a track of
human orthologs, several tracks
identifying transcriptional regu-
lation in yeast, a conservation
track highlighting similarities
among seven yeast species (dis-
cussed later in this chapter), and
a “most conserved” track showing
highly conserved DNA regions. By
linking from the Genome Browser
to the Table Browser, any of these
categories of information can be
summarized and downloaded as a
tabular output.

The centromere is the site at which

chromosomes attach to the mitotic

or meiotic spindle. In yeast, the

centromere divides each chromo-

some into the left and right arm; in

humans, it divides each chromo-

some into a short (or p) arm and a

long (or q) arm.

The telomere is the terminal

region of each chromosome arm.

These arms are important in the

maintenance of chromosome

structure. They have been impli-

cated in processes ranging from

aging to mental retardation

(Chapters 16 and 20).
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For the nomenclature system used for S. cerevisiae genes and proteins, see

Box 17.3.

Box 17.3
Gene Nomenclature in Saccharomyces cerevisiae

All ORFs that are �100 codons were assigned unique names consisting of three

letters followed by a numeral and a subscript to describe its genomic position.

For example, the gene name YKL159c refers to the ORF number 159 (from

the centromere) on the left arm (L) of chromosome XI (K) of yeast (Y ). The

designations c or w (“Crick” or “Watson”) reflect the orientation of the gene on

the chromosome. Once a gene has been characterized and assigned some kind

of function, the investigators may assign a new name that reflects the function,

in this case RCN1 for “regulator of calcineurin.” Dominant alleles (typically

the wild-type allele) are listed with three uppercase letters while recessive alleles

(typically knockout mutations or loss of function alleles) are listed with three

lowercase letters. The protein product of the gene is designated without italics

and with only the first letter in uppercase and with “p” appended to designate

protein. Many genes have multiple names (synonyms) because investigators

have identified them in independent functional screens. Some examples of

nomenclature are given in Table 17.4.

TABLE 17-4 Examples of Nomenclature for Yeast Genes
Wild-Type Allele Protein Product Mutant Alleles

CNA1 Cna1p cna1D

RCN1 Rcn1p rcn1, rcn1::URA3

YKL159c Ykl159cp ykl159c

Box 17.2
Multiple Yeast Genome Browsers

We have illustrated four yeast genome browsers: those at NCBI, MIPS, SGD, and

UCSC. Each offers different advantages, and there is no single best resource. The

SGD is arguably the central web resource for the yeast genomics community. The

strength of NCBI is its critical role in the bioinformatics community. The UCSC

Genome Browser is an increasingly essential resource for the visualization,

annotation, and analysis of vertebrate genomes (Chapters 18 and 19), but its

application to fungi is currently limited. MIPS offers expert curation. Notably,

its web browser is based on the Generic Model Organism Database project

(GMOD; Q http://www.gmod.org/). GMOD is a set of interconnected

applications and databases, including the Generic Genome Browser

(GBrowse). The research communities involved in a variety of organisms have

contributed to GMOD (including the SGD and model organism projects

described in Chapter 18 such as FlyBase, WormBase, and TAIR).

Chromosome XII includes the

largest gene in the S. cerevisiae

genome, YLR106c. This gene

encodes a protein with 4910

amino acids (MDN1p; accession

NP_013207) (Garbarino and

Gibbons, 2002). Midasin, a

human ortholog, is 5596 amino

acids long (over 600 kD; RefSeq

accession NP_055426).

INTRODUCTION TO BUDDING YEAST SACCHAROMYCES CEREVISIAE 707



GENE DUPLICATION AND GENOME DUPLICATION OF

S. CEREVISIAE

As the genome sequence of S. cerevisiae was analyzed, it became apparent that there

are many duplications of DNA sequence, involving both ORFs and larger genomic

regions. In many cases, the gene order and orientation (top or bottom strand) is

preserved between the duplicated regions. The duplications are both intrachromoso-

mal (occurring within a chromosome) and interchromosomal (occurring between

chromosomes).

These changes in genetic material are fundamental in explaining the evolution of

species in yeast or in any branch of life. We will see that in the human genome and a

variety of other eukaryotic genomes, as many as 25% of the genes are duplicated

(Chapters 18 and 19). From where can new, duplicate genes arise? Several mechan-

isms are outlined in Fig. 17.8:

† Genes can arise by tandem repeat slippage during replication.

† New genes can arise by gene conversion. In this process, genes are transferred

nonreciprocally from one genomic region to another. This occurs between

repetitive regions of the human Y chromosome (Rozen et al., 2003).

† Genes can be introduced into a genome by lateral (horizontal) gene transfer,

as discussed in Chapter 15.

† Segments of a genome can duplicate. We discuss segmental duplication of the

human genome in Chapter 19; it is sometimes defined as consisting of two loci

sharing 90% or more identity over a length of 1000 base pairs or more.

FIGURE 17.8. Gene duplication
can occur by a variety of mechan-
isms. The duplicated copy may be
localized on the same chromosome
or on a different chromosome.
There are several possible fates of
a gene pair that arises by dupli-
cation: copies may persist, one
copy may be deleted, one copy
may become nonfunctional (a
pseudogene), or the two genes
may acquire distinct functions.
See Sankoff (2001).

Tandem repeat
slippage during
recombination

Gene
conversion

Horizontal
transfer

Duplication of
chromosomal 

segments

Genome
tetraploidization

Gene duplication

Both copies persist
One copy is

deleted

One copy accumulates
mutations and 

becomes a pseudogene

One or both copies
diverge functionally

Single gene

Mechanism

Outcome

708 EUKARYOTIC GENOMES: FUNGI



† An entire genome can duplicate, a process called polyploidy. In the case of

S. cerevisiae, this is a tetraploidization. If this resulted from the combining of

two genomes from one species it is called autopolyploidy; if two distinct

species fused it is allopolyploidy.

In 1970, Susumu Ohno published the book Evolution by Gene Duplication. He pro-

posed that vertebrate genomes evolved by two rounds of whole-genome duplication.

These duplication events, according to this hypothesis, occurred early in vertebrate

evolution and allowed the development of a variety of cellular functions. Ohno

(1970) wrote: “Had evolution been entirely dependent upon natural selection, from

a bacterium only numerous forms of bacteria would have emerged. The creation of

metazoans, vertebrates, and finally mammals from unicellular organisms would have

been quite impossible, for such big leaps in evolution required the creation of new

gene loci with previously nonexistent function. Only the cistron that became redundant

was able to escape from the relentless pressure of natural selection. By escaping, it

accumulated formerly forbidden mutations to emerge as a new gene locus.”

Which mechanism of gene duplication might have occurred in S. cerevisiae?

Wolfe and Shields (1997) provided support for Ohno’s whole-genome duplication

paradigm. They assessed the duplicated regions of the yeast genome by performing

systematic blastp searches of all yeast proteins against each other and plotting the

matches on dot matrices. Duplicate regions were observed as diagonal lines, such

as the three duplicated regions seen in a comparison of proteins derived from

chromosomes X and XI (Fig. 17.9). In the whole genome, they identified 55 dupli-

cated regions and 376 pairs of homologous genes. In subsequent studies, they

employed the more sensitive Smith–Waterman algorithm and identified a few

additional regions of duplication (Seoighe and Wolfe, 1999). Based on these results,

they proposed a single, ancient duplication of the S. cerevisiae genome, approximately

100 million years ago (Wolfe and Shields, 1997). Subsequent to this dupli-

cation event, many duplicated genes were deleted. Other genes were rearranged by

reciprocal translocation.

There are two main explanations for the presence of so many duplicated regions.

There could have been whole-genome duplication (tetraploidy) followed by translo-

cations as well as gene loss, or alternatively there could have been a series of indepen-

dent duplications. Wolfe and Shields (1997) favored the tetraploidy model for two

reasons:

1. For 50 of the 55 duplicate regions, the orientation of the entire block was

preserved with respect to the centromere. If each block were generated

independently, a random orientation would be expected.

2. Fifty-five successive, independent duplications of blocks would be expected

to result in about seven triplicated regions, but only zero (or possibly one)

such triplicated region was observed.

What is the fate of genes after duplication? The presence of extra copies of genes

is usually deleterious to an organism. In the model of Wolfe and colleagues, the

genome of an ancestral yeast doubled (from the diploid number of about 5000

to the tetraploid number of 10,000 genes) then lost the majority of its

duplicated genes, yielding the present-day number of about 6200 ORFs. Overall,

between 50% and 92% of duplicated genes are eventually lost (Wagner, 2001).

Tetraploidy is the presence of four

haploid sets of chromosomes in

the nucleus.

Wolfe and Shields (1997) used

Blastp rather than Blastn to study

duplicated regions of chromo-

somes. This is because protein

sequence data are more informa-

tive than DNA for the detection of

distantly related sequences. See

Chapter 3.

You can view chromosome com-

parisons at the SGD website by

selecting Analysis and Tools and

then Pairwise Chromosome

Similarity View. This generates

plots such as that of Fig. 17.9.

GENE DUPLICATION AND GENOME DUPLICATION OF S. CEREVISIAE 709



For eukaryotes, the half-life of duplicated genes is only a few million years (Lynch and

Conery, 2000) (see Chapter 16). There are four main possibilities (Fig. 17.8):

† Both copies can persist, maintaining the function of the original gene. In this

scenario, there is a gene dosage effect because of the extra copy of the gene.

† One copy could be completely deleted. This is the most common fate of dupli-

cated genes, as confirmed by recent whole genome studies (described below).

A rationale for this fate is that since the duplicated genes share identical func-

tions initially, either one of them may be subject to loss-of-function mutations

(Wagner, 2001).

† One copy can accumulate mutations and evolve into a pseuodogene (a gene

that does not encode a functional gene product). This represents a loss of

gene function, although it occurs without the complete deletion of the dupli-

cate copy. Over time, the pseudogene may be lost entirely.

† One or both copies of the gene could diverge functionally. According to this

hypothesis, gene duplications (regardless of mechanism) provide an organism

with the raw material needed to expand its repertoire of functions. Furthermore,

loss of either gene having overlapping functions might not be tolerated. Thus,

the functionally diverged genes would both be positively selected.

FIGURE 17.9. Wolfe and Shields
(1997) performed blastp searches
of proteins from S. cerevisiae and
found 55 blocks of duplicate
regions. This provides strong evi-
dence that the entire genome
underwent an ancient duplication.
This figure depicts the result of
BLAST searches of proteins
encoded by genes on chromosomes
X and XI. Matches with scores
.200 are shown, arranged in sev-
eral blocks of genes. Symbols indi-
cate the gene orientations: þ, W
(Watson strand orientation) on
both chromosomes; x, C (Crick)
orientation on both strands;
squares and W indicate different
orientations of the genes on the
two chromosomes. Used with
permission.

In humans, an extra copy of

chromosome 21 (i.e., trisomy 21)

causes Down syndrome.

Trisomies 13 and 18 are also

sometimes compatible with life,

but other autosomal trisomies are

not. Duplications of even limited

regions of the genome cause

mental retardation and other dis-

eases (see Chapter 20 on human

disease). This highlights the dele-

terious nature of duplications at

the level of individual organisms.
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After a gene duplicates, why does one of the members of the newly formed gene

pair often become inactivated? At first glance, it might seem highly advantageous to

have two copies, because one may functionally diverge (driving the process of evol-

ution to allow a cell to perform new functions), or one may be present in an extra

copy in case the other undergoes mutation. However, gene duplication instead

appears to be generally deleterious, leading to the loss of duplicated genes. The

logic is that some mutations in a gene are forbidden rather than tolerable (these terms

were used by Ohno [1970] in describing gene duplication). Forbidden mutations

severely affect the function of a gene product, for instance by altering the properties

of the active site of an enzyme. (A tolerable mutation causes a change that remains

compatible with the function of the gene product.) Natural selection can eliminate

forbidden mutations, because the individual is less fit to reproduce. After a gene dupli-

cates, a deleterious mutation in one copy of a gene might now be tolerated because the

second gene can assume its function. A second reason that duplicated genes may be

deleterious is that in their presence the crossing over of homologous chromosomes

during meiosis may be mismatched, causing unequal crossing over.

We can consider the possible fates of duplicated genes with the specific example

of genes encoding proteins that are essential for vesicle trafficking. We introduced

SSO1 in Chapter 12 (Fig. 12.4). In yeast and all other eukaryotes, spherical intra-

cellular vesicles transport various cargo to destinations within the cell. These vesicles

traffic cargo to the appropriate target membrane through the binding of vesicle pro-

teins (e.g., Snc1p in yeast or VAMP/synaptobrevin in mammals) to target membrane

proteins (e.g., Sso1p in yeast or syntaxin in mammals) (Protopopov et al., 1993;

Aalto et al., 1993). In S. cerevisiae, genome duplications presumably caused the

appearance of two paralogous genes in each case: SNC1 and SNC2 as well as

SSO1 and SSO2. The SNC1 and SNC2 genes are on corresponding regions of

chromosomes I and XV, while the SSO1 and SSO2 genes are on chromosomes

XVI and XIII, respectively.

What could the consequences of genome duplication have been? The two pairs of

syntaxin-like and VAMP/synaptobrevin-like yeast proteins might have maintained

the same function of the original proteins (before genome duplication). A search

for SSO1 at the SGD website shows that the gene is nonessential (the null mutant

is viable), but the double knockout is lethal (see Fig. 12.4). Thus, it is likely that

these paralogs offer functional redundancy for the organism; in the event a gene is

lost (e.g., through mutation), the organism can survive because of the presence of

the other gene. Similarly, the SNC1 null mutant is viable, but the double knockout

of SNC1 and SNC2 is deficient in secretion.

As an explanation of the mechanism by which these genes duplicated, it is poss-

ible that whole-genome duplication provided the new genetic materials with which

the intracellular secretion machinery could be diversified. Syntaxin and VAMP/

synaptobrevin proteins function at a variety of intracellular trafficking steps, and

these gene families diversified throughout eukaryotic evolution (Dacks and

Doolittle, 2002).

Andreas Wagner (2000) addressed the question of how S. cerevisiae protects itself

against mutations by one of two mechanisms: (1) having genes with overlapping func-

tions (such as paralogs that maintain related functions) or (2) through the inter-

actions of nonhomologous genes in regulatory networks. He found that genes

whose loss of function caused mild rather than severe effects on fitness did not

tend to have closely related paralogs. This is consistent with a model in which gene

duplication does not provide robustness against mutations.
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COMPARATIVE ANALYSES OF HEMIASCOMYCETES

Analysis of S. cerevisiae has elucidated many fundamental principles concerning

genome structure, function, and evolution. Comparison of phylogenetically related

genomes has opened an entirely new dimension on genome analysis. Some of the

first genomes selected were hemiascomycetes phylogenetically close to S. cerevisiae,

such as Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia

lipolytica (Dujon et al., 2004). In all, hundreds of fungal genomes are currently

being sequenced.

Analysis of Whole Genome Duplication
The hypothesis that yeast underwent a whole-genome duplication event has been

tested by analyzing whole genome sequences. By becoming polyploid, an organism

doubles its complement of chromosomes (and thus genes). This might appear to

be an appealing mechanism to increase the repertoire of genes available for adap-

tation to new environments. However, polyploidy leads to genome instability, in

part because of difficulties for the cell to perform proper chromosome segregation.

To understand the whole genome duplication of S. cerevisiae, Kellis et al. (2004)

sequenced the genome of Kluyverocmyces waltii, a related yeast that diverged

before the whole genome duplication event (Fig. 17.10). They sequenced the eight

chromosomes of K. waltii, and annotated 5230 putative protein-coding genes.

They identified blocks of conserved synteny (loci containing orthologous genes in

the same order between the two species). Most regions of K. waltii mapped to two

separate regions of S. cerevisiae. However, these regions of S. cerevisiae show evidence

of massive gene loss (with 12% of the paralogous gene pairs retained, and 88% of

paralogous genes deleted to leave one copy remaining).

Kellis et al. considered the rate of evolution of 457 gene pairs in S. cerevisiae that

arose by whole genome duplication; 76 of these gene pairs displayed accelerated

evolution (based on amino acid substitution rates in the S. cerevisiae lineage relative

to K. waltii). Remarkably, in 95% of these cases, the accelerated evolution was

restricted to just one of the two paralogs. This supports Ohno’s suggestion that

after duplication one copy of a gene can preserve the original function while the

other may diverge to acquire a novel function.

With the continuing production of new genome sequencing data, Scannell et al.

(2006) considered six yeast species: three that descended from a common ancestor

that is thought to have undergone a whole genome duplication (S. cerevisiae,

FIGURE 17.10. Phylogeny of sev-
eral yeasts, after Kurtzman and
Robnett (2003) (adapted from
Q http://wolfe.gen.tcd.ie/ygob/).
A red circle indicates the likely
place in which a whole genome
duplication (WGD) occurred.

S. cerevisiae

S. castelli

C. glabrata

K. waltii

S. kluyveri

K. lactis

A. gossypii
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Saccharomyces castellii, and Candida glabrata), as well as three additional yeasts that

diverged before the whole genome duplication event (Kluyveromyces waltii,

Kluyveromyces lactis, and Ashbya gossypii). They used the Yeast Gene Order

Browser to compare the six species. This browser is available online (Byrne and

Wolfe, 2005, 2006). An example is shown in Fig. 17.11 for the query SSO1 as well

as six adjacent upstream and downstream genes. There are seven horizontal tracks

in this example. Three in the center show the genes in the reference species that

diverged before the whole genome duplication event (A. gossypii, K. waltii, and K.

lactis). For S. cerevisiae and C. glabrata there are pairs of tracks, both above and

below the reference species. For genes such as SSO1, YPL230W, and WPL228W

(Fig. 17.11, arrows 2 to 4) there are two copies in both S. cerevisiae and C. glabrata

but only one copy in the reference genomes. These two copies occur in adjacent pos-

itions along separate chromosomes.

A variety of patterns of loss can occur. Scannell et al. (2006) described 14 pat-

terns by which gene loss can occur (outlined in Fig. 17.12). Out of 2723 ancestral

loci that aligned appropriately, in only 210 cases was there no gene loss among the

C. glabrata

S. cerevisiae
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in C. glabrata and S. cerevisiae (post-WGD) but 
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FIGURE 17.11. The Yeast Gene Order Browser of Kevin Byrne in the group of Kenneth Wolfe
provides evidence supporting whole genome duplication events. Upon entering the query (SSO1;
top arrow) and selecting the species to display, the query and varying numbers of adjacent genes
are displayed. Each box represents a gene, and boxes are color-coded to correspond to particular
chromosomes. Solid bars connect genes that are immediately adjacent. Here, the first and seventh
rows correspond to C. glabrata, and the second and sixth rows correspond to S. cerevisiae
(chromosome 16, including SSO1 gene, on row 2; chromosome 13, including the paralog
SSO2, on row six). In this view there are three genes that have two copies in C. glabrata and
S. cerevisiae that may have resulted from whole genome duplication (see arrows 2–4).
For yeast lineages that are hypothesized to have not undergone whole genome duplication
(A. gossypii, K. waltii, K. lactis) there tends to be only one copy of these genes. For all species,
occasional gene losses are evident (e.g. K. waltii, the gene indicated by arrow 3). Yeast Gene
Order Browser includes additional features such as links to the raw sequences and to phylogenetic
reconstructions of each gene family. See Q http://wolfe.gen.tcd.ie/ygob/.

The Yeast Gene Order Browser is

online at the website of Kenneth

Wolfe (Q http://wolfe.gen.tcd.ie/
ygob/). Saccharomyces cerevisiae

can live under anaerobic con-

ditions, while K. lactis cannot. It is

possible that the S. cerevisiae

genome duplication resulted in

physiological changes that allowed

this organism to acquire the new

growth phenotype (Piskur, 2001).

COMPARATIVE ANALYSES OF HEMIASCOMYCETES 713



three genomes that underwent whole genome duplication. In the great majority of

cases (1957 instances or 72% of the total), all three species lost one of the two

copies of a given duplicated gene, and most commonly all three species lost the

same copy of the gene. Genes involved in highly conserved biological processes

such as ribosome function were especially likely to experience gene loss.

Identification of Functional Elements
It is extraordinarily difficult to identify genes and gene regulatory regions (such as

promoters) from genomic sequence data alone. Matching expressed sequence tags

(ESTs; Chapter 8) to genomic DNA is one useful approach to defining protein-

coding genes. Comparative analyses between genomic sequences also provide a

powerful approach to identifying functionally important elements.

Kellis et al. (2003) obtained the draft sequences of Saccharomyces paradoxus,

S. mikatae, and S. bayanus which diverged from S. cerevisiae some five to 20 million

years ago. Almost all of the 6235 ORFs in the SGD annotation of S. cerevisiae had

clear orthologous matches in each of the other three species. A noticeable exception

is at all 32 telomeres (i.e., both ends of the 16 chromosomes) where matches are often

ambiguous. Genes assigned to subtelomeric regions are often present in different

number, order, or orientation, and these regions have undergone multiple reciprocal

translocations. Kellis et al. refer to changes in the telomeric regions as “genomic

churning.” For all ORFs in the four Saccharomyces genomes, Kellis et al. introduced

a reading frame conservation test to classify each ORF as authentic (if conserved) or

spurious (if not well conserved). As a result of their analysis, Kellis et al. proposed

revising the entire S. cerevisiae gene catalog to 5538 ORFs of �100 amino acids.

Their analyses further revised the count of introns (predicting 58 new ones beyond

the 240 previously predicted).

Another aspect of the comparison of four Saccharomyces genome sequences is the

opportunity to identify regulatory elements. Gal4 is one of the best characterized

transcription factors. It regulates genes involved in galactose metabolism including

FIGURE 17.12. Patterns of gene
loss after whole genome duplication
in three species. For three species
that underwent whole genome
duplication (C. glabrata, S. cerevi-
siae, and S. castellii) there are 14
possible fates, including loss of no
genes (class 0), loss of one gene
from any one of the three lineages
(class 1A, 1B, 1C), loss of two
genes (class 2), loss of three genes
from different loci (class 3), or
loss of three genes in a convergent
manner (class 4; loss of duplicated
orthologs). Class 4 represents the
most common fate of duplicated
genes. Redrawn from Scannell
et al. (2006). Used with
permission.
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S. cerevisiae and S. bayanus share

62% nucleotide identity in con-

served regions, while for com-

parison human and mouse share

66% nucleotide identity in con-

served regions.

Dramatic genomic changes that

occur in subtelomeric regions have

also been observed in the malaria

parasite Plasmodium falciparum

(see Chapter 18), and in humans

subtelomeric deletions are a major

cause of mental retardation.
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the GAL1 and GAL10 genes. These two genes can be viewed at the UCSC Genome

Browser (Fig. 17.13). They are transcribed from a short intergenic region that

includes the Gal4 binding motif CGGn(11)CCG where n(11) refers to any 11 nucleo-

tides. By clicking the conservation track, you can see several copies of this motif in a

multiple sequence alignment of DNA from the four Saccharomyces species. Kellis

et al. studied both previously known and predicted motifs, and predicted 52 new

motifs. Other groups such as Cliften et al. (2003) and Harbison et al. (2004) have

also identified yeast functional elements through comparative genomics.

ANALYSIS OF FUNGAL GENOMES

In addition to S. cerevisiae, the genomes of many other fungi are now being

sequenced, including Ascomycetes (Table 17.5), Basidiomycetes (Table 17.6), and

others (Table 17.7). We will discuss some of these fascinating projects: Aspergillus,

Candida albicans, Cryptococcus neoformans, the microsporidial parasite

Encephalitozoon cuniculi, Neurospora crassa, the Basidiomycete Phanerochaete chryso-

sporium, and the fission yeast Schizosaccharomyces pombe (the second fungal

genome to be completely sequenced). All these projects highlight the remarkable

diversity of fungal life. In Chapter 18 we will describe comparative genomics projects

on more familiar organisms such as humans and fish (diverged �450 million years

ago), the fruit fly and mosquito (estimated to have diverged �250 million years

ago), as well as closely related species that diverged more recently. The fungi offer

an opportunity to analyze highly divergent species (e.g., S. cerevisiae and S. pombe

diverged �400 million years ago), as well as closely related species.

Aspergillus
The genus Aspergillus consists of filamentous Ascomycetes. Of the 185 known species

of Aspergillus, 20 are human pathogens. Three have now been sequenced, and

dozens of other genomes are being sequenced. (1) Aspergillus nidulans has had a

long-standing role as a model organism in genetics. Its genome was sequenced by

1

FIGURE 17.13. View of the tran-
scription factor Gal4 binding site
region between the GAL1 and
GAL10 genes of S. cerevisiae. A
5000 base pair view of yeast
chromosome 2 is shown (from the
UCSC Genome Browser). The
short intergenic region (arrow 1)
includes regions defined as having
regulatory properties by several
databases (see annotation tracks).
The conservation track shows that
some of the intergenic region is
highly conserved among four
Saccharomyces species. That con-
served region contains binding
sites for Gal4.
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Galagan et al. (2005). (2) Aspergillus fumigatus is the most common mold that causes

infection worldwide. It is an opportunistic pathogen to which immunocompromised

individuals are particularly sucsceptible. Nierman et al. (2005) sequenced its

genome and identified candidate pathogenicity genes as well as genes that may facili-

tate its unusual lifestyle (e.g., thriving at temperatures up to 708C). One of the many

unique features of this genome is the presence of A. fumigatus-specific proteins that

are closely related to a class of arsenate reductases previously seen only in bacteria.

(3) Aspergillus oryzae is a fungus from which sake, miso, and soy sauce are prepared.

Like A. nidulans and A. fumigatus its genome is organized into eight chromosomes,

but the total genome size is 7 to 9 megabases larger (29% to 34% larger)(Machida

et al., 2005). This is due to blocks of sequence that are dispersed throughout the

A. oryzae genome.

Comparative analyses revealed the presence of conserved noncoding DNA

elements (Galagan et al., 2005), analogous to the studies of Saccharomyces described

above. Of the three Aspergilli, A. fumigatus and A. oryzae reproduce through asexual

mitotic spores, while A. nidulans has a sexual cycle. Comparative analysis of the three

TABLE 17-5 Fungal Genome Projects: Representative Examples of the Ascomycetes

Organism Chromosomes

Genome
Size

(Mb) Comment IDa
Total

Projects

Ajellomyces capsulatus
G186AR

7 �23 to
25

Causes
histoplasmosis, an
infection of the
lungs

12635 3

Aspergillus fumigatus
Af293

8 30 Most frequent fungal
infection
worldwide

131 10

Candida albicans
SC5314

8 16 Diploid fungal
pathogen

10701 6

Coccidioides immitis RS 4 28.8 Causes the disease
coccidioidomycosis
(valley fever)

12883 15

Kluyveromyces lactis
NRRL Y-1140

6 10.7 Related to S. cerevisiae 13835 4

Magnaporthe grisea
70-15

7 40 Rice blast fungus 13840 2

Pichia angusta CBS
4732

6 Related to S. cerevisiae 12500 5

Pneumocystis carinii 15 7.7 Opportunistic
pathogen; causes
pneumonia in rats

125 3

Saccharomyces
cerevisiae S288c

16 12.1 Baker’s yeast 13838 14

Schizosaccharomyces
pombe 972 h-

3 12.5 Fission yeast 13836 3

Yarrowia lipolytica
CLIB122

6 20.5 Nonpathogenic yeast,
distantly related to
other yeasts

13837 1

aID refers to the NCBI Genome Project identifier; by entering this into the search box at the home page of
NCBI you can link to information on this genome project. Total projects refers to the number of genome
sequencing projects for the same genus.
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TABLE 17-6 Fungal Genome Projects: Representative Examples of the Basidiomycetes

Organism Chromosomes
Genome

Size (Mb) Comment IDa
Total

Projects

Coprinopsis cinerea
okayama7#130

13 37.5 Multicellular
basidiomycete,
undergoes
complete sexual
cycle

1447 1

Cryptococcus
neoformans var.
neoformans
JEC21

14 19.1 Pathogenic fungus,
causes
cryptococcosis

13856 5

Lentinula edodes
L-54

8 33 Edible shiitake
mushroom

17581 1

Phanerochaete
chrysosporium
RP-78

10 30 Wood-decaying
white rot fungus

135 1

Puccinia graminis
f. sp. tritici CRL
75-36-700-3

18 81.5 Pathogenic fungus
causes stem rust
in cereal crops

18535 1

Ustilago maydis
521

23 20 Causes corn smut
disease

1446 1

aID refers to the NCBI Genome Project identifier; by entering this into the search box at the home page of
NCBI you can link to information on this genome project. Total projects refers to the number of genome
sequencing projects for the same genus.

Source: Entrez Genome at NCBI (December, 2007).

TABLE 17-7 Fungal Genome Projects: Representative Examples of Fungi Other than Ascomycetes and
Basidiomycetes

Organism Chromosomes
Genome

Size (Mb) Comment IDa
Total

Projects

Allomyces
macrogynus

nd 30 Filamentous
chytrid fungus

20563 1

Antonospora
locustae

nd 2.9 Intracellular
microsporidian
parasite

12903 1

Batrachochytrium
dendrobatidis
JEL423

20 23.7 Aquatic chytrid
fungus kills
amphibians

13653 1

Encephalitozoon
cuniculi GB-M1

11 2.5 Intracellular
parasite, infects
mammals

13833 1

Rhizopus oryzae
RA 99-880

nd 40 Opportunistic
pathogen
causes
mucormycosis

13066 1

aID refers to the NCBI Genome Project identifier; by entering this into the search box at the home page of
NCBI you can link to information on this genome project. Total projects refers to the number of genome
sequencing projects for the same genus.

Abbreviation: nd, not determined.

Source: Entrez Genome at NCBI (December, 2007).
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genomes suggested that, surprisingly, A. fumigatus and A. oryzae have the necessary

genes for a sexual cycle (reviewed in Scazzochio, 2006). Another surprising aspect

of the comparative analyses is that peroxisomes in Aspergilli (organelles responsible

for fatty acid b-oxidation) resemble those of mammalian cells more than

yeasts because (1) b-oxidation occurs in both peroxisomes and mitochondria, and

both Aspergilli and mammals have two sets of the necessary genes, and (2) both

Aspergilli and mammalian genomes encode peroxisomal acyl-CoA dehydrogenases.

The yeasts have served as important model systems for the study of human peroxiso-

mal disorders such as adrenoleukodystrophy, but genomic analyses highlight the

importance of the Aspergilli.

A comparison of A. nidulans and A. fumigatus using TaxPlot at NCBI (Chapter

15), with S. cerevisiae as a reference, shows that many proteins are conserved between

those three species (Fig. 17.14). Of those that differ, a notable example is midasin

(circled), the giant protein from S. cerevisiae chromosome XII.

Candida albicans
Candida albicans is a diploid sexual fungus that frequently causes opportunistic infec-

tions in humans. The skin, nails, and mucosal surfaces are typical targets, but deep

tissues can also be infected. The genome size is approximately 14.8 Mb, which is

typical for many fungi, but the chromosomal arrangement is unusual: the genome

has eight chromosome pairs, seven of which are constant and one of which is variable

(ranging from about 3 to 4 Mb). Another unusual feature is that it has no known hap-

loid state. Thus, the diploid genome was sequenced (Jones et al., 2004; reviewed by

Odds et al., 2004). This was challenging because heterozygosity commonly occurs at

many alleles, making it difficult to assign a sequence to one heterozygous locus rather

than two independent loci. On average there is one polymorphism every 237 bases, a

considerably higher frequency than occurs in human or the mosquito Anopheles

gambiae (Chapter 18).

FIGURE 17.14. The TaxPlot tool
at NCBI shows proteins from A.
nidulans and A. fumigatus in
relation to a reference proteome
of S. cerevisiae. TaxPlot can help
to identify organism-specific inno-
vations that may underlie the dis-
tinct physiologies of these
Aspergilli. A midasin homolog
that is more closely related to S. cer-
evisiae in A. nidulans is circled.

The Aspergillus website (Q http://
www.aspergillus.org.uk/) pro-

vides detailed information.

The C. albicans genome was

sequenced by Ron Davis and col-

leagues at Stanford University.
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Information on the Candida genome is centralized at the CandidaDB database

(Rossignol et al., 2008). The reference haploid genome initially contained 7677

ORFs (of size 100 amino acids or greater), although as is routine for any genome

project the annotation process is ongoing. About half the predicted proteins match

human, S. cerevisiae, and Schizosaccharomyces pombe, and only 22% of the ORFs

did not match any of those three genomes. A specialized feature of C. albicans

(shared by Debaryomyces hansenii; Dujon et al., 2004) is that the codon CUG is

translated as serine rather than the usual product, leucine.

Cryptococcus neoformans: Model Fungal Pathogen
C. neoformans is a soil-dwelling fungus that causes cryptococcosis, one of the most

life-threatening infections in AIDS patients. Its genome of 20 megabases is organized

into 14 chromosomes as well as a mitochondrial genome. Loftus et al. (2005)

sequenced two separate strains. Transposons constitute about 5% of the genome

and are dispersed among all 14 chromosomes. In contrast to S. cerevisiae there is

no evidence for a whole genome duplication. Another difference between the two

fungi is that C. neoformans gene organization is more complex. Its 5672 predicted

protein-coding genes are characterized by introns (an average of 5.3 per gene of 67

base pairs), alternatively spliced transcripts, and endogenous antisense transcripts.

Atypical Fungus: Microsporidial Parasite
Encephalitozoon cuniculi
Microsporidia are single-celled eukaryotes that lack mitochondria and peroxisomes.

These organisms infect animals (including humans) as obligate intracellular para-

sites. The complete genome of the microsporidium E. cuniculi was determined by

several research groups in France (Katinka et al., 2001). The genome is highly

compacted, having about 2000 protein-coding genes in 2.9 Mb. Thus, analogous

to parasitic bacteria (Chapter 15), these pathogens have undergone a reduction in

genome size. Phylogenetic analyses using several E. cuniculi proteins suggest that

these parasites are atypical fungi that once possessed but subsequently lost their

mitochondria (Fig. 17.15) (Katinka et al., 2001).

Neurospora crassa
The orange bread mold Neurospora has served as a beautiful and simple model organ-

ism for genetic and biochemical studies since Beadle and Tatum used it to establish

the one gene–one enzyme model in the 1940s. Neurospora is the best characterized of

the filamentous fungi, a group of organisms critically important to agriculture, medi-

cine, and the environment (Perkins and Davis, 2000). The developmental complex-

ity of Neurospora contrasts with other unicellular yeasts (Casselton and Zolan, 2002).

Neurospora is widespread in nature and thus, like the fly Drosophila, it is exceptionally

suited as a subject for population studies.

Like S. cerevisiae, Neurospora is an ascomycete and thus shares the advantage of

this group of organisms in yielding complete tetrads for genetic analyses. However, it

is more similar to animals than yeasts in many important ways. For example, unlike

yeast but like mammals, it contains complex I in its respiratory chain, it has a clearly

discernable circadian rhythm, and it methylates DNA to control gene expression.

CandidaDB is available online at

Q http://www.candidagenome.

org/.

Neurospora crassa genome data-

base websites are available at the

University of New Mexico

(Q http://www.unm.edu/� ngp/),

at the Whitehead Institute

(Q http://www-genome.wi.mit.

edu/annotation/fungi/
neurospora/), and at MIPS

(Q http://www.mips.biochem.

mpg.de/proj/neurospora/).

George Beadle and Edward

Tatum shared a Nobel Prize in

1958 (with Joshua Lederberg)

“for their discovery that genes act

by regulating definite chemical

events” (Q http://www.nobel.se/
medicine/laureates/1958/). They

irradiated N. crassa with x-rays to

study gene function.
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The six decades of intensive studies on the genetics, biochemistry, and cell biology of

Neurospora establish this organism as an important source of biological knowledge.

Galagan et al. (2003) reported the complete genome sequence of Neurospora.

They sequenced about 39 Mb of DNA on seven chromosomes, and identified

10,082 protein-coding genes (9200 longer than 100 amino acids). Of these proteins,

41% have no similarity to known sequences, and 57% do not have identifiable

orthologs in S. cerevisiae or S. pombe.

The Neurospora genome has only 10% repetitive DNA, including �185 copies of

rDNA genes (Krumlauf and Marzluf, 1980). Other repeated DNA is dispersed and

tends to be short and/or diverged, presumably because of the phenomenon of “RIP”

(repeat-induced point mutation). RIP is a mechanism by which the genome is

scanned for duplicated (repeated) sequences in haploid nuclei of special premeiotic

cells. The RIP machinery efficiently finds them, and then litters them with numerous

GC-to-AT mutations (Selker, 1990). Apparently RIP serves as a genome defense

system for Neurospora, inactivating transposons and resisting genome expansion

(Kinsey et al., 1994). Galagan et al. (2003) found relatively few Neurospora genes

that are in multigene families, and a mere eight pairs of duplicated genes that

encode proteins .100 amino acids. Also, 81% of the repetitive DNA sequences

were mutated by RIP. Thus, RIP has suppressed the creation of new genes through

duplication in Neurospora (Galagan et al., 2003; Perkins et al., 2001).

First Basidiomycete: Phanerochaete chrysosporium
Phanerochaete chrysosporium is the first fungus of the phylum Basidiomycota to have

its genome completely sequenced. This is a white rot fungus that degrades many bio-

materials, including pollutants. Since fungi appeared about 1 to 1.5 billion years ago,

and the Basidiomycota diverged from the better characterized Ascomycota over 500

million years ago, there were relatively little sequence data available from closely

related organisms, and annotation of this genome was particularly difficult. The

genome consists of about 30 Mb of DNA arranged in 10 chromosomes. Martinez

FIGURE 17.15. Phylogenetic
analysis of vacuolar ATPase
subunit A from animals, plants,
fungi, protists, and prokaryotes
supports a fungal origin for the
microsporidial parasite Encephali-
tozoon cuniculi (arrow). This tree
was generated using a neighbor-
joining method by Katinka et al.
(2001). Values are bootstrap per-
centages (see Chapter 7). Used
with permission.
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The P. chrysosporium genome-

sequencing project was under-

taken by the U.S. Department of

Energy (Q http://genome.jgi-psf.

org/Phchr1/Phchr1.home.html).
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et al. (2004) predicted 11,777 genes, of which three quarters had significant matches

to previously known proteins. White rot fungi are able to degrade the major com-

ponents of plant cell walls, including cellulose and lignins, using a series of oxidases

and peroxidases. The genome encodes hundreds of enzymes that are able to

cleave carbohydrates.

Fission Yeast Schizosaccharomyces pombe
The fission yeast S. pombe has a genome size of 13.8 Mb. The complete sequencing of

this genome was reported by a large European consortium (Wood et al., 2002). The

genome is divided into three chromosomes (Table 17.8).

Notably, there are 4940 predicted protein-coding genes (including 11 mitochon-

drial genes) and 33 pseudogenes. This is substantially fewer genes than is found

in S. cerevisiae and is among the smallest number of protein-coding genes observed

for any eukaryote. Some bacterial genomes encode more proteins, such as

Mesorhizobium loti (6752 predicted genes) and Streptomyces coelicolor (7825 predicted

genes).

The gene density in S. pombe is about one gene per 2400 bp, which is slightly less

dense than is seen for S. cerevisiae. The intergenic regions are longer, and about 4730

introns were predicted. In S. cerevisiae, only 4% of the genes have introns.

Schizosaccharomyces pombe and S. cerevisiae diverged between 330 and 420 MYA.

Some gene and protein sequences are equally divergent between these two fungi as

they are between fungi and their vertebrate (e.g., human) orthologs. To identify

such genes, you can use the TaxPlot tool on the NCBI Entrez genomes website.

Comparative analyses are likely to elucidate the genetic basis for differences in the

biology of these fungi, such as the propensity of S. pombe to divide by binary fission

and the relatively fewer number of transposable elements in S. pombe.

PERSPECTIVE

The budding yeast S. cerevisiae is one of the most significant organisms in biology for

several reasons:

† It represents the first eukaryotic genome to have been sequenced. It was

selected because of its compact genome size and structure.

† As a single-celled eukaryotic organism, its biology is simple relative to humans

and other metazoans.

TABLE 17-8 Features of the S. pombe Genome
Chromosome
Number

Length
(Mb)

Number of
Genes

Mean Gene Length
(bp)

Coding
(%)

1 5.599 2255 1446 58.6

2 4.398 1790 1411 57.5

3 2.466 884 1407 54.5

Whole genome 12.462 4929 1426 57.5

Source: From Wood et al. (2002).

For extensive information on

S. pombe genome sequence

analysis, see the Wellcome Trust

Sanger Institute website

(Q http://www.sanger.ac.uk/
Projects/S_pombe/).

Leland Hartwell, Timothy Hunt,

and Sir Paul Nurse won the Nobel

Prize in Physiology or Medicine in

2001 for their work on cell cycle

control. Nurse’s studies employed

S. pombe, while Hartwell studied

S. cerevisiae and Hunt studied sea

urchins and other organisms. See

Q http://www.nobel.se/
medicine/laureates/2001/.
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† The biology community has acquired a deep knowledge of yeast genetics and

has collected a variety of molecular tools that are useful to elucidate the func-

tion of yeast genes. Functional genomics approaches based on genomewide

analysis of gene function have been implemented as described in Chapter

12. For example, each of its .6000 genes has been knocked out and tagged

with molecular barcodes, allowing massive, parallel studies of gene function.

Many additional fungal genomes are now being sequenced. In each branch of

biology, we are learning that comparative genomic analyses are essential in helping

to identify protein-coding genes (by homology searching), in evolutionary studies

such as analyses of genome duplications, and in helping us to uncover biochemical

pathways that allow cells to survive.

PITFALLS

At the same time that S. cerevisiae serves as an important model organism, it is

important to realize the scope of our ignorance. How does the genotype of a single

gene knock-out lead to a particular phenotype? We urgently need to answer this ques-

tion for gene mutations in humans that cause disease, but even in a so-called simple

model organism such as yeast we do not understand the full repertoire of protein–

protein interactions that underlie cell function. If we think of the genome as a blue-

print of a machine, we now have a “parts list” in the form of a list of the gene products.

We must next figure out how the parts fit together to allow the machine to function in

a variety of contexts. Gene annotation in yeast databases such as SGD, including the

results of broad functional genomics screens, provides an excellent starting point for

functional analyses.

WEB RESOURCES

DISCUSSION QUESTIONS

The SGD (Q http://www.yeastgenome.org/) lists a series

of yeast resources. Another useful gateway is the Virtual

Library—Yeast (Q http://www.yeastgenome.org/VL-yeast.

html).

[17-1] The budding yeast Saccharomyces cerevisiae is some-

times described as a simple organism because it is uni-

cellular, its genome encodes a relatively small number

of genes (about 6000), and it has served as a model

organism for genetics studies. Still, we understand the

function of only about half its genes. Many functional

genomics tools are now available, such as a complete

collection of yeast knock-out strains (i.e., null alleles

of each gene). How would you use such functional

genomics tools to further our knowledge of gene func-

tion in yeast?

[17-2] The fungi are a sister group to the metazoans (animals)

(Fig. 17.1). Do you expect the principles of genome evol-

ution, gene function, and comparative genomics that are

elucidated by studies of fungi to be closely applicable to

metazoans such as humans, worms, and flies? For example,

we discussed the whole-genome duplication of some fungi;

how would you test the hypothesis that the human genome

also underwent a similar duplication? In comparative geno-

mics, do you expect fungi to be far more similar to each

other in their biological properties than metazoans are to

each other?
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PROBLEMS/COMPUTER LAB

SELF-TEST QUIZ

[17-1] The Saccharomyces cerevisiae is characterized by the following

properties except which one?

(a) Very high gene density (2000 base pairs per gene)

(b) Very low number of introns

(c) High degree of polymorphism

(d) 16 chromosomes

[17-2] The yeast Saccharomyces cerevisiae is an attractive model organ-

ism for many reasons. Which one of the following is NOT a

useful feature of yeast?

(a) The genome size is relatively small.

(b) Gene knock-outs by homologous recombination are possible.

(c) Large repetitive DNA sequences serve as a good model for

higher eukaryotes.

(d) There is high open reading frame (ORF) density.

[17-3] The Saccharomyces cerevisiae genome is small (it encodes about

6000 genes). It is thought that, about 100 MYA:

(a) The entire genome duplicated, followed by

tetraploidization.

(b) The genome underwent many segmental duplications,

followed by gene loss.

(c) The entire genome duplicated, followed by gene loss.

(d) The genome duplicated, followed by gene conversion.

[17-1] Use the MIPS and UCSC Genome Browsers. (1) Visit

MIPS (Q http://mips.gsf.de/genre/proj/yeast/) and select

S. cerevisiae chromosome XII. By default, the window size is

20,000 base pairs (as indicated in Fig. 17.5). Click the box

labeled “3-frame translation (forward)” or add any other

tracks of interest, and then update the image. You should see

an extra track(s) appear on the browser. (2) Use the pull-

down menu to select “Download GFF file” (also shown in

Fig. 17.5). This is a General Feature Format (.gff) file that

you can save to the desktop as a text file. Note that you may

need to reformat the file by finding all instances of the chromo-

some designation “XII” and replacing them with “12”. While

you should create your own .gff file, a working version is avail-

able as web document 17.1 at Q http://www.bioinfbook.org/

chapter17. (3) Visit the UCSC Genome Bioinformatics site

(Q http://genome.ucsc.edu/), click Genome Browser, select

“other” for clade, Saccharomyces cerevisiae as organism, and

enter “chr12:1-20000” for the query. Next, click the box

labeled “add custom tracks” and upload your .gff file, and

click submit. You can then view your custom track on the

genome browser.

[17-2] ABC transporters constitute a large family of transmembrane-

spanning proteins that hydrolyze ATP and drive the transport of

ligands such as chloride across a membrane. How many ABC

transporters are there in yeast?

[17-3] Use the Saccharomyces Genome Database:

† Go to the SGD site (Q http://www.yeastgenome.org/).

† Pick any uncharacterized ORF. To find one, use the Gene/

Seq Resources (one of the analysis tools), pick a chromo-

some (e.g, XII), then select Chromosomal Features Table.

The first hypothetical ORF listed is YLL067C.

† Explore what its function might be. For some uncharacter-

ized ORFs there will be relatively little information available;

for others you may find a lot. From the Chromosomal

Features Table click “Info” to view a page similar to that

shown in Chapter 12.

– What are the physical properties of the protein (e.g., mol-

ecular weight, isoelectric point)?

– Does the protein have known domains?

– Have interactions been characterized between this and

other proteins?

– Is the gene either induced or repressed in various physio-

logical states, such as stress response or during

sporulation?

† Try using Function Junction (at the bottom of the infor-

mation page for your ORF). This will simultaneously

search six databases:

– Yeast Path Calling (two-hybrid analysis)

– SGD SAGE query

– Worm-Yeast protein comparison

– Yeast Microarray Global Viewer

– Yeast Protein Function Assignment

– Triples database

† In what other organisms is this gene present? Compare

the usefulness of exploring SGD versus performing your

own BLAST searches to answer this question. Which is

better?

[17-4] Create a phylogenetic tree of the fungi. Web document 17.2 at

Q http://www.bioinfbook.org/chapter17 includes a set of 18S

ribosomal RNA sequences; try using these or other sequences.

Align them, and create a tree using MEGA or related software

(Chapter 7). Does the tree agree with those shown in this chap-

ter? If not, why not?
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[17-4] After gene duplication, the most common outcome is the loss of

the duplicated gene. A reasonable explanation of why this

might occur is that

(a) This second copy is superfluous.

(b) This second gene may acquire forbidden mutations that are

deleterious to the fitness of the organism.

(c) This second copy is under intense negative selection.

(d) This second copy is a substrate for nonallelic homologous

recombination.

[17-5] Comparative analyses of S. cerevisiae and two closely related

species (S. castelli and C. glabrata) allow a description of the pat-

terns of gene retention and gene loss in multiple organisms fol-

lowing whole-genome duplication. Across thousands of gene

loci in three genomes that underwent genome duplication,

which of the following occurred?

(a) For about three quarters of the loci, all three species lost one

of the two copies of a duplicated gene.

(b) For about half of the loci, no gene loss occurred.

(c) For about half of the loci, there was partial loss of both

copies of a duplicated gene.

(d) For about three quarters of all loci, all three loci lost both

copies of the duplicated gene.

[17-6] Features of the Candida albicans genome include:

(a) An accessory plasmid

(b) One of its chromosomes has a highly variable length

(c) The DNA is characterized by an extraordinarily high

amount of polymorphism

(d) The CTG codon that encodes leucine in most organisms

encodes serine in C. albicans

[17-7] The filamentous fungus Neurospora crassa has an extremely low

amount of repetitive DNA (spanning only 10% of its 39 mega-

base genome). Why?

(a) It uses chromatin diminution

(b) It uses repetitive DNA inversion

(c) It uses repeat-induced point mutations, a phenomenon in

which repeats are inactivated

(d) It uses repeat-induced synchronization to inactivate repeats

[17-8] One of the most remarkable features of the Schizosaccharomyces

pombe genome is that:

(a) It is predicted to encode fewer than 5000 proteins, making

its genome (and proteome) smaller than even some bac-

terial genomes.

(b) The number of predicted introns is about the same as the

number of predicted ORFs.

(c) It has as many genes that are homologous to bacterial genes

as it has genes that are homologous to S. cerevisiae genes.

(d) Its genome size is approximately the same as that of S. cer-

evisiae, even though these species diverged hundreds of

millions of years ago.

[17-9] Yeast is the only major research organism approved by the U.S.

Food and Drug Administration (FDA) for human

consumption.

(a) True

(b) False
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Plants, fungi, Paramecia, and many other organisms have undergone one or more rounds of whole genome duplication. For placental
mammals this is no longer an option because the sex differentiation system (with females having XX sex chromosomes and males XY)
would be disrupted by whole genome duplication, leading to sterility. Susumu Ohno (1928–2000) discussed this in his 1967 book Sex
Chromosomes and Sex-Linked Genes. He reviewed evidence that the X and Y chromosomes (or Z and W in avian and ophidian [snake]
species) were derived from an ancient pair of homologous chromosomes. Of these the X chromosome has maintained a remarkably
similar size, while the Y chromosome has undergone rapid reduction in size. This figure (Ohno, 1967, fig. 11) shows the male diploid
karyotypes of six species of placental mammals (cattle, dog, donkey, human, cat, and mouse). While there is great variability in the
number of chromosomes among mammals, the X chromosomes (indicated by arrows next to the Y chromosomes) have maintained
a relatively constant size. Used with permission.
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Eukaryotic Genomes: From
Parasites to Primates

INTRODUCTION

In this chapter we will explore individual eukaryotic genomes, from parasites to

primates. We will refer to a phylogenetic tree of the eukaryotes that was produced

by Baldauf et al. (2000) (Fig. 18.1). This tree was created by parsimony analysis

using four concatenated protein sequences: elongation factor 1a (EF-1a), actin,

a-tubulin, and b-tubulin. We already discussed fungal genomes in Chapter 17;

they are represented in a group that is adjacent to the metazoa (animals). We will

examine representative organisms in this tree, moving from the bottom up. This

includes the diplomonad Giardia lamblia and other protozoans, such as the malaria

parasite, Plasmodium falciparum; the plants, including the first sequenced plant

genome (that of the thale cress, Arabidopsis thaliana) and rice (Oryza sativa); and

the metazoans, from worms and insects to fish and mammals. We will address the

human genome in Chapter 19.

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

The phylogenetic tree of Fig. 18.1

has also been reproduced by Tyler

et al. (2006) in their description of

Phytophthora genomes of the

kingdom Stramenopila, described

below.
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Following the outline introduced in Chapter 13, we will consider five aspects of

various genomes.

1. Cataloguing information includes describing the complete sequence of each

chromosome, annotating the DNA to identify and characterize noncoding

DNA, and identifying protein-coding genes and other noncoding genes.

We will survey chromosome number and structure (such as regions of dupli-

cation or deletion). This chapter provides a large amount of information

about genome sizes. In many cases the exact size of a genome in megabases

or the exact number of genes are unknown; in some cases, even the number

of chromosomes is unknown. A goal of this chapter is to provide a survey of

currently available information about eukaryotic genomes that orients you

to the scales of genome sizes.

2. Comparative genomics is an essential part of any genome analysis. The

availability of closely related species (such as 12 Drosopholids) permits

Opisthokonta

Amoebozoa

Plantae

Heterokonta

Alveolata

Discicristata

Diplomonadida

Kingdom supergroup

Botryotinia [ECB]
Histoplasma [EAB]

Neurospora
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Mucoraceae [ECB]

Schizophyllum [EAB]
Nosema [CAB]
Encephalitozoon [CAB]

Fungi

(Microsporidia)

Metazoa

Mycetozoa
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Glaucophyta
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Heterolobosea
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Caenorhabditis
Onchocerca [ECB]

Bombyx
Drosophila

Artemia [ECA]
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Schistosoma [ECA]
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Dictyostelium

Polysphondyllium [ab]
Acytostelium [ab]

Physarum
Acanthamoeba [Cb]

Arabidopsis
Solanaceae [ECB]
Oryza

Zea
Chlamydomonas [CAB]

Volvox [CAB]
Banglophyta [ECB]

Cyanophora [ECB]
Phaeophyceae [CAB]

Achlya [CB]
Phyotphthora [CB]

Tetrahymena pyr.
Tetrahymena the.

Paramecium
Colpoda [EAB]

Histriculus [CA]
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Oxytrichida
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Trichomonas
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ATCC5033 [EAB]
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Spironucleus muris [EA]
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30 steps

FIGURE 18.1. A phylogeny of eukaryotes based on parsimony analysis of concatenated protein sequences. The proteins analyzed were
EF-1a (abbreviated E in tree), actin (C), a-tubulin (A), and b-tubulin (B). This tree may be compared to the eukaryotic portion of the
global tree of life based on small subunit ribosomal RNA sequences (Fig. 13.1). In this tree, 14 kingdoms are indicated as well as seven
supergroups. One of the supergroups, Opisthokonta, includes fungi and microsporidia (Chapter 17) and metazoa (vertebrate and
invertebrate animals). The tree was constructed by maximum parsimony and by maximum-likelihood analysis of second-codon-
position nucleotides. For taxa with missing data, the sequences used are indicated in brackets (e.g., [EAB]). Modified from Baldauf
et al. (2000). Used with permission.
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a series of questions to be addressed about recent evolutionary changes,

such as lineage-specific expansions or contractions of gene families. The

availability of distantly related species (such as fish genome sequences

that last shared a common ancestor with humans over 400 million years

ago) permits different kinds of questions to be addressed, such as the presence

of conserved gene structures and regulatory elements.

3. Biological principles can be explored through genome sequences. For

example, the genome of an underwater sea urchin unexpectedly encodes

receptors that in other animals facilitate hearing and chemoreception,

suggesting unsuspected sensory abilities of these animals. In general,

genome sequence analysis can be used in an attempt to relate the genomic

sequence to the phenotype of the organism. This phenotype includes

an organism’s strategies for adaptation to its environment, evolution,

metabolism, growth, development, maintenance of homeostasis, and

reproduction.

4. Bioinformatics approaches are constantly evolving, such as techniques for

whole genome sequencing and assembly as well as analytic tools. Analysis

of genomes involves the use of many of the tools we introduced in Chapters

2 to 7, including BLAST and molecular phylogeny. In the first third of the

book we discussed many of the complexities of multiple sequence alignment

and phylogeny, and showed that the same raw data can be used to generate

many alternative results. As you read about various genomes in this chapter,

accession numbers (for genome projects and/or genes and proteins) are pro-

vided that will allow you to independently analyze many sequence analysis

problems.

5. Analysis of genomic sequences offers a unique perspective on human disease

(and diseases afflicting other organisms). In the case of many eukaryotes—

from the protozoans such as Plasmodium to pathogenic fungi and parasitic

worms—we also want to understand the genetic basis of how the organism

causes disease and how we can counterattack. At present, there are no vac-

cines available to prevent diseases caused by any eukaryotic parasites that

infect humans, including protozoans (such as trypanosomes) and helminths

(parasitic nematodes). The availability of whole genome sequences may pro-

vide clues as to which antigens are promising targets for vaccine development

and pharmacological intervention. For example, predicted secreted surface

proteins can be expressed in bacteria and used to immunize mice in order

to develop potential vaccines (Fraser et al., 2000).

A phylogenetic description of the eukaryotes is essential for our understanding of

both evolutionary processes that shaped the development of species and the diversity

of life today. Evolutionary reconstructions that are based on molecular sequence data

typically use small subunit ribosomal RNA because it has many sites that are phylo-

genetically informative across all life forms (Van de Peer et al., 2000). We saw an

example of such a tree in Fig. 13.2. However, there is no uniform consensus on

the optimal approach to making a tree (Box 18.1 and Chapter 7). For other phyloge-

netic trees of the eukaryotes, differing in some details from Fig. 18.1, see Keeling

(2007) in an introduction to the Giardia lamblia genome project, and a detailed

review by Embley and Martin (2006).

The word protozoan derives from

the Greek proto (“early”) and zoion

(“animal”). This contrasts with

the word metazoan (animal) from

the Greek meta (“after”; at a later

stage of development) and zoion.
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PROTOZOANS AT THE BASE OF THE TREE LACKING

MITOCHONDRIA

The eukaryotes include deep-branching protozoan species from the parabasala (e.g.,

Trichomonas), diplomonadida (such as Giardia), discicristata (e.g., Euglena,

Leishmania, and Trypanosoma), alveolata (e.g., Toxoplasma and Plasmodium), and het-

erokonta (Fig. 18.1). We begin at the bottom of the tree of Fig. 18.1 by describing

Trichomonas and Giardia.

There is strong evidence that mitochondrial genes, present in most eukaryotes,

are derived from an a-proteobacterium (see Chapter 15). Previously, it was hypo-

thesized that deep-branching organisms such as Giardia and Trichomonas lack

mitochondria. They were thought to have evolved from other eukaryotes prior to

the symbiotic invasion of an a-proteobacterium. However, analyses of Giardia,

Trichomonas, and microsporidia such as Trachipleistophora hominis suggest the pre-

sence of mitochondrial genes (Embley and Hirt, 1998; Williams et al., 2002;

Lloyd and Harris, 2002). Some protists (including trichomonads and ciliates) lack

typical mitochondria but have a derived organelle called the hydrogenosome. This

membrane-bound structure produces adenosine triphosphate (ATP) and molecular

hydrogen via fermentation.

Trichomonas
Trichomonas vaginalis, a flagellated protist and member of the parabasilids, is a sexu-

ally transmitted pathogen (Fig. 18.2). The World Health Organization estimates that

BOX 18.1
Inconsistent Phylogenies

It is important to note that many phylogenetic reconstructions are inconsistent

with each other. There are three main sources of conflicting results (Philippe

and Laurent, 1998):

1. Gene duplication followed by random gene loss can cause artifacts in tree

reconstruction. This occurred at the whole-genome level in yeast

(Chapter 17) and other eukaryotes such as plants and fish (see below).

2. Lateral gene transfer can confuse phylogenetic interpretation (Chapter

15).

3. The technical artifact of long branch chain attraction can confuse

phylogenetic analyses. This is a phenomenon where the longest

branches of a tree are grouped together, regardless of the true tree

topology (See Fig. 7.29). It is essential to account for differences in

substitution rates among sites within a molecule. Reyes et al. (2000)

consider this problem in their phylogeny of the order Rodentia.

Researchers often overcome these potential problems by concatenating

multiple protein (or nucleic acid) sequences. For example, the tree in Fig. 18.1

is based on four concatenated proteins. Wang et al. (1999) used 75 genes in

their comprehensive phylogeny of animals, plants, and fungi (described below);

Kumar and Hedges (1998) studied 658 genes in 207 vertebrate species. In

another strategy, several groups have made trees based on gene content or gene

fusion events (Snel et al., 1999; Stechmann and Cavalier-Smith, 2002).

The microsporidia such as

Encephalitozoon used to be classi-

fied as deep-branching eukar-

yotes. Subsequent analysis of the

complete E. cuniculi genome

revealed that this microsporidial

parasite is closely related to the

fungi (Chapter 17 and Fig. 18.1).
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there are �170 million cases annually worldwide. Trichomonas is a single-celled

organism that resides in the genitourinary tract, where it phagocytoses vaginal epi-

thelial cells, erythrocytes, and bacteria. Its genome of �160 Mb has several remark-

able features (Carlton et al., 2007). Sixty-two percent of the genome consists of

repetitive DNA, confounding efforts to characterize the genome architecture.

Many of these repeats are of viral, transposon, or retrotransposon origin. There are

60,000 predicted protein-coding genes, one of the highest numbers among all life

forms. Several gene families have undergone massive expansion, such as protein

kinases (n ¼ 927), the BspA-like gene family (n ¼ 658), and small GTPases (n ¼

328). The BspA-like proteins are surface antigens that participate in host cell adher-

ence and aggregation. T. vaginalis has apparently acquired 152 genes by lateral gene

transfer from bacteria that thrive in the intestinal flora; most of these genes encode

metabolic enzymes.

Analysis of the draft genome sequence by Carlton et al. suggests mechanisms by

which T. vaginalis obtains its energy, functions as a parasite adhering to and invading

host cells, and degrades proteins (via a complex degradome).

Giardia lamblia: A Human Intestinal Parasite
Giardia lamblia (also called Giardia intestinalis) is a protozoan, water-borne parasite

that lives in the intestines of mammals and birds (Adam, 2001). It is the cause of

giardiasis, the most frequent source of nonbacterial diarrhea in North America.

Like some other unicellular protozoans, Giardia lack not only mitochondria but

also peroxisomes (responsible for fatty acid oxidation) and nucleoli. Thus, the

genome of Giardia could reflect the adaptations that led to the early emergence of

eukaryotic cells.

The Giardia genome is �11.7 Mb and was sequenced by the whole-genome

shotgun method (Morrison et al., 2007) (Fig. 18.3). Each cell has two morphologi-

cally identical nuclei, each nucleus having five chromosomes ranging from 0.7 to over

Genus, species: Trichomonas vaginalis

Lineage: Eukaryota; Parabasalidea; Trichomonada; 
Trichomonadida; Trichomonadidae; Trichomonadinae; 
Trichomonas; Trichomonas vaginalis G3

Haploid genome size:  ~160 Mb
GC content: 32.7%
Number of chromosomes: 6
Number of protein-coding genes: ~60,000

Disease association:  Trichomonas causes the sexually transmitted infection trichomoniasis
 (~170 million cases worldwide annually). 
Key genomic features: The Trichomonas genome encodes an extraordinarily large number of genes
                  (~60,000). A total of 65 genes have introns. 65% of the genome consists of repetitive DNA.
Entrez Genome Project: 16084
RefSeq accession number: NZ_AAHC00000000

FIGURE 18.2. The parabasala (see
Fig. 18.1) are protozoans including
Trichomonas vaginalis. Photograph
from the Centers for Disease
Control (CDC) Parasite Image
Library (Q http://www.dpd.cdc.
gov/dpdx/HTML/Image_Library.
htm) shows two trophozoites
obtained from in vitro culture.

Information on trichomoniasis is

available at Q http://www.

trichomoniasis.org/.

Giardia was the first parasitic pro-

tozoan of humans observed with a

microscope by Antony van

Leeuwenhoek (in 1681). The

diplomonadida are also called

diplomonads. This group includes

the family Hexamitidae, which

further includes the genus

Giardia. Information on Giardia is

available at the U.S. Food and

Drug Administration (Q http://
vm.cfsan.fda.gov/ �mow/
chap22.html) and the CDC

(Q http://www.cdc.gov/
healthyswimming/giardiafacts.

htm).
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3 Mb. 6470 open reading frames were identified, spanning 77% of the genome, with

1800 overlapping genes and an additional 1500 open reading frames spaced within

100 nucleotides of an adjacent open reading frame.

As we consider the genomes of various eukaryotes, a consistent theme is that

transposable elements are extremely abundant, occupying half the entire human

genome (Chapter 19) and causing massive genomic rearrangements. Thus, in

order to understand their origins and their function, it is of interest to find eukaryotes

that lack these elements. Giardia provides such an example. Arkhipova and Meselson

(2000) examined 24 eukaryotic species for the presence of two major classes of trans-

posable elements (retrotransposon reverse transcriptases and DNA transposons).

They found them present in all species except bdelloid rotifers, an asexual animal.

Deleterious transposable elements thrive in sexual species, but they are unlikely to

propagate in asexual species because of strong selective pressure against having

active elements. Further inspection of the asexual Giardia by Arkhipova and

Morrison (2001) revealed just three retrotransposon families. One of these is inactive,

and the other two are telomeric. This location could provide a buffer between

protein-coding genes and the telomeres, and these elements could contribute to

the ability of Giardia to vary the length of its chromosomes in response to environ-

mental pressures—for example, chromosome 1 can expand from 1.1 to 1.9 Mb

(Pardue et al., 2001).

Another basic question about eukaryotic genomes is the origin of introns.

Spliceosomal introns occur commonly in the “crown group” of eukaryotes (the king-

doms Animalia, Plantae, and Fungi). However, their presence in the earliest branch-

ing protozoa has been disputed ( Johnson, 2002), and introns have not been detected

in parabasalids such as Trichomonas. Nixon et al. (2002) identified a 35 bp intron in a

gene encoding a putative [2Fe-2S] ferredoxin, and analysis of the draft genome

sequence by Morrison et al. (2007) identified three more. Simpson et al. (2002)

also identified several introns in Carpediemonas membranifera, a eukaryote thought

to be a close relative of Giardia. These findings suggest that if introns were a

FIGURE 18.3. The Diplomonadida
(see Fig. 18.1) are protozoans
including Giardia. Image shows
three trophozoites stained with
Giemsa (from the CDC Parasite
Image Library, Q http://www.
dpd.cdc.gov/dpdx/HTML/Image_
Library.htm). Each protist has two
prominent nuclei.

Genus, species: Giardia lamblia

Lineage:  Eukaryota; Diplomonadida; Hexamitidae; 
Giardiinae; Giardia; Giardia lamblia ATCC 50803

Haploid genome size: 12 Mb
GC content: 49%
Number of chromosomes: 5
Number of protein-coding genes: 6,470
Number of genes per kilobase: 0.58

Disease association: Giardia causes ~100 million infections annually, and is the most prevalent
              parasitic protist in the United States. 
Key genomic features: Giardia lacks mitochondria, hydrogenosomes, and peroxisomes. The 
             organism has two similar,  active, diploid nuclei. The genome encodes simplified machinery
             for DNA replication, transcription and RNA processing. There are no Krebs cycle proteins
             and few genes encoding proteins involved in amino acid metabolism.
Entrez Genome Project: 1439
Project accession number: AACB02000000
Key website: GiardiaDB (http://www.giardiadb.org)

Organisms that lack peroxisomes

could provide us insight into fatty

acid metabolism or other meta-

bolic processes. This in turn could

prove helpful to our understand-

ing of human diseases that affect

such organelles. The most

common human genetic disorder

affecting peroxisomes is adreno-

leukodystrophy, caused by

mutations in the ABCD1 gene

(RefSeq accession NM_000033).

Does Giardia have an ortholog of

this gene?

The Giardia genome project web-

site is at Q http://www.giardiadb.

org/giardiadb/.

You can study the Giardia ferre-

doxin gene at GenBank (DNA

accession AF393829). To find the

intron, try using BLAST (Chapter

4) to compare the protein (or the

DNA encoding the protein) to the

genomic DNA. Note that the

project accession number for this

organism (given in Fig. 18.3;

AACB00000000) points to a set of

whole genome shotgun sequence

reads (accessions

AACB02000001 to

AACB02000306). To perform the

blast search, go to blastn, use the
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eukaryotic adaptation, they arrived early in evolution and possibly in the last common

eukaryotic ancestor.

GENOMES OF UNICELLULAR PATHOGENS:
TRYPANOSOMES AND LEISHMANIA

Trypanosomes
There are about 20 species in the protozoan genus Trypanosoma (reviewed in

Donelson, 1996). Two of these are pathogenic in humans (Cox, 2002).

Trypanosoma brucei subspecies cause several forms of sleeping sickness, a fatal disease

that infects hundreds of thousands of people in Africa (Fig. 18.4). Trypanosoma cruzi

causes Chagas disease, prevalent in South and Central America. The adverse impact

of these trypanosomes is even greater because they also afflict livestock. Tsetse flies or

other insects transmit the trypanosomes to humans.

Several Trypanosome genome project websites offer information on the biology of

these parasites as well as sequencing information (Table 18.1). Berriman et al. (2005)

reported the genome sequence of T. brucei. The genome is 26 Mb, although its size

varies by up to 25% in different isolates (reviewed in El-Sayed et al., 2000). There

are at least 11 pairs of large, diploid, nuclear chromosomes (ranging in size from

about 1 Mb to .6 Mb). Additionally, there are variable numbers of intermediate

chromosomes (200 to 900 kb), and there are about 100 linear minichromosomal

DNA molecules (50 to 150 kb). Some of these minichromosomes contain a 177

bp repeat that comprises more than 90% of the total sequence (El-Sayed et al.,

2000). The genome includes 9068 predicted genes, of which about 900 are pseudo-

genes and �1700 are specific to T. brucei.

Genus, species: Trypanosoma brucei
          Trypanosoma cruzi
          Leishmania major (Friedlin strain)

Lineage:  Eukaryota; Euglenozoa; Kinetoplastida (order); 
Trypanosomatidae (family); Trypanosoma

T. brucei T. cruzi L. major
Haploid genome size: 35 Mb 60 Mb 32.8 Mb
GC content 46.4% 51% 59.7%
Number of chromosomes: 11* ~28 (variable) 36
Number of genes (incl. pseudogenes) 9,068 ~12,000 8,311
   * includes ~100 mini- and intermediate size chromosomes

Disease association:  T. brucei causes trypanosomiasis (sleeping sickness). The incidence is 300,000
              to 500,000 cases per year.  T. cruzi causes Chagas disease in humans; 16–18 million people
              are infected, with 21,000 deaths per year.  Leishmaniasis is an infectious disease with 2
              million new cases annually and 350 million people at risk; 20 Leishmania species infect
              humans. No vaccines and few drugs are available.
Key genomic features: These three species share a conserved core proteome of ~6,200 proteins.
Entrez Genome project identifiers: 11756 (T. brucei),  11755 (T. cruzi), 10724 (L. major).

FIGURE 18.4. The Euglenozoa
(see Fig. 18.1) include the kineto-
plastid parasitic protozoa Trypano-
soma brucei, T. cruzi, and
Leishmania major. The image
(from the CDC Parasite Image
Library) shows a T. brucei from a
blood smear in the trypomastigotes
stage. There is a centrally located
nucleus, a small kinetoplast at the
posterior end (upper right), and
an undulating membrane with a
flagellum exiting the body at the
anterior end. The length ranges
from 14 to 33 mm.

query AF393829, set the database

to WGS, and include the Entrez

Query AACB02000001:

AACB02000306[PACC].

Tsetse flies are insects that feed on

vertebrate blood. To obtain

additional nutrients beyond what

is available in blood, tsetse flies

harbor two obligate intracellular

bacteria: Wigglesworthia glossinidia

and Sodalis glossinidius. The

W. glossinidia genome was

sequenced (see RefSeq accession

NC_004344). Similar to other

intracellular bacteria (Chapter

15), it has a reduced genome size

of only 700,000 bp (Akman et al.,

2002). For a description of the T.

brucei lifecycle, see Q http://www.

dpd.cdc.gov/dpdx/HTML/
TrypanosomiasisAfrican.htm.
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Another remarkable feature of trypanosomes is the presence of a massive net-

work of circular rings of mitochondrial DNA, termed kinetoplast DNA.

Thousands of rings of kinetoplast DNA interlock in a shape resembling medieval

armor (Shapiro and Englund, 1995). Kinetoplast DNA occurs as maxicircles (pre-

sent in several dozen copies) and minicircles (present in thousands of copies).

These include a universal minicircle sequence of 12 nucleotides that serves as a repli-

cation origin (Morris et al., 2001).

For a major portion of their life cycles, trypanosomes thrive in the bloodstreams

of their hosts. They evade assault from the immune system by densely coating their

exteriors with variant surface glygoprotein (VSG) homodimers. There are over

1000 VSG genes and pseudogenes encoded in the T. brucei genome, of which only

one is expressed at a time (Berriman et al., 2005; reviewed by Taylor and

Rudenko, 2006). Remarkably, fewer than 7% of these encode functional proteins,

while 66% encode full-length pseudogenes and the remainder are gene fragments

or otherwise atypical. Most of the VSG genes are located in subtelomeric arrays of

from three to 250 copies. Taylor and Rudenko suggest that the pseudogenes could

be advantageous in the generation of antigenic diversity during chronic infections

of the bloodstream. The limited number of intact VSG genes could be used, but

also segmental gene conversion of pseudogenes could create novel, intact, mosaic,

VSG genes.

T. cruzi infects 16 to 18 million people and is the cause of 21,000 deaths per year

from Chagas disease. El-Sayed et al. (2005a) reported the diploid genome sequence

of two different haplotypes that averaged 5.4% sequence divergence. The diploid

genome size is �106 to 111 Mb and is predicted to contain 22,570 genes, while

the haploid genome contains �12,000 genes. There is a notable large family of

1377 copies of mucin-associated surface protein (masp) genes. They may be involved

in immune system evasion.

Leishmania
Leishmania major is another deadly protozoan parasite in the Euglenozoa (Fig. 18.1).

Twenty different species of Leishmania cause the disease leishmaniasis, for which

there is no effective vaccine and limited pharmacological intervention available.

The annual incidence is two million cases. These various Leishmania species have

from 34 to 36 chromosomes (Myler et al., 2000). While the Old World groups

L. major and L. donovani have 36 chromosome pairs (ranging from 0.28 to 2.8 Mb),

New World groups L. mexicana and L. braziliensis have undergone chromosomal

fusions (Chapter 16) and have 34 or 35 chromosomal pairs.

The Leishmania major genome is about 34 Mb with 36 chromosomes (from 0.3

to 2.5 Mb). Several Leishmania genome web resources are listed in Table 18.2. The

TABLE 18-1 Web Resources forTrypanosome Genomics
Resource Comment URL

The Trypanosoma brucei
Genome Project

Sponsored by the Wellcome
Trust Sanger Institute

Q http://www.sanger.ac.
uk/Projects/T_brucei/

Trypanosoma brucei Genome
Project

TIGR Database Q http://www.tigr.org/
tdb/e2k1/tba1/intro.
shtml

Trypanosoma cruzi Genome
Initiative Information Server

From the Oswaldu Cruz
Institute, Brazil

Q http://www.dbbm.
fiocruz.br/TcruziDB/

For information on sleeping sick-

ness, see the World Health

Organization website at Q http://
www.who.int/tdr/diseases/tryp/
default.htm.

The accession number of a typical

VSG protein from T. brucei is

XP_822273. Try a PSI-BLAST

searching using it as a query, and

contrast the results of the first and

second or further iterations.

The Trypanosoma brucei GeneDB

is available at Q http://www.

genedb.org/genedb/tryp.

See problem 18.3 for an exercise

on a trypanosome universal mini-

circle binding protein. For an

example of a maxicircle sequence

and the genes it encodes, see

GenBank accession M94286.

The World Health Organization

offers information on leishmania-

sis at Q http://www.who.int/tdr/
diseases/leish/default.htm.

736 EUKARYOTIC GENOMES: FROM PARASITES TO PRIMATES



nucleotide sequence was determined for chromosome 1 (the smallest chromosome)

and was found to have a remarkable genomic organization (Myler et al., 1999). The

first 29 genes (from the left telomere) are all transcribed from the same DNA strand,

while the remaining 50 genes are all transcribed from the opposite strand. This

polarity is unprecedented in eukaryotes and resembles prokaryote-like operons. It

has a 257 kb region that is filled with 79 protein-coding genes (�1 gene each 3200

bp). Ivens et al. (2005) reported the L. major genome sequence (Fig. 18.4). There

are 8272 predicted protein-coding genes, including �3000 that cluster into 662

different families of paralogs. These families arose principally by tandem gene

duplication. The L. major genome encodes relatively few proteins involved in tran-

scriptional control, and gene duplication may be a mechanism for increasing

expression levels.

In addition to L. major (32.8 Mb), Peacock et al. (2007) sequenced the genomes

of Leishmania infantum (32.0 Mb) and L. braziliensis (32.0 Mb). The three genomes

share a comparable GC percentage and number of predicted genes. L. major and

L. braziliensis diverged between 20 and 100 million years ago; this broad range of esti-

mates reflects uncertainty as to whether the Leishmania genus speciated due to

migration events or to the breakup of the supercontinent Gondwanda (see Fig.

13.3). L. braziliensis has 35 chromosomes rather than 36 because of the fusion of

chromosomes 20 and 34. There is conserved synteny for more than 99% of the

genes across the three genomes, and the average nucleotide and amino acid identities

are high (e.g., 92% amino acid identity between L. major and L. infantum). Although

many pathogenic protozoans have large gene families involved in immune evasion

localized to subtelomeric regions, such families are not evident in the Leishmania

species. Remarkably, Peacock et al. identified only 5 genes that are specific to

L. major, 26 L. infantum-specific genes, and �47 L. braziliensis-specific genes.

Comparisons of the three trypanosomatid genomes of L. major, T. brucei, and

T. cruzi have revealed a shared core of 6200 genes (El-Sayed et al., 2005b). Some

protein domains are specific to just one group, such as the variant surface glyco-

protein (VSG) expression site-associated domains (Pfam families PF03238 and

PF05446) in T. brucei. Some domains appear to have expanded or contracted selec-

tively, and insertions, deletions, and substitutions occurred. However, there is a

notable high overall gene conservation between the three species. El-Sayed et al.

(2005b) measured the number of nonsynonymous substitutions per nonsynonymous

site (dN; see Chapter 7) for every COG (Chapter 15) for which there was a 1:1:1

orthologous relationship between the genomes. This provided a measure of which

genes are evolving rapidly and may be under positive selection. Most of these had

no functional annotation, while other genes encoded transport proteins that may

be exposed to the host immune system and thus evolve rapidly.

TABLE 18-2 Web Resources for Leishmania Genomics
Resource Comment URL

The Leishmania major Friedlin
Genome Project

At the Wellcome Trust
Sanger Institute

Q http://www.sanger.ac.uk/
Projects/L_major/

Seattle Biomedical Research
Institute (SBRI)

Information on various
infectious diseases

Q http://www.genome.sbri.
org/

The European Leishmania major
Friedlin Genome Sequencing
Consortium

A listing of
participating
laboratories

Q http://www.sanger.ac.uk/
Projects/L_major/
EUseqlabs.shtml
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THE CHROMALVEOLATES

The Chromalveolates are a supergroup of unicellular eukaryotes, distinct from the

Excavates (such as Giardia). Many of them have cryptic mitochondria (e.g., hydro-

genosomes rather than traditional mitochondria). They include six groups or phyla

(Keeling, 2007): (1) the Apicomplexa consist of protozoan pathogens that invade

host cells using a specialized apical complex. They are typically transmitted by an

invertebrate vector such as mosquitoes or flies. This phylum includes parasites

such as P. falciparum and Toxoplasma gondii. (2) Dinoflagellates; these include a

cause of paralytic shellfish poisoning, Alexandrium. (3) Ciliates include Paramecium

and Tetrahymena thermophila; (4) Heterokonts; (5) Haptophytes; and (6) Crypto-

monads. In the tree of Fig. 18.1, these groups are organized as the Apicomplexa,

Ciliophora, and Heterokonta. In the following sections of this chapter we will turn

to the Virdiplantae (plants), the Mycetozoa, and the Metazoa (animals).

Malaria Parasite Plasmodium falciparum and Other
Apicomplexans
Malaria kills about 2.7 million people each year, mostly children in Africa, and almost

500 million people are newly infected each year. It is caused by the apicomplexan

parasite Plasmodium falciparum. While there are 120 species of Plasmodium, only

four infect humans: P. falciparum, P. vivax, P. ovale, and P. malariae. The main

vector for malaria in Africa is the mosquito, A. gambiae.

Plasmodium falciparum has a complex lifestyle, contributing to the challenge of

developing a successful vaccine (Cowman and Crabb, 2002; Wirth, 2002; Long

and Hoffman, 2002). Plasmodium resides in the salivary glands and gut of the mos-

quito A. gambiae. When a mosquito bites a human, it introduces the parasite in the

sporozoite form that infects the liver. Plasmodium then matures to the merozoite

form, which attaches to and invades human erythrocytes through host cell receptors.

Within erythrocytes, trophozoites form. Some merozoites transform into gameto-

cytes, which are captured when mosquitoes feed on infected individuals. A goal of

sequencing the P. falciparum genome is to find gene products that function at selective

stages of the parasite life cycle, offering targets for drug therapy or vaccine

development.

The complete genome sequence of P. falciparum was reported by an international

consortium (Gardner et al., 2002) (see Fig. 18.5). The sequencing was extraordi-

narily challenging because the AT (adenine and thymine) content of the genome is

80.6% overall, which is the highest for any eukaryotic genome. In intergenic regions

and introns, the AT content reached 90% in some cases. A whole-chromosome

(rather than a whole-genome) shotgun sequencing strategy was employed. With

this approach, chromosomes were separated on pulsed-field gels, DNA was

extracted, and shotgun libraries containing 1 to 3 kb of DNA were constructed and

sequenced. The genome is 22.8 Mb, with 14 chromosomes from 0.6 to 3.3 Mb.

Gardner et al. (2002) identified 5268 protein-coding genes in P. falciparum. This

is the same number as is predicted for Schizosaccharomyces pombe (Chapter 17),

although the genome size is twice as large. There is one gene approximately every

4300 bp overall. Gene Ontology Consortium terms (Chapter 10) were assigned to

about 40% of the gene products (�2100). However, about 60% of the predicted pro-

teins have no detectable homology to proteins in other eukaryotes. These proteins are

potential targets for drug therapies. For example, some are essential for the function

The name Apicomplexa derives

from a characteristic apical com-

plex of microtubules. You can read

more about apicomplexans online

at Q http://www.ucmp.berkeley.

edu/protista/apicomplexa.html

or Q http://www.tulane.edu/ �
wiser/protozoology/notes/api.

html. For online facts on malaria,

see Q http://malaria.wellcome.ac.

uk/ and Q http://www.who.int/
tdr/diseases/malaria/default.htm.

Charles Louis Alphonse Laveran

won a Nobel Prize in 1907 for his

work on malaria-causing parasites

(Q http://nobelprize.org/nobel_

prizes/medicine/laureates/1907/).

Earlier, Ronald Ross was awarded

a Nobel Prize for his studies of

malaria (Q http://nobelprize.org/
nobel_prizes/medicine/
laureates/1902/).

The P. falciparum genome was

sequenced by a consortium

including the Wellcome Trust

Sanger Institute, the Institute for

Genomic Research, the U.S.

Naval Medical Research Center

(NMRC, Maryland), and

Stanford University. The genome
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of the apicoplast. This is a plastid, unique to Apicomplexa and homologous to the

chloroplast, that functions in fatty acid and isoprenoid biosynthesis.

There are several main resources on the web to study P. falciparum (Table 18.3).

PlasmoDB (Stoeckert et al., 2006) is the centralized resource for genomic data.

There are many complementary resources such as ProtozoaDB (Dávila et al., 2008).

In addition to the initial P. falciparum genome project, the genomes of 20

Plasmodium species or strains have been partially or completely sequenced as of

2008. A consortium sequenced the genome of the rodent malaria parasite,

Plasmodium yoelii yoelii (Carlton et al., 2002); and Hall et al. (2005) sequenced the

genomes of the rodent malaria parasites Plasmodium berghei and P. chabaudi.

TABLE 18-3 Genomics Resources for Plasmodium falciparum and Malaria
Resource Comment URL

PlasmoDB Main web resource for P.
falciparum

Q http://www.plasmodb.org/

Links page At NCBI Q http://www.ncbi.nlm.nih.gov/
projects/Malaria/related_links.html

P. falciparum Genome
Project

At the Sanger Institute Q http://www.sanger.ac.uk/Projects/
P_falciparum/

Genus, species: Plasmodium falciparum
  
Selected lineages: Eukaryota; Alveolata; Apicomplexa; Aconoidasida; 
Haemosporida; Plasmodium; Plasmodium (Laverania); 
Plasmodium falciparum

Eukaryota; Alveolata; Apicomplexa; Aconoidasida; Piroplasmida; 
Theileriidae; Theileria; Theileria annulata

Eukaryota; Alveolata; Apicomplexa; Coccidia; Eucoccidiorida; 
Eimeriorina; Sarcocystidae; Toxoplasma; Toxoplasma gondii RH

            Haploid          GC content        Number of        Number of        Entrez
            genome size      chromos.          genes               Genome ID

P. falciparum 3D7           22.8 Mb         19.4%      14          5,268                13173
P. yoelli yoelli           23.1 Mb         22.6%                14                     5,878                1436
Babesia bovis           8.2 Mb           41.8%    4                       3,671                18731
Cryptosporidium hominis       9.2 Mb           31.7%    8          3,956                13200
Cryptosporidium parvum        9.1 Mb           30.3%    8          3,886                144
Theileria annulata           8.4 Mb           32.5%    4          3,792                153
Theileria parva           8.3 Mb            34.1%    4          4,035                16138
Toxoplasma gondii           65 Mb            n/a                       9          8,032                16727

Selected divergence dates:  the Apicomplexa lineage originated less than 1,000 million years ago.
Disease association:  Each of these apicomplexans is a parasite that causes disease in mammals. 
              B. babesi causes babesiosis, a tick-borne disease that threatens half the cattle
              in the world.  P. falciparum causes malaria. T. gondii causes toxoplasmosis.
Key genomic features: Theileria parasites are the only eukaryotes that transform lymphocytes 
              (and thus induce lymphoma). 
Organism-specific web resources:  ApiDB for apicomplexans (http://www.apidb.org/apidb/);
              PlasmodDB for Plasmodium (http://plasmodb.org).

FIGURE 18.5. The Apicomplexa
(see Fig. 18.1) include the malaria
parasite Plasmodium falciparum.
This image shows multiply infected
red blood cells in thin blood smears
(from the CDC Parasite Image
Library).

of the slime mold Dictyostelium

discoideum also has a high AT

content (see below).

A plastid is any photosynthetic

organelle. The most well-known

plastid is the chloroplast, found in

green algae and land plants

(Gilson and McFadden, 2001).

See the section on plants below.
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Jeffares et al. (2007) performed shallow (e.g., one- to fivefold rather than the

traditional sevenfold to 12-fold) coverage of the P. falciparum genome from a clinical

isolate in Ghana, a laboratory isolate, and the chimpanzee parasite P. reichenowi.

What is the significance of sequencing additional Plasmodium genomes? In the case

of P. yoelli yoelli, P. berghei, and P. chabaudi this is an extremely important accomplish-

ment because the complete life cycle of P. falciparum cannot be maintained in vitro,

while the rodent parasites can. The P. yoelli yoelli genome is 23.1 Mb and has 14 chromo-

somes, as does P. falciparum. The AT content is comparably high (77.4%). The gen-

omes are also predicted to encode a comparable number of genes. When the full set

of predicted P. falciparum proteins (5268) were searched against the predicted P. yoelii

yoelii proteins (5878 proteins) by BLAST searching (with an E value cutoff of 10–15),

3310 orthologs were identified. These include vaccine antigen candidates known to

elicit immune responses in exposed humans (Carlton et al., 2002).

Having the genome sequences of P. falciparum and several rodent parasites avail-

able, how can bioinformatics and genomics approaches be used to understand the

basic biology of these organisms? Data are now available on thousands of previously

unknown genes, offering many new potential strategies to combat malaria (Hoffman

et al., 2002).

† The apicoplast is a potential drug target. Zuegge et al. (2001) analyzed the

amino-terminal sequences of 84 proteins targeted to apicoplasts and 102 non-

apicoplast (e.g., cytoplasmic, secretory, or mitochondrial) sequences. They

used principal components analysis, neural networks, and self-organizing

maps (Chapter 9) to build a predictive model for apicoplast targeting signals.

† Comparative genomics approaches yield important insight into the genome

structure, gene content, and other genomic features of closely related species.

Carlton et al. (2001) compared ESTs and genome survey sequences

(see Chapter 2) from P. falciparum, P. vivax, and P. berghei. As part of this

analysis, they identified the most highly expressed genes, such as the rif gene

family of P. falciparum that is implicated in antigenic variation.

† Hall et al. (2005) measured synonymous versus nonsynonymous substitution

rates in genes from three rodent Plasmodium species in comparison to

P. falciparum. They measured gene expression, categorizing transcripts

according to the four categories of housekeeping; host-related; invasion, repli-

cation, and development-related; or stage-specific.

† A map of conserved syntenic regions between P. yoelii yoelii and P. falciparum,

covering over 16 Mb overall, provides insight into the evolution of these

parasites. Carlton et al. (2002) used the MUMmer program (Chapter 15)

to align protein-coding regions. The conserved synteny map reveals regions

of conserved gene order, allows analysis of chromosomal break points, and

confirms the absence of some genes (such as var and rif in P. yoelii yoelii).

† Genes that function in antigenic variation and immune system evasion can be

investigated. In P. vivax, there are as many as 1000 copies of vir, a gene family

localized to subtelomeric regions. Plasmodium yoelii yoelii has 838 copies of a

related gene, yir (Carlton et al., 2002).

† Several groups applied proteomics approaches to analyze the proteins of

P. falciparum at four stages of the life cycle (sporozoites, merozoites, tropho-

zoites, and gametocytes). Florens et al. (2002) identified 2415 expressed

proteins, about half of which are annotated as hypothetical. An unexpected

For an NCBI website on malaria

genetics and genomics, visit

Q http://www.ncbi.nih.gov/
projects/Malaria/.

The Prediction of Apicoplast

Targeted Sequences (PATS) data-

base is available at Q http://gecco.

org.chemie.uni-frankfurt.de/
pats/pats-index.php.

We encountered vir in Chapter 5

(problem 5.2) where we used both

BLASTand PSI-BLAST to

evaluate the family.
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finding was that the var and rif genes—thought to be involved in immune

system invasion—were abundantly present in the sporozoite stage. Together,

these studies define stage-specific expression of proteins, suggesting possible

protein functions. Proteomics approaches also validate the gene-finding

approaches from genomic DNA. Lasonder et al. (2002) identified some

protein sequences by mass spectrometry that were not initially predicted

using gene-finding algorithms to analyze genomic DNA.

† It is possible to identify Plasmodium metabolic pathways as therapeutic targets

(Gardner et al., 2002; Hoffman et al., 2002). All organisms studied to date

synthesize isoprenoids using isopentyl diphosphate as a building block. An

atypical pathway employed by some plants and bacteria involves 1-deoxy-D-

xylulose 5-phosphate (DOXP). This DOXP pathway is absent in mammals.

Jomaa et al. (1999) used tblastn (with a bacterial DOXP reductoisomerase

protein as a query against a Plasmodium genomic DNA database) and found

an orthologous Plasmodium gene. They showed that this protein is likely loca-

lized to the apicoplast and that P. falciparum survival is sensitive to low levels of

two inhibitors of the enzyme. They further showed that these drugs have anti-

malarial activity in mice infected with Plasmodium vinckei. This type of bioin-

formatics-based approach holds great promise in the search for additional

antimalarial drugs.

There are 5000 species in the phylum Apicomplexa, causing a wide range of

diseases by mechanisms that are now being elucidated through genome sequence

analysis (reviewed in Roos, 2005). Other apicomplexan genomes that have been

sequenced include the following (summarized in Fig. 18.5):

† Babesia bovis, the cause of tick fever in cattle, threatens livestock globally.

Brayton et al. (2007) reported its genome sequence. It has extremely limited

metabolic potential, lacking genes encoding proteins that are required for

gluconeogenesis, the urea cycle, fatty acid oxidation, and heme, nucleotide,

and amino acid biosynthesis. Thus it relies on its host for many nutrients,

and the B. bovis genome encodes many transporters. Analogous to

Plasmodium falciparum, its genome encodes about 150 copies of a poly-

morphic variant erythrocyte surface antigen protein (ves1 gene) family.

† Theileria annulata and T. parva are tick-borne parasites that cause tropical

theilorisosis and East Coast fever, respectively, in cattle. Pain et al. (2005) and

Gardner et al. (2005) reported their genome sequences. T. parva reversibly,

malignantly transforms its host cell, the bovine lymphocyte, causing

lymphoma; T. annulata transforms macrophages. The T. parva genome encodes

about 20% fewer genes than P. falciparum, but it has a higher density of genes.

† Cryptosporidium hominis causes diarrhea and acute gastroenteritis. Unlike

other Apicomplexans that are transmitted via an invertebrate host, C. hominis

is transmitted by ingestion of oocytes in water. Xu et al. (2004) sequenced the

C. hominis genome, while Abrahamsen et al. (2004) sequenced the related

parasite C. parvum that infects humans and other mammals. Like B. bovis

and many other parasites, these genomes have very limited metabolic capabili-

ties and rely on host cells for nutrients.

† Toxoplasma gondii causes toxoplasmosis. The Centers for Disease Control esti-

mates that 60 million people in the United States are infected, although most

Isoprenes are five-carbon chemi-

cal molecules that combine to

form many thousands of natural

compounds, including steroids,

retinol, and odorants. (RBP and

OBP are lipocalins that transport

isoprenoids.)
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are asymptomatic. After infection, oocysts and tissue cysts transform into

tachyzoites and localize in neural and muscle tissue. The T. gondii genome

is currently being sequenced.

Astonishing Ciliophora: Paramecium and Tetrahymena
Ciliates are unicellular eukaryotes that are part of the monophyletic alveolate clade

that includes the Apicomplexans (see Fig. 18.1). Ciliates share two properties:

they use vibrating cilia for locomotion and food capture, and they have two nuclei

with separate germline and somatic functions (nuclear dimorphism). One nucleus

is a diploid germinal micronucleus that undergoes meiosis and thus is responsible

for transmitting genetic information to the progeny (but is otherwise silent). The

other is a polyploid somatic macronucleus that is responsible for gene expression.

This macronucleus is lost with each generation and is replenished following meiosis

and development of the micronuclear lineage.

Paramecium tetraurelia is a ciliate that lives in freshwater environments. It has long

served as a model organism for many aspects of eukaryotic biology. Paramecium has

an unknown number of micronuclear chromosomes (.50) (Fig. 18.6). As the

macronuclear chromosome develops, it is amplified to �800 copies and it is

rearranged extensively through a process of DNA elimination. Tens of thousands

of unique copy elements are removed, and in a separate process transposable

elements and other repeats are deleted. This leads to a fragmented set of about

200 acentric chromosomes, ranging in size from �50 kilobases to 981 kilobases.

Aury et al. (2006) sequenced the Paramecium macronuclear genome which, although

fragmented, is genetically homogeneous because of the sexual process of autogamy

FIGURE 18.6. The Ciliophora (see
Fig. 18.1) include Paramecium
and Tetrahymena. In some classifi-
cations, the Apicomplexa and
Ciliophora are grouped together to
form the Alveolata. Image from
the National Human Genome
Research Institute (Q http://
www.genome.gov/17516871).

Genus, species: Paramecium tetraurelia
         Tetrahymena thermophila
         Sterkiella histriomuscorum (also
         called Oxytricha trifallax)
  
Lineage: Eukaryota; Alveolata; Ciliophora; Intramacronucleata; 
Oligohymenophorea; Peniculida; Parameciidae; Paramecium; 
Paramecium tetraurelia

Lineage: Eukaryota; Alveolata; Ciliophora; Intramacronucleata; 
Oligohymenophorea; Hymenostomatida; Tetrahymenina; 
Tetrahymenidae; Tetrahymena; Tetrahymena thermophila

   Haploid      GC content             Number of       Number of       Entrez
   genome size                      chromos.     genes              Genome ID

Paramecium tetraurelia 
     (macronuclear genome)  ~72 Mb      28%                  ~200     39,642          18363
Tetrahymena thermophila
     (macronuclear genome) ~104 Mb      22%                  ~225     27,424          12564
Sterkiella histriomuscorum 
     (macronuclear genome) ~50 Mb      not avail.                ~24,500     ~26,800           12857 

Selected divergence dates:  the ciliates diverged from other eukaryotes ~one billion years ago. 
Key genomic features: Paramecium has a macronuclear nucleus (with somatic functions) and a 
           diploid micronuclear nucleus (with germline functions). The gene content is extraordinarily
           high, and the genome underwent at least three whole genome duplications.
Organism-specific web resources:  http//www.ciliate.org; http://paramecium.cgm.cnrs-gif.fr/.

Sterkiella histriomuscorum  (Oxytricha trifallax)

The T. gondii database ToxoDB is

available at Q http://toxodb.org/
toxo/ (Gajria et al., 2008).

We discussed chromatin dimin-

ution in nematodes in Chapter 16.
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by which it arose. The total coverage was 72 Mb, and most of the 188 largest scaffolds

likely represent macronuclear chromosomes because they contain telomeric repeats.

While the presence of two nuclei and the process of DNA rearrangement and

elimination are extraordinary, another startling finding is that Paramecium encodes

about 40,000 protein-coding genes (a far greater number than is found in animals

or fungi). The genome sequencing process resulted in the creation of several hundred

scaffolds. As we view the scaffold 1, corresponding to the longest chromosome

observed by pulsed-field gel electrophoresis, we can see the compact nature of the

coding portion of the genome (Fig. 18.7). Across the genome, 78% of the nucleotides

occur in genes, and the intergenic regions average 352 bases.

Yet another surprising finding is the series of three whole genome duplications

that Aury et al. (2006) inferred (Fig. 18.8). All proteins were searched against each

other using the Smith–Waterman algorithm (Chapter 3). Two thirds of the predicted

proteins occur in paralog pairs, maintaining conserved synteny across large portions

of the chromosomes. The other third of the proteins presumably lost their duplicates

after the whole genome duplication event(s). The situation contrasts with the fungi

(Chapter 17) and plant and fish genomes (see below) in which whole genome

duplication events are followed by rapid gene loss and large-scale chromosomal

rearrangements. By inferring ancestral blocks and then iteratively repeating the

within-proteome alignments to search for conserved blocks sharing progressively

less conservation, Aury et al. inferred the occurrence of three whole-genome dupli-

cations (Fig. 18.8). For a discussion of the software used to make the figure, see

Box 18.2.

Tetrahymena thermophila is another ciliate that has long served as a model organ-

ism for biological research (Collins and Gorovsky, 2005). Discoveries made using

Tetrahymena include catalytic RNA, telomeric repeats, telomerase, and the function

of histone acetylation. Eisen et al. (2006) reported the sequence of its macronuclear

genome which is 104 Mb and composed of about 225 chromosomes with a ploidy

of �45. In marked contrast to Paramecium, they did not find evidence for either seg-

mental or whole genome duplications. The relatively high gene count is explained by

extensive tandem duplication of genes. The availability of the macronuclear genome

FIGURE 18.7. The Paramecium
genome is proposed to have under-
gone at least three whole genome
duplications. The longest chromo-
some (scaffold 1 of the genome
assembly) is viewed in the genome
browser of ParameciumDB. A
region of 400,000 base pairs is dis-
played, and the annotation tracks
show the conservation to many
paralogs reflecting recent, inter-
mediate, and old whole genome
duplications. The browser is avail-
able at Q http://paramecium.cgm.
cnrs-gif.fr.

The Paramecium genome project

website, including the

ParameciumDB genome browser,

is at Q http://paramecium.cgm.

cnrs-gif.fr/.

A primary Tetrahymena genome

database is at Q http://www.

ciliate.org/, while a Tetrahymena

genome sequencing website is at

Q http://lifesci.ucsb.edu/
�genome/Tetrahymena/.
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FIGURE 18.8. Whole genome dup-
lication in the ciliate Paramecium
tetraurelia is inferred by analysis
of protein paralogs. The outer
circle displays all chromosome-sized
scaffolds from the genome sequen-
cing project. Lines link pairs of
genes with a “best reciprocal hit”
match. The three interior circles
show the reconstructed ancestral
sequences obtained by combining
the paired sequences from each pre-
vious step. The inner circles are pro-
gressively smaller and reflect fewer
conserved genes with a smaller aver-
age similarity. From Aury et al.
(2006). Used with permission.

BOX 18.2
Graphically Representing Whole Genome Duplications

We introduced the ideogram as a representation of a karyotype in Chapter 16.

Traditionally, linear eukaryotic chromosomes are depicted as straight bars.

However, when depicting the relationships between genes (or proteins or other

elements) on multiple chromosomes, the patterns of relationships can be so

complex that the visual presentation is confusing. Circular plots offer a concise

way to view relationships between chromosomal elements. Figure 18.8 shows

an example of Paramecium chromosomes made by Aury et al. (2006) using

Circos software developed by Martin Krzywinski (available as free software at

Q http://mkweb.bcgsc.ca/circos/?home). This website also offers a tutorial

and a gallery of visually stunning samples.

Chromowheel is a related tool, developed by Ekdahl and Sonnhammer

(2004) and available at Karolinska Institutet as a web service (Q http://
chromowheel.cgb.ki.se). The user can submit a generic data definition format

file which is then converted into an image in the Scalable Vector Graphics

(SVG) format. Other software (such as the Circular Genome Viewer CGView,

Q http://wishart.biology.ualberta.ca/cgview/; Stothard and Wishart, 2005)

allow representation of circular genomes such as those of prokaryotes.
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will facilitate future sequencing of the micronuclear genome, which contains sub-

stantially more repetitive DNA. Such studies may elucidate the fascinating relation-

ship between macro- and micronuclear chromosomes in the ciliates. This in turn may

reveal fundamental mechanisms by which genome-wide rearrangement occurs.

A third ciliate genome is that of Sterkiella histriomuscorum, formerly called

Oxytricha trifallax and indicated in the Oxytrichida group in Fig. 18.1. Sterkiella his-

triomuscorum is of the class Spirotrichea. This macronuclear genome fragments into

an astonishing number of about 24,500 minichromosomes (called nanochromo-

somes). Doak et al. (2003) described its ongoing genome project, including evidence

of a ploidy of �1000 per macronuclear genome.

Nucleomorphs
The chloroplast is a plastid (photosynthetic organelle) in plants that contains the

green pigment chlorophyll. Chloroplasts convert light to energy. A major hypothesis

about their origin is that a eukaryotic cell acquired a cyanobacterium soon after the

divergence of plants from animals and fungi (see below). But a radically different

mechanism is also common: a eukaryote can ingest an alga (i.e., another eukaryote)

that already has a chloroplast (Gilson and McFadden, 2002). This process, called

endosymbiosis, may have occurred independently in at least seven separate eukary-

otic groups: apicomplexa (discussed above), chlorarachniophytes, cryptomonads,

dinoflagellates, euglenophytes, heterokonts, and haptophytes (reviewed in Gilson

and McFadden, 2002).

Most chloroplast-containing plants and some algae have three genomes in each

cell: a nuclear genome, a mitochondrial genome, and a chloroplast genome. In cryp-

tomonads (such as Guillardia theta) and chlorarachniophytes (such as Bigelowiella

natans), there is an additional, fourth distinct genome: the vestigial nuclear

genome of the engulfed alga. This second nucleus is called a nucleomorph. The pro-

cess of sequential endosymbioses is outlined in Fig. 18.9.

Just as the genome of intracellular bacteria is highly reduced, the nucleomorph

genome is extremely small. Douglas et al. (2001) sequenced the nucleomorph

genome of G. theta. It is only 551,264 bp. The gene density is extraordinarily high,

with one gene per 977 bp. The noncoding regions are extremely short, and there is

only one pseudogene. Some genes, such as those encoding DNA polymerases, are

absent and the gene product must be imported to the plastid across four separate

membranes.

The circular plastid DNA of G. theta is also very compacted. Douglas and Penny

(1999) sequenced this genome of 121,524 bp and found that 90% of the DNA is

coding, with no pseudogenes or introns. (In contrast, only 68% of the rice plastid

genome is coding.) You can explore the G. theta plastid genome at NCBI (accession

NC_000926) and compare it with the plastid genome of the red alga Pophyra purea, a

rhodophyte (accession NC_000925). These two genomes show a high degree of con-

served synteny. You can also compare the G. theta plastid genome to that of the

diatom Odontella sinensis (accession NC_001713). This is a related alga that also

acquired its plastid by secondary endosymbiosis but lacks a nucleomorph.

The smallest known eukaryotic genome belongs to the nucleomorph genome of

the chlorarachniophyte Bigelowiella natans. Its size is 373,000 base pairs, containing

331 genes on three chromosomes (Gilson et al., 2006). Its nature is clearly eukaryotic,

including the presence of 852 introns—although these “pygmy introns” are the smal-

lest known, having lengths of 18 to 21 nucleotides. This genome offers a model for

The lineage of G. theta is

Eukaryota; Cryptophyta;

Cryptomonadaceae; Guillardia.

the lineage of B. natans is

Eukaryota; Cercozoa;

Chlorarachniophyceae;

Bigelowiella.
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extreme reduction (Fig. 18.9). Although G. theta and B. natans are phylogenetically

distinct, Patron et al. (2006) compared their highly reduced nucleomorph genomes

relative to their corresponding nuclear and plastid genomes. They concluded that

B. natans nucleomorph genes are evolving at a rapid rate, while G. theta has stabilized.

Kingdom Stramenopila
The kingdom Stramenopila includes a wide range of fascinating organisms such as

the oömycetes (e.g., the Phytophthora plant pathogens) and photosynthetic algae

(e.g., diatoms, brown algae such as kelp, and the golden-brown algae). The

Stramenopila group is represented in Fig. 18.1 as part of the Heterokonta, and we

summarize several genomes in Fig. 18.10.

Diatoms are single-celled algae that occupy vast expanses of the oceans and are

responsible for �20% of global carbon fixation (see Armbrust et al., 2004). They

have an intricately patterned silicified (glass) cell wall called the frustule that displays

beautiful, species-specific patterns as seen for example in Fig. 18.10. Armbrust et al.

(2004) determined the sequences of the three genomes of the diatom Thalassiosira

pseudonana: a diploid nuclear genome of 34.5 megabases organized in 24 pairs, a

plastid genome acquired by secondary endosymbiosis perhaps 1300 million years

ago, and a mitochondrial genome. The plastid was acquired when a nonphotosyn-

thetic, eukaryotic diatom ancestor engulfed a photosynthetic eukaryote (probably

a red algal endosymbiont), a remarkable process described above (Fig. 18.9). Half

Nucleus 2

photosynthetic 
cyanobacterium

(prokaryote)

~3,000
genes

eukaryote 2

Nucleus 2

plastid

eukaryote 2

eukaryote 1eukaryote 1

nucleus 1 nucleo-
morph

<1,000 plastid
protein genes

17 plastid
protein genes

~57 plastid
protein genes

nucleus 1

eukaryote 1

(a) (b) (c)

plastid

>1,000 plastid
protein genes

FIGURE 18.9. Sequential endosymbioses result in a eukaryote with three genomes. (a) In a pri-
mary endosymbiotic event, a eukaryotic host (eukaryote 1) acquires a photosynthetic bacterium
such as a cyanobacterium. (b) Over time, the nuclear genome of eukaryote 1 acquires over 1000
plastid protein-coding genes. The plastid is the engulfed prokaryotic genome, that is, the chloro-
plast. Secondary endosymbiosis occurs when another nonphotosynthetic organism (eukaryote 2)
engulfs and retains eukaryote 1 and so acquires photosynthetic capability. (c) Over time plastid
protein genes are transferred to the nuclear genome of organism 2, resulting in the emergence of
a severely reduced nucleomorph genome. The numbers of genes in the figure are for the chlorar-
achniophyte Bigelowiella natans, whose nucleomorph genome is the smallest known nucleus.
Adapted from Gilson et al. (2006). Used with permission.

A principal website for

Thalassiosira pseudonana is at

Q http://genome.jgi-psf.org/
Thaps3/Thaps3.home.html

(from the Joint Genome

Institute).
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of the T. pseudonana genes cannot be assigned function based on homology to other

organisms. This may reflect their unique capability of metabolizing silicone to form

the frustules.

Another two members of the kingdom Stramenopila are the soybean pathogen

Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum.

There are 59 known species of the genus Phytophthora, and together these cost

tens of billions of dollars per year because of their destruction of plant species, includ-

ing crops. Tyler et al. (2006) reported draft genome sequences for both these plant

pathogens (summarized in Fig. 18.10). P. sojae and P. ramorum are oömycetes (also

called water molds) which, in contrast to the diatoms, are nonphotosynthetic strame-

nopiles. The two genomes encode comparable numbers of genes, including about

9700 pairs of orthologs (with extensive colinearity of orthologs spanning up to several

megabases per block). While neither organism is photosynthetic, both contain many

hundreds of genes that are derived from a red alga or cyanobacterium, suggesting that

there was a photosynthetic ancestor. Since both are cellular pathogens having differ-

ent host ranges, Tyler et al. searched for genes encoding secreted proteins. Of the

more than 1000 predicted secreted proteins in each organism, many show evidence

of rapid diversification in terms of sequence conservation and the evolution of multi-

gene families. These include secreted proteases that could relate to nectrotrophic

growth, that is, feeding on dead plants after infection of living plant tissue. Of par-

ticular note is the Avh (avirulence homolog) family of genes that has 350 members

in each genome whose products suppress plant defense responses.

Lineage: Eukaryota; stramenopiles; Bacillariophyta; Coscinodiscophyceae; Thalassiosirophycidae; 
Thalassiosirales; Thalassiosiraceae; Thalassiosira; Thalassiosira pseudonana CCMP1335 (diatom)

Lineage: Eukaryota; stramenopiles; Oomycetes; Peronosporales; Phytophthora; Phytophthora sojae

Lineage: Eukaryota; stramenopiles; Oomycetes; Peronosporales; Phytophthora; Phytophthora ramorum

Genome features
--P. ramorum is heterothallic (outbreeding); ~13,600 SNPs were identified
--P. sojae is homothallic (inbreeding); only 499 SNPs were identified
--These are the only eukaryotic genomes for which no gene encoding phospholipase C has been 
   identified, nor have Phytophthora expressed sequence tags corresponding to PLC been found.
Disease relevance: P. sojae (potato pink rot agent) is a soybean pathogen. 
              P. ramorum causes sudden oak death.

   Haploid      GC content         Number of           Number of        Entrez
   genome size               chromos.             genes               Genome ID

Thalassiosira pseudonana             34.5 Mb           47%               24      11,242              191
     plastid genome                   128,813 bp      31%               1       144
     mitochondrial genome               43,827 bp        30.5%              1       40
Phytophthora sojae                   95 Mb      22%               ~225      19,027            17989
Phytophthora ramorum                   65 Mb                ~24,500              15,743              12571

Thalassiosira pseudonanaPhytophthora sojae Phytophthora ramorum

FIGURE 18.10. The Heterokonta
(see Fig. 18.1) include the Phy-
tophthora and the diatom. Photo-
graphs are from the NCBI Entrez
Genomes website (Phytophthora
sojae by Edward Braun, Iowa
State University; Phytophthora
ramorum by Edwin R. Florance,
Lewis Clark College&; Thalassio-
sira pseudonana by DOE-Genomes
to Life).

The Department of Energy Joint

Genome Institute (DOE JGI)

website for P. ramorum is Q http://
genome.jgi-psf.org/Phyra1_1/
Phyra1_1.home.html. The

Phytophthora Functional

Genomics Database is online at

Q http://www.pfgd.org/. For an

example of an Avh protein from

P. sojae, see AAR05402.
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PLANT GENOMES

Overview
Hundreds of thousands of plant species occupy the planet. Molecular phylogeny

shows us that plants form a distinct clade within the eukaryotes (see Viridiplantae,

Fig. 18.1). These include algae and the familiar green plants. All plants (but not

algae) are multicellular because they develop from embryos, which are multicellular

structures enclosed in maternal tissue (Margulis and Schwartz, 1998). Most plants

have the capacity to perform photosynthesis, although some (such as the beech

drop, Epifagus) do not.

The analysis of plant genomes allows us to address the molecular genetic basis of

characteristics that distinguish plants from animals, such as the presence of special-

ized cell walls, vacuoles, plastids, and cytoskeleton. Plants are sessile and depend

on photosynthesis. The sequencing of plant genomes is likely to lead to explanations

for many of these basic features.

When did the lineages leading to today’s plants diverge from animals, fungi, and

other organisms? The earliest evidence of life is from about 3.8 billion years ago

(BYA), while eukaryotic fossils have been dated to 2.7 BYA. These events are

depicted in the schematic tree of Fig. 18.11, based on separate studies by

Meyerowitz (2002) and Wang et al. (1999). There are no very early plant fossils

extant, and it is thus difficult to assess the dates that species diverged from each

other. Various researchers have used molecular clocks based on protein, DNA

(nuclear or mitochondrial), or RNA data. A study by Wang et al. (1999) used a com-

bined analysis of 75 nuclear genes to estimate the divergence times of plants, fungi,

and several animal phyla. Their estimates of divergence time were calibrated based on

evidence from the fossil record that birds and mammals diverged 310 MYA. They

found that animals and plants diverged 1547 MYA, at almost exactly the same

time that animals and fungi diverged (1538 MYA) (Fig. 18.11).

The early appearance of plants, animals, and fungi may have occurred with the

divergence of a unicellular progenitor. Thus, a comparison of plants and animals

allows us to see how plants and animals independently evolved into multicellular

forms (Meyerowitz, 2002). The mitochondrial genes of plants and animals are

homologous, indicating that their common ancestor was invaded by an a-proteobac-

terium (Fig. 18.11). After their divergence, in another endosymbiotic event, a cyano-

bacterium occupied plant cells to ultimately form the chloroplast. This occurred

independently several times. Still, it has proven difficult to date these events

(Meyerowitz, 2002). The first appearance of most animal phyla in the fossil record

occurs in many samples dated 530 MYA—the time of “Cambrian explosion.”

We begin our bioinformatics and genomics approaches to plants by exploring their

position among the eukaryotes (Fig. 18.1) and from a phylogenetic tree based on

sequences of a key plant enzyme, rubisco (Fig. 18.12). The two main groups of

Viridiplantae are Chlorophyta (green algae such as the generum Chlamydomonas) and

Streptophyta. Streptophyta is further subdivided into additional groups such as mosses,

liverworts, and the angiosperms (flowering plants), including the familiar monocots

and eudicots. We begin with the green algae, then proceed to the flowering plants.

Green Algae (Chlorophyta)
Chlamydomonas reinhardtii is a unicellular alga that lives in soil and water. Among the

unicellular green algae, Chlamydomonas has served as a model organism for studying

The Epifagus virginiana chloro-

plast genome has been sequenced

(NC_001568) (Wolfe et al.,

1992). Epifagus is parasitic on the

roots of beech trees. The original

major function of its chloroplast

genome, photosynthesis, has

become obsolete. It lacks six

ribosomal protein and 13 tRNA

genes that are present in the

chloroplast genomes of photosyn-

thetic plants (Wolfe et al., 1992).

Plants and animals differ greatly in

their content of selected genes.

For example, plants lack inter-

mediate filaments and the genes

that encode intermediate filament

proteins such as cytokeratin and

vimentin.

The use of 18S RNA has

suggested an animal–fungi clade

(Fig. 18.1), consistent with

Fig. 18.11.

The earliest known plant fossils

date from the Silurian period

(430–408 MYA) (Margulis and

Schwartz, 1998).
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photosynthesis and chloroplast biogenesis (unlike the flowering plants it grows in the

dark). The genome is 121 megabases with a very high GC content (64%) and con-

tains about 15,000 protein-coding genes (Merchant et al., 2007) (Fig. 18.13). We

can perform comparative genomic analyses of the Chlamydomonas genome to infer

the properties of the ancestor of the green plants (Viridiplantae) and the opithokonts

cambrian
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FIGURE 18.11. The evolution of
plants, animals, and fungi. The esti-
mated time of divergence of plants,
fungi, and animals is 1.5 BYA
according to a phylogenetic study
(adapted from Wang et al., 1999).
Prior to this divergence event, a
single-celled eukaryotic organism
acquired an a-proteobacterium
(the modern mitochondrion, pre-
sent today in animals, fungi, and
plants). After the divergence of
plants from animals and fungi
about 1.5 BYA, the plant lineage
acquired a plastid (the chloroplast).
According to this model, metazoans
diverged about 400 million years
earlier than predicted by the fossil
record. Also, nematodes (e.g.,
C. elegans) diverged earlier than
chordates (e.g., vertebrates) and
arthropods (e.g., insects). Adapted
from separate studies by
Meyerowitz (2002) and Wang
et al. (1999). Used with permission.
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Spirogyra maxima

Chaetosphaeridium globosum

Marchantia polymorpha

Botrychium biternatum

Juniperus virginiana (red cedar)

Physcomitrella patens

Avena sativa

Triticum aestivum (wheat)

Oryza sativa (rice)

Tulipa kolpakowskiana

Nicotiana tabacum

Lycopersicon esculentum (tomato)

Solanum tuberosum (potato)

Bryopsis maxima

Nephroselmis olivacea

Chlamydomonas reinhardtii FIGURE 18.12. Phylogenetic tree
of the plants. A neighbor-joining
tree of the plants using rubisco
protein.
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(animals, fungi [Chapter 17], and Choanozoa). Many genes are shared by

Chlamydomonas and animals but have been lost in angiosperms, such as those encod-

ing the flagellum (or cilium) and the basal body (or centriole). For example, the

Chlamydomonas genome encodes 486 membrane transporters, including many

shared in common with animals (e.g., voltage-gated ion channels involved in flagellar

function). We will explore further examples in computer lab exercise 18.3 at the end

of this chapter. There are several possible explanations for the proteins that occur in

Chlamydomonas and plants but not animals: (1) they may have been present in the

common plant-animal ancestor and lost or diverged in the animal lineage, (2) they

may have been horizontally transferred between plants and Chlamydomonas, or (3)

they may have arisen in the plant lineage before the divergence of Chlamydomonas.

Such proteins include many involved in chloroplast function (Merchant et al., 2007).

Another unicellular green alga, Ostreococcus tauri, is thought to be the smallest

free-living eukaryote (Fig. 18.13). O. tauri presents a simple, naked, nonflagellated

cell with a nucleous, mitochondrion, and chloroplast. It is distributed throughout

the oceans and was first identified in 1994 as a common component of marine phy-

toplankton. Derelle et al. (2006) sequenced its 12.6 Mb genome which is distributed

on 20 chromosomes. There are 8166 protein-coding genes with a density of 1.3

kilobases per gene, greater than any other eukaryote sequenced to date. Thus, the

genome has an extraordinary degree of compaction, with very short intergenic regions,

many gene fusion events, and a reduction in the size of gene families. Another remark-

able, unexplained feature of the genome is that two of the chromosomes (a large

portion of 2 and all of 19) differ from all others in GC content (52% to 54% rather

than 59% on the other chromosomes), and these two loci also contain most of the

transposable elements in the genome (321 of 417). Chromosome 2 also employs a

FIGURE 18.13. One major div-
ision of the plants (Viridiplantae)
is the green algae including Chlamy-
domonas (see Fig. 18.1). Photo-
graphs are from the NCBI Entrez
Genomes website (of Ostreococcus
tauri by O. O.Banyuls- CNRS Cour-
ties; of Chlamydomonas reinhardtii
by Dr. Durnford, University of
New Brunswick).

Lineage: Eukaryota; Viridiplantae; Chlorophyta; Chlorophyceae; Chlamydomonadales; 
Chlamydomonadaceae;  Chlamydomonas; Chlamydomonas reinhardtii (green alga)

Lineage: Eukaryota; Viridiplantae; Chlorophyta; Prasinophyceae; Mamiellales; Mamiellaceae; 
Ostreococcus; Ostreococcus tauri (green alga)

Ostreococcus tauri OTH95 Chlamydomonas reinhardtii

Genome features: Chlamydomonas has 0.125 genes per kilobase, comparable to Arabidopsis. 
       In contrast, O. tauri has 0.648 genes per kilobase. (Humans have ~0.0008 genes per kilobase.) 
      O. tauri is the smallest free-living eukaryote. 
Websites: http://www.chlamy.org/; http://genome.jgi-psf.org/Chlre3/Chlre3.home.html
 

                 Haploid GC content       Number of           Number of    Entrez
               genome size                           chromos.              genes    Genome ID

Chlamydomonas reinhardtii        121 Mb 64%        17  15,143   12260   
Ostreococcus tauri OTH95         12.6 Mb 58%        20                   8,166   12912
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different frequency of codon utilization, and has much smaller introns (40 to 65 base

pairs in contrast to an average of 187 base pairs elsewhere). The origin of these var-

ious differences is unknown but these data suggest horizontal transfer from another

organism.

Arabidopsis thaliana Genome
Angiosperms are flowering plants in which the seeds are enclosed in an ovary that

ripens into a fruit. Monocots are characterized by an embryo with a single cotyledon

(seed leaf ); examples are rice, wheat, and oats. Eudicots (also called dicotyledons)

have an embryo with two seed leafs; examples are tomato and potato. Eudicots

include the majority of flowers and trees (but not conifers).

Arabidopsis thaliana is a thale cress and eudicot that is prominent as having the

first plant genome to be sequenced (Fig. 18.14). Arabidopsis has been adopted by

the plant research community as a model organism to study because it is small

(about 12 inches tall), has a short generation time (about 5 weeks), has many

offspring, and is convenient for genetic manipulations. It is a member of the

         Haploid             GC content        Number of    Number of     Entrez
         genome size        chromos.       genes            Genome ID
Arabidopsis thaliana         125 Mb              34.9%       5            ~25,498        13190
M. truncatula        470-580 Mb      not avail.            8            ~19,000        10791
O. sativa          389 Mb              43.3%       12            37,544          13139, 13174 , 
                                      13141, 361   
Physcomitrella patens      480 Mb             not avail.            27           35,938           13064
Populus trichocarpa        485 Mb             not avail.           19                  45,555          10772
Vitis vinifera                      487 Mb             ~35%       19            30,434          18357, 18785

Key dates: Emergence of flowering plants 200 million years ago (MYA). Arabidopsis and the moss 
           P. patens diverged ~450 MYA; Arabidopsis and Populus diverged ~120 MYA. 
Disease relevance: Worldwide, up to 30% of crop yield is lost to pathogens. Plant genome sequencing
           projects can reveal disease resistance mechanisms.
Genome features: While the Arabidopsis genome is ~93% euchromatin, Populus is ~70% euchromatin.
          Populus has far more genes than Vitis vinifera although the two genomes have a similar size.
Web resources: http://www.medicago.org (Medicago).

Medicago truncatula (barrel medic) 
Oryza sativa (rice)
Physcomitrella patens (moss)

Selected lineages: Eukaryota; Viridiplantae; Streptophyta; Embryophyta; 
Tracheophyta; Spermatophyta;  Magnoliophyta; eudicotyledons; core 
eudicotyledons; rosids; eurosids II; Brassicales; Brassicaceae;  Arabidopsis; 
Arabidopsis thaliana

Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; 
eudicotyledons; core eudicotyledons; Vitales; Vitaceae; Vitis; Vitis vinifera

Arabidopsis thaliana 
(mouse-ear cress)Vitis vinifera (wine grape) 

Populus trichocarpa
(black cottonwood)

FIGURE 18.14. Overview of plant
genomes. Photographs are from the
NCBI Entrez Genomes website
(P. trichocarpa by J. S. Peterson,
USDA-NRCS PLANTS Database;
V. vinifera by Dr. Kurt Stueber,
Max Planck Institute for Plant
Breeding Research, Cologne;
A. thaliana by Luca Comai, Univer-
sity of Washington, Seattle, WA).

The Angiosperm Phylogeny web-

site is at Q http://www.mobot.

org/MOBOT/Research/APweb/
welcome.html. It includes dozens

of phylogenetic trees, with access

to text, photographs of plants, and

extensive references. In contrast to

angiosperms, gymnosperms

develop their seeds in cones.

The eudicots (such as Arabidopsis)

diverged from the monocots (such

as O. sativa) about 200 MYA.

Among the eudicots, the rosids

and the asterids diverged about

100 to 150 MYA (Allen, 2002).

The rosids include Arabidopsis,

Glycine max (soybean), and

M. trunculata. The asterids include

Lycopersicon esculentum (tomato).
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Brassicaceae (mustard) family of vegetables, which includes horseradish, broccoli,

cauliflower, and turnips. It is one of about 250,000 species of flowering plants, a

group that emerged 200 MYA (Walbot, 2000). Comparative genomics analyses

will allow the comparison of the Arabidopsis genome to the genomes of other flower-

ing plants in order to learn more about plant genomics (Hall et al., 2002).

The Arabidopsis genome is about 125 Mb. Its genome size is thus very small com-

pared to agriculturally important plants such as wheat and barley (18.5 and 5 Gb,

respectively) (Table 18.4). This made it an attractive choice as the first plant

genome to be sequenced. The Arabidopsis Genome Initiative (2000) reported the

sequence of most (115 Mb) of the genome. There are five chromosomes, initially pre-

dicted to contain 25,498 protein-coding genes. The Arabidopsis genome has an aver-

age density of one gene per 4.5 kb.

The estimated number of predicted genes in Arabidopsis has increased slightly to

�26,800, following reannotation of the genome (Crowe et al., 2003; TAIR database,

described below). Arabidopsis has considerably more genes than Drosophila (about

13,000 genes) and C. elegans (about 19,000 genes; see below). The larger number

of plant genes can be accounted for by a far greater extent of tandem gene dupli-

cations and segmental duplications. There is a core of about 11,600 distinct proteins,

while the remaining genes are paralogs (Arabidopsis Genome Initiative, 2000).

A further feature of Arabidopsis is that the whole genome may have duplicated

twice. (For an overview of ploidy in plants see Box 18.3.) Within the genome there

are 24 large, duplicated segments of 100 kb or more, spanning 58% of the genome

(Arabidopsis Genome Initiative, 2000). A comparison of tomato genomic DNA

with Arabidopsis revealed conserved gene content and gene order with four different

Arabidopsis chromosomes (Ku et al., 2000). The presence of duplicated and tripli-

cated genomic regions suggests that two (or more) large-scale genome duplication

events occurred. One event was ancient, while another occurred about 112 MYA.

Following whole-genome duplication, gene loss occurred frequently. This reduces

the amount of gene colinearity observed today and hinders our ability to decipher

the nature and timing of past polyploidization events (Simillion et al., 2002). The

pattern of gene loss following genome duplication is typical of fungi (Chapter 17)

and fish (see below) but not Paramecium, described above.

Several Arabidopsis genomics resources are listed in Table 18.5. The most com-

prehensive site is TAIR, with a wide range of services (Swarbreck et al., 2008).

TABLE 18-4 Major Plant Genome-Sequencing Projects
Plant Common Name Genome Size (Gb) Size Relative to Human

Arabidopsis thaliana Thale cress 0.125 25.6-fold smaller

Avena sativa Oat 16 5-fold larger

Glycine max Soybean 1–2 About 2-fold smaller

Hordeum vulgare Barley 5 1.7-fold larger

Lycopersicon esculentum Tomato 1 3.2-fold smaller

Medicago truncatula Barrel medic 0.5 6.4-fold smaller

Oryza sativa Rice 0.466 6.9-fold smaller

Triticum aestivum Bread wheat 18.5 5-fold larger

Zea mays Corn 2.365 1.4-fold smaller

See the NCBI plant resources at Q http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html.
Many plant genomes are about the same size as the human genome (3.2 Gb).

Rubisco is ribulose-1,5-dipho-

sphate carboxylase. It is an

enzyme localized to chloroplasts

that catalyzes the first step of

carbon fixation in photosynthe-

sizing plants. The enzyme irrever-

sibly converts ribulose

diphosphate and carbon dioxide

(CO2) to two 3-phosphoglycerate

molecules. The gene name for

rubisco is rbcL, and for a typical

example see the rice protein

(RefSeq accession NP_039391).

Online databases are available for

model plant genome projects,

such as MtDB for Medicago trun-

culata (Lamblin et al., 2003)

(Q http://www.medicago.org/)

and MaizeGDB for maize

(Q http://www.maizegdb.org/).

More comprehensive plant geno-

mics databases include Unité de

Recherche Génomique Info

(URGI) (Q http://urgi.versailles.

inra.fr/) and Sputnik (Rudd et al.,

2003) in Turku (Åbo; Q http://
sputnik.btk.fi/). GrainGenes, a

database for wheat, barley, rye,

and oat, is available at Q http://
wheat.pw.usda.gov/GG2/index.

shtml (Matthews et al., 2003).
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This site includes a genome browser that provides access to genomic DNA sequence

from the broadest chromosome-level view to descriptions of single-nucleotide poly-

morphisms. The format of this site, GBrowse, is shared by a variety of genome pro-

jects (Box 18.4). Other databases include SeedGenes, which describes essential

genes of Arabidopsis that give a seed phenotype when disrupted by mutation

(Tzafrir et al., 2003).

The Second Plant Genome: Rice
By some estimates, rice (O. sativa) is the staple food for half the human population.

The rice genome was the second plant genome to be sequenced (Fig. 18.14). At

approximately 389 Mb, this genome size is about one-eighth that of the human

genome. Still it is one of the smallest genomes among the grasses, and rice is studied

as a model monocot species.

Four groups generated draft versions of the rice genome (Buell, 2002), including

two subspecies. A consortium led by the Beijing Genomics Institute reported a draft

BOX 18.3
Ploidy in Plants

Many plants are polyploid, that is, the nuclear genome is more than diploid. This

includes autopolyploids such as Saccharum spp. (sugarcane) and Medicago sativa

(alfalfa). Such species are often intolerant of inbreeding (see Paterson, 2006).

Allopolyploids include wheat and cotton. In many naturally occurring

allotetraploids (such as the tetraploid Arabidopsis suecica), the flowers are

distinctly different than those of the diploid parents (Cardaminopsis and

Arabidopsis). Polyploid plants are usually bigger and more vigorous than diploid

plants. Examples of polyploid species include banana and apple (triploid),

potato, cotton, tobacco, and peanut (all tetraploid), wheat and oat (hexaploid),

and sugar cane and strawberry (octaploid).

Plant genome sequencing projects have allowed paralogs to be identified.

Whole genome duplication events have been inferred, including two or three

events in both Arabidopsis and the poplar Populus, and one or two in the rice

genome.

For an introduction to polyploidy in plants, see Q http://polyploid.agronomy.

wisc.edu/.

TABLE 18-5 Genomics Resources forArabidopsis thaliana
Resource Comment URL

TAIR The Arabidopsis
Information Resource

Q http://www.arabidopsis.org/

Arabidopsis thaliana
Database

Includes a map of segmental
duplications

Q http://www.tigr.org/tdb/e2k1/
ath1/

Arabidopsis thaliana
Project

At MIPS Q http://mips.gsf.de/proj/plant/
jsf/index.jsp

SeedGenes Essential genes in Arabidopsis
development

Q http://www.seedgenes.org

The Complete Arabidopsis

Transcriptome Micro Array

(CATMA) database is online at

Q http://www.catma.org/ (Sclep

et al., 2007).

Large segmental duplications in

Arabidopsis were identified using

MUMmer (see Chapter 15) and

tblastx searches (see Chapter 4).

Grasses include rice, wheat,

maize, sorghum, barley, sugar-

cane, millet, oat, and rye. There

are over 10,000 species of grasses

(Bennetzen and Freeling, 1997).

Cereals are seeds of flowering

plants of the grass family

(Gramineae, also called Poaceae)

that are cultivated for the food

value of their grains. Grasses are

monocotyledonous plants that

range from small, twisted, erect, or

creeping annuals to perennials.
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sequence of the rice genome (O. sativa L. ssp. indica) (Yu et al., 2002). Another con-

sortium reported a draft genome sequence of a different rice subspecies, O. sativa L.

ssp. japonica) (Goff et al., 2002), and Monsanto generated another genome

sequence. As discussed in Chapter 16, the annotation of genes and other features

is far superior in finished sequence of chromosomes 1 (Sasaki et al., 2002) and 4

(Feng et al., 2002) relative to draft sequence. A finished quality sequence was

BOX 18.4
Databases for Eukaryotic Genomes

The main Arabidopsis database, TAIR, uses a database template shared by other

major sequencing projects (Table 18.6). We already explored EcoCyc in Chapter

12 and the yeast database SGD in Chapters 12 and 17. These databases offer

both detailed and extremely broad views of the genomic landscape. The

Genomics Unified Schema (GUS) is another commonly used platform (Table

18.7). Many databases use a distributed annotation system (DAS) that allows a

computer server to integrate genomic data from a variety of external computer

systems. DAS, written by Lincoln Stein and Robin Dowell, is described at

biodas.org (Q http://www.biodas.org/). It is employed at WormBase, FlyBase,

Ensembl, and TIGR sites, among others.

TABLE 18-6 Variety of Databases EmployingTemplate from Generic Model Organism Project (GMOD)
(Q http://www.gmod.org/)
Database Comment URL

EcoCyc Encyclopedia of Escherichia coli
Genes and Metabolism

Q http://EcoCyc.org/

FlyBase Drosophila site Q http://www.flybase.org/

Mouse Genome
Informatics

Main mouse resource Q http://www.informatics.jax.
org/

Rat Genome
Database (RGD)

Rat resource Q http://rgd.mcw.edu/

SGD See Chapter 17 Q http://genome-www.stanford.
edu/Saccharomyces/

TAIR The Arabidopsis Information
Resource

Q http://www.arabidopsis.org/

Wormbase C. Elegans Site Q http://www.wormbase.org/

TABLE 18-7 Genomics Unified Schema Platform (Q http://www.gusdb.org/)
Database Comment URL

AllGenes Human and mouse gene index Q http://www.allgenes.org/

EPConDB Endocrine Pancreas Consortium Q http://www.cbil.upenn.edu/
EPConDB/

GeneDB Curated database for S. pombe, Leishmania
major, and T. brucei

Q http://www.genedb.org/

PlasmoDB Genomic database for P. falciparum Q http://plasmodb.org/

RAD RNA abundance database Q http://www.cbil.upenn.edu/
RAD2/

This platform is used for some organism databases.

The International Rice Genome

Sequencing Project (IRGSP)

produced a draft version of the

O. sativa ssp. japonica genome

(Q http://genome.sinica.edu.tw/
). The Beijing Genomics Institute

led a consortium that generated a

draft version of the subspecies

indica genome (see Q http://rise.

genomics.org.cn/rice/index2.

jsp). The principal international

consortium for rice genomics from

Japan has a website (Q http://rgp.

dna.affrc.go.jp/). The indica and

japonica subspecies are thought to

have been domesticated separately

from an ancestral species, Oryza

rufipogon.
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reported by Yu et al. (2005) and separately by the International Rice Genome

Sequencing Project (2005) for a single inbred cultivar, O. sativa L. ssp. japonica cv.

Nipponbare. Yu et al. (2005) reported that relative to their 2002 initial publication

they achieved a lower error rate and a 1000-fold improvement in long-range contigu-

ity. The N50 sequence (the length above which half the total length of the sequence

data set is found) improved to 8.3 megabases, about a 1000-fold improvement, as the

coverage increased from 4.2x to 6.3x.

Several databases provide comprehensive collections of genomic and other data

on rice, such as TIGR and MOsDB. These sites provide extensive genome annota-

tion, including updates that reflect information provided through comparative geno-

mics projects.

The rice genome (subspecies indica) displays an unusual feature of a gradient in

GC content. The mean GC content is 43.3%, higher than in Arabidopsis (34.9%) or

human (41.1%) (Yu et al., 2002). A plot of the number of 500 bp sequences (y axis)

versus the percent GC content (x axis) revealed a tail of many GC-rich sequences.

These GC-rich regions occurred selectively in rice exons (rather than introns), and

at least one exon of extremely high GC content was found in almost every rice

gene (Yu et al., 2002). The GC content of the 50 end of each gene was typically

25% more GC rich than the 30 end. These unique features of the rice genome present

another major challenge for the use of ab initio gene-finding software.

The Third Plant Genome: Poplar
The black cottonwood tree Populus trichocarpa was the third plant genome to be

sequenced (Fig. 18.14). Populus was selected for sequencing because its haploid

nuclear genome is relatively small (480 megabases), it grows quickly relative to

other trees (�5 years), and it is economically important as a source of wood and

paper products.

Analysis of the genome indicates that Populus underwent a relatively recent

whole-genome duplication about 65 million years ago, as well as experiencing

tandem duplications and chromosomal rearrangements (Tuskan et al., 2006). In

contrast to Arabidopsis, Populus is predominantly dioecious (having male and

female reproductive structures on separate plants) such that it must outcross and

achieves high levels of heterozygosity. Tuskan et al. (2006) identified 1.2 million

single nucleotide polymorphisms (SNPs; Chapter 16), and with insertion/deletion

events estimated 2.6 polymorphisms per kilobase. This will enable further genetics

and population biology studies.

The Fourth Plant Genome: Grapevine
The gravevines are highly heterozygous, with as much as 13% sequence divergence

between alleles. The French-Italian Public Consortium for Grapevine Genome

Characterization (Jaillon et al., 2007) bred a grapevine variety derived from Pinot

Noir to a high level of homozygosity and then determined its genome sequence

(Fig. 18.14). Using an inbred variety was necessary to facilitate the assembly process.

There are �30,000 protein-coding genes predicted, which is fewer than in Populus

even though the two organisms have similar sized genomes. In Arabidopsis and rice

genes are evenly distributed across the genome, while in V. vinifera as in Populus

there are gene-rich and gene-poor regions, with transposable elements (such as

SINEs) occupying complementary positions.

The TIGR Rice Genome Project

database is online at Q http://
www.tigr.org/tdb/e2k1/osa1/
(Yuan et al., 2003). The MIPS (O.

sativa) database (MOsDB) is

available at Q http://mips.gsf.de/
proj/plant/jsf/index.jsp

(Karlowski et al., 2003).
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One notable feature of the V. vinifera genome is that it encodes more than twice as

many proteins related to terpene synthesis as other sequenced plant genomes. There

are tens of thousands of terpenes in nature, typically containing two to four isoprene

units, and many of these are highly odorous.

Analysis of the haploid grapevine genome showed that most gene regions have

two different paralogous regions, thus forming homologous triplets and suggesting

that the present genome derives from three ancestral genomes (Jaillon et al.,

2007). There may have been three successive whole genome duplications, or a

single hexaploidization event. To address this question they compared the Vitis

gene order to poplar (its closest relative), Arabidopsis (a more distantly related dico-

tyledon), and rice (as a monocotyledon its most distant relative). Grapevine aligned

with two poplar segments, consistent with a recent whole-genome duplication in

poplar (described above). Also, the grapevine homologous triplets aligned with

different pairs of poplar segments, suggesting that a hexaploidy of ancient origin

was already present in the common ancestor of grapevine and poplar.

Moss
The bryophytes, encompassing mosses, hornworts, and liverworts, diverged from the

embryophytes (land plants) about 450 million years ago (near the time of divergence

of the fish and human lineages). Rensing et al. (2008) sequenced the genome of the

bryophyte moss Physcomitrella patens. Through comparisons to the genomes of water-

dwelling plants, they propose that the movement of plants from aquatic to land

environments involved the following components: (1) loss of genes that are associated

with aquatic environments, such as those involved in flagellar function; (2) loss of

dynein-mediated transport (as discussed above, Chlamydomonas and animals share

dyneins); (3) gain of genes involved in signaling capabilities such as auxin, many of

which are absent in Chlamydomonas and O. tauri genomes; (4) capability of adapting

to conditions of drought, radiation, and temperature extremes; (5) gain of transport

capabilities; and (6) gain in gene family complexity, reflected in the large numbers of

genes in the moss and other plant genomes.

Many additional plant genome sequencing projects are in progress. Figure 18.14

provides an overview of the barrel medic project, Medicago trunatula.

SLIME AND FRUITING BODIES AT THE FEET OF METAZOANS

As we examine the upper part of the tree of the eukaryotes in Fig. 18.1, we see three

great clades: the Mycetozoa, the Metazoa (animals), and the Fungi (Chapter 17).

The metazoans are familiar to us as animals, including worms, insects, fish, and

mammals. The Mycetozoa form a sister clade. The slime mold Dictyostelium discoi-

deum is a social amoeba that is of great interest as a eukaryote that is an outgroup

of the metazoa.

Social Slime Mold Dictyostelium discoideum
Biologists have studied Dictyostelium because of its remarkable life cycle. In normal

conditions it is a single-celled organism that occupies a niche in soil. Upon conditions

of starvation, it emits pulses of cyclic AMP (cAMP), promoting the aggregation of

large numbers of amoebae. This results in the formation of an organism having

The Moss Genome website is

Q http://www.mossgenome.org/.

A Joint Genomes Initiative website

on P. patens is at Q http://genome.

jgi-psf.org/Phypa1_1/Phypa1_1.

home.html.

The principal website for infor-

mation on Dictyostelium is

Q http://www.dictybase.org/.

The social, multicellular lifestyle

of this eukaryote is reminiscent of

the similar behavior of the pro-

teobacterium Myxococcus xanthus

(Chapter 15).
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the properties of other multicellular eukaryotes: It differentiates into several cell

types, responds to heat and light, and undergoes a developmental profile.

The Dictyostelium genome is 34 Mb, localized on six chromosomes (Fig. 18.15).

There are also about 100 copies per nucleus of an 88 kilobase palindromic extrachro-

mosomal element containing the rRNA genes, and a mitochrondrial genome (55 kb).

The largest of the main chromosomes, chromosome 2, consists of 8 Mb and

was sequenced by an international consortium (Glockner et al., 2002) while the

complete genome was reported by Eichinger et al. (2005) (reviewed in Williams

et al., 2005).

Because the genome consists of about 78% AT content—similar to

P. falciparum—as well as many repetitive DNA sequences, large-insert bacterial

clones are unstable, and a whole-chromosome shotgun strategy was adopted. The

genome is compact: the gene density is high (there are �12,500 genes, with one

gene per 2.6 kb, spanning 62% of the genome), there are relatively few introns (1.2

per gene), and both introns and intergenic regions are short. The introns have an

AT content of 87%, while in exons the AT content is 72%. This discrepant compo-

sitional bias may represent a mechanism by which introns are spliced out (Glockner

et al., 2002). Reflecting the ATrichness of the genome, the codons NNTor NNA are

used preferentially relative to the synonymous codons NNG or NNC. Amino acids

encoded by codons having A or T in the first two positions and any nucleotide in

the third position (asn, lys, ile, tyr, and phe) are far more common in Dictyostelium

proteins than human ones.

An unusual feature of the genome is that 11% is comprised of simple sequence

repeats (Chapter 16), more than for any other sequenced genome. There is a bias

toward repeat units of 3 to 6 base pairs. Noncoding simple sequence repeats and

homopolymer tracts have 99.2% AT content.

Perhaps the most unusual feature of Dictyostelium is that it achieves multicellular-

ity upon conditions of starvation. This is reminiscent of the bacterium Myxococcus

xanthus, described in Chapter 15. Eichinger et al. (2005) and Insall (2005) discuss

genes that Dictyostelium has retained or acquired that facilitate this lifestyle. These

           Haploid               GC content         Number of       Number of       Entrez
           genome size             chromos.         genes              Genome ID
Dictyostelium discoideum   34 Mb                  22.4%            6                   ~12,500           201

Disease relevance: Dictyostelium has many hundreds of orthologs of human disease genes, and
              can reveal the principles of the evolution of these genes.
Genome features: The GC content is extraordinarily low and impacts many features of the genome. 
Web resources: http://www.dictybase.org

Genus, species: Dictyostelium discoideum
Lineage: Eukaryota; Mycetozoa; Dictyosteliida; 
Dictyostelium; Dictyostelium discoideum AX4
(social amoeba; slime mold)

FIGURE 18.15. The slime mold
D. discoideum is closely related to the
metazoans, as shown in Fig. 18.1.
This summary includes a photograph
from the NHGRI (Q http://www.
genome.gov/17516871).

Chromosome 2 is characterized by

an inverted 1.51 megabase dupli-

cation that is present in only some

wild-type isolates.
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include genes encoding proteins that are sometimes associated with metazoans or

plants selectively: cell adhesion and signaling molecules (such as G-protein coupled

receptors for signal transduction), ATP-binding cassette (ABC) transporters, and

some genes encoding enzymes that are used in cellulose metabolism.

METAZOANS

Introduction to Metazoans
The metazoans include most of the animals that are familiar to us, and in particular

the main group of animals are bilaterians, that is, bilaterally symmetric animals (Fig.

18.16). The bilaterian animals are further divided into two major groups. (1) The

protostomes include the Ecdysozoa (arthropods and nematodes), as well as the

Lophotrochozoa (annelids and mollusks). We will survey the first protostome gen-

omes that have been sequenced, such as the insects D. melanogaster and A. gambiae,

and the nematode C. elegans. (2) The deuterostomes form a superclade consisting of

the phylum of echinoderms (such as the sea urchin Strongylocentrotus purpuratus), the

phylum of the hemichordates (such as acorn worms), and the chordates (vertebrates

as well as the invertebrate cephalochordates and urochordates). These three deuter-

ostome phyla descended from a common ancestor about 550 MYA, the time of the

Cambrian explosion. We will discuss a basal member of the deuterostomes (the sea

urchin S. purpuratus) and a basal member of the chordates (the urochordate sea

squirt Ciona intestinalis), and we will then examine the vertebrate genomes, such as

the fish, mouse, and chimpanzee.

As we seek to understand the human genome and what makes us unique as a

species from a genomic perspective, one approach has been to determine whether

our complexity and advanced features can be accounted for by a relatively large col-

lection of genes. It is now clear that this is not the case; our gene numbers are com-

parable to those of other species across the eukaryotic domain. Another notion has

been that humans, and vertebrates in general, have a large collection of unique

genes that are not present in invertebrates. This notion is correct to a limited

fruitfly nematode mollusk annelid

Ecdysozoa Lophotrochozoa

Protostomia

Bilateria

Deuterostomia

Chordata

sea urchin ascidian mouse human

VertebrataCephalochordataUrochordataHemichordata Echinodermata

FIGURE 18.16. Phylogenetic relationships of the bilaterians, which have a bilateral body organ-
ization. The Protostomia include the arthropods or insects such as the fruitfly Drosophila mela-
nogaster, and the nematode worms such as Caenorhabditis elegans, as well as the mollusks and
annelids. The Deuterostomia include the sister phyla Hemichordata and Echinodermata (includ-
ing the sea urchin Strongylocentrotus purpuratus) as well as the Chordata. The chordates are
further divided into the three groups including the vertebrates. This figure was redrawn from
the Sea Urchin Genome Sequencing Consortium (2006). Used with permission.

The diagram in Fig. 18.16 is con-

sistent with that of Fig. 18.11,

although it differs from Fig. 18.1

where nematodes form an out-

group. For discussions of bilater-

ian phylogeny see Lartillot and

Philippe (2008) and Peterson

et al. (2000). For alternative

classification systems, see

Cavalier-Smith (1998) and

Margulis and Schwartz (1998).

For an animal phylogeny based on

cytochrome c oxidase I see Hebert

et al. (2003). Karl Leuckart

(1822–1898) first divided the

metazoa into six phyla. For a table

describing the metazoan (animal)

kingdom superphyla and phyla,

see web document 18.1 at

Q http://www.bioinfbook.org/
chapter18, while for a table

describing the phylum bilateria

including the Coelomata (animals

with a body cavity), Acoelomata

(animals lacking a body cavity

such as flatworms) and

Pseudocoelomata (such as the

roundworm C. elegans) see web

document 18.2.
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extent, but it too is being challenged. As metazoan genomes become sequenced we

find many vertebrate genetic features shared with simpler animals (from insects to

the invertebrate sea urchin to the sea squirt, a simple chordate).

Analysis of a Simple Animal: The Nematode
Caenorhabditis elegans
Caenorhabditis elegans is a free-living soil nematode. It has served as a model organism

because it is small (about 1 mm in length), easy to propagate (its life cycle is three

days), has an invariant cell lineage that is fully described, and is suitable for many

genetic manipulations. Furthermore, it has a variety of complex physiological traits

characteristic of higher metazoans such as vertebrates, including an advanced central

nervous system. Many nematodes are parasitic, and an understanding of C. elegans

biology may lead to treatments for a variety of human diseases.

Another advantage of studying C. elegans is that its genome size of �100 Mb is

relatively small (Fig. 18.17). This genome was the first of an animal and the first of

a multicellular organism to be sequenced (C. elegans Sequencing Consortium,

1998). The genome sequencing was based on physical maps of the five autosomes

and single X chromosome. The GC content is an unremarkable 36%. It was pre-

dicted that there are 19,099 protein-coding genes, with 27% of the genome consist-

ing of exons. About 42% of C. elegans proteins have predicted orthologs outside

Nematoda, while 34% match only other nematode proteins.

The C. elegans proteome contains a large number of predicted seven-transmem-

brane-domain (7TM) receptors of both the chemoreceptor family and rhodopsin

family. This illustrates the principle that new protein functions can emerge following

gene duplication (Sonnhammer and Durbin, 1997). It is also notable that many

nematode proteins are absent from nonmetazoan species (plants and fungi).

Divergence dates: Nematodes diverged from arthropods (insects) 800–1000 million years ago (MYA).
        C. elegans diverged from C. briggsae ~80–110 MYA.
Disease relevance: Brugia malayi is the agent of lymphatic filariasis which infects 120 million people.
Key website: http://www.wormbase.org

          Haploid              GC content    Number of          Number of   Entrez
          genome size                            chromos.          genes                    Genome ID
Brugia malayi         90–95 Mb           30.5%            6          11,508                   10729
Caenorhabditis briggsae      ~104 Mb            37.4%            6          19,500                   10731
Caenorhabditis elegans       100 Mb              35.4%             6                        18,808                    13758

Genus, species Brugia malayi
  Caenorhabditis briggsae
  Caenorhabditis elegans

Selected lineages: Eukaryota; Metazoa; Nematoda; 
Chromadorea; Spirurida; Filarioidea; Onchocercidae; 
Brugia; Brugia malayi

Lineage: Eukaryota; Metazoa; Nematoda; 
Chromadorea; Rhabditida; Rhabditoidea; 
Rhabditidae; Peloderinae; Caenorhabditis; 
Caenorhabditis briggsae

Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; 
Peloderinae; Caenorhabditis; Caenorhabditis elegans

Brugia malayi

FIGURE 18.17. Overview of
roundworm genomes. Image of the
anterior end of a Brugia malayi
microfilaria in a thick blood
smear using Giemsa stain is from
the CDC (Q http://phil.cdc.gov/
phil/details.asp; content provider
Dr. Mae Melvin).

The soma of an adult hermaph-

rodite worm consists of 959 cells,

including 302 cells in the central

nervous system.

The 2002 Nobel Prize in

Physiology or Medicine was

awarded to three researchers who

pioneered the use of C. elegans as a

model organism: Sydney Brenner,

H. Robert Horvitz, and John E.

Sulston. See Q http://www.nobel.

se/medicine/laureates/2002/.

About 300 species of parasitic

worms infect human (Cox, 2002).

While 20,000 nematode species

have been described, it is thought

that there may be one million

species (Blaxter, 1998, 2003).
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The principal web resource for C. elegans is WormBase, a comprehensive data-

base (Rogers et al., 2008). WormBase features a variety of data, including genomic

sequence data; the developmental lineage; the connectivity of the nervous system;

mutant phenotypes, genetic markers, and genetic map data; gene expression data;

and bibliographic resources.

Caenorhabditis elegans has been the subject of many functional genomics projects

(Chapter 12) (Fields et al., 1999; Kim, 2001; Brooks and Isaac, 2002). Gene

expression has been measured using microarrays at six different developmental

stages (Hill et al., 2000). About 10,700 open reading frames (56%) were detected

in at least one hybridization. This number is comparable to the complement of

expressed sequence tags, and the remaining thousands of genes may be expressed

in specialized body regions, developmental stages, or physiological conditions. In

another approach to defining gene function, Kamath et al. (2003) inhibited the func-

tion of 86% of the .19,000 predicted C. elegans genes using RNA interference

(RNAi). They identified mutant phenotypes for 1722 genes.

After C. elegans, the genome of the related soil nematode Caenorhabditis briggsae

was sequenced (Stein et al., 2003; reviewed in Gupta and Sternberg, 2003).

Remarkably, these organisms speciated about 100 million years ago, but they are

indistinguishable by eye. Each genome is about 100 megabases and encodes a com-

parable number of genes. The availability of C. briggsae sequence facilitated an

improved annotation of the C. elegans genome and the discovery of about 1300

novel C. elegans genes. The genomes share extensive colinearity. An example is

shown for a 100,000 base pair region including a globin gene using the WormBase

synteny viewer (Fig. 18.18).

FIGURE 18.18. Alignment of C.
elegans and C. briggsae conserved
syntenic regions using the synteny
viewer at WormBase (Q http://
www.wormbase.org). Regions of
chromosome I are aligned from
C. elegans (above) and C. briggsae
(below).

WormBase is available atQ http://
www.wormbase.org.
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Brugia malayi was the first parasitic nematode to have its genome sequenced

(Ghedin et al., 2007). This parasite causes lymphatic filariasis, a chronic disease

that is debilitating although associated with low mortality. The B. malayi genome

contains fewer genes than C. elegans (�11,500 versus �18,500) primarily because

of lineage-specific expansions in C. elegans. There is a need for drugs to treat filariasis.

Ghedin et al. identified a number of gene products that are potential targets for thera-

peutic intervention. For example, B. malayi lacks most enzymes required for de novo

purine biosynthesis, heme biosynthesis, and de novo riboflavin synthesis, probably

obtaining these compounds from its host or its endosymbiont Wolbachia. Drugs

that interfere with these synthetic pathways are potential targets.

The genomes of several dozen nematodes are currently being sequenced, and

the UCSC Genome Browser currently includes assemblies for five nematodes (C.

elegans, C. briggsaei, C. brenneri, C. remanei, and Pristionchus pacificus). Annotation

tracks are available for conservation among these worms and to human proteins.

The First Insect Genome: Drosophila melanogaster
The arthropods may be the most successful set of eukaryotes on the planet in terms of

the number of species. They include the Chelicerates—such as the scorpions, spi-

ders, and mites—and the Mandibulata, animals with modified appendages (mand-

ibles) such as the insects (Table 18.8). While insects first appear in the fossil

record from about 350 million years ago, their lineage is thought to have emerged

600 million years ago.

The fruitfly D. melanogaster has been an important model organism in biology for

a century (Rubin and Lewis, 2000). The fly is ideal for studies of genetics because of

its short life cycle (two weeks), varied phenotypes (from changes in eye color to

changes in behavior, development, or morphology), and large polytene chromo-

somes that are easily observed under a microscope.

The Drosophila genome was sequenced based in large part on the whole-genome

shotgun sequencing strategy (Adams et al., 2000) (Fig. 18.19). Prior to this effort,

the whole-genome shotgun strategy had only been applied to far smaller genomes,

and thus this success represented a significant breakthrough. The 180 Mb genome

is organized into an X chromosome (numbered 1), two principal autosomes (num-

bered 2 and 3), a very small third autosome (numbered 4; about 1 Mb in length),

and a Y chromosome. Approximately one-third of the genome contains heterochro-

matin (mostly simple sequence repeats as well as transposable elements and tandem

arrays of rRNA genes). This heterochromatin is distributed around the centromeres

TABLE 18-8 Arthropods (Phylum Arthropoda) as Classified at NCBI (Q
http://www.ncbi.nlm.nih.gov/Taxonomy/)
Subphylum Class

Chelicerata Arachnida (mites, ticks, spiders)

Merostomata (horseshoe crabs)

Pycnogonida (sea spiders)

Mandibulata Myriapoda (centipedes)

Pancrustacea (crustaceans, insects)

Arthropods are invertebrate protostomes (see Fig. 18.16). Pancrustacea
(boldface) is further divided into the superclasses Crustacea (crustaceans)
and Hexapoda (insects). Insecta includes D. melanogaster and A. gambiae.

Thomas Hunt Morgan was

awarded a Nobel Prize in 1933

“for his discoveries concerning the

role played by the chromosome in

heredity.” See Q http://www.

nobel.se/medicine/laureates/
1933/. In 1995, Edward B. Lewis,

Christiane Nüsslein-Volhard, and

Eric F. Wieschaus shared a Nobel

Prize “for their discoveries con-

cerning the genetic control of early

embryonic development.” These

studies concerned Drosophila

development (Q http://www.

nobel.se/medicine/laureates/
1995/).

About 1 million arthropod species

have been described, but there are

an estimated 3 to 30 million

species (Blaxter, 2003).

The Drosophila genome was

sequenced through a collaborative

effort that included Celera

Genomics, the Berkeley Drosophila

Genome Project (BDGP;

Q http://www.fruitfly.org), and

the European Drosophila Genome

Project (EDGP) (Adams et al.,

2000). As part of the effort, three

million random genomic frag-

ments of �500 bp were

sequenced.
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and across the length of the Y chromosome. The transition zones at the boundary of

heterochromatin and euchromatin contained many protein-coding genes that were

previously unknown.

The initial annotation of the Drosophila genome described 17,464 genes pre-

dicted with Genscan and 13,189 genes predicted with the Genie algorithm (Reese

et al., 2000; Adams et al., 2000). The authors believed that Genscan overestimated

the true number of genes. Subsequently, the genome sequence was finished to close

gaps and to improve sequence quality. This resulted in a series of releases of updated

annotation efforts. Release 5.1 of the D. melanogaster heterochromatin covered 24

megabases, and indicated a set of 230 to 254 protein-coding genes as well as several

dozen pseudogenes and noncoding genes (Smith et al., 2007; Hoskins et al., 2007).

During the reannotation process there have been changes to the models for 85% of

the transcripts and about half of the predicted proteins. The improved annotation

FIGURE 18.19. Overview of insect
genomes. Photo of a mosquito
(Aedes) and scanning electron
micrograph of Anopheles gambiae
from the CDC image library
(http://phil.cdc.gov/phil/details.asp)
by CDC/Paul I. Howell, MPH
and Prof. Frank Hadley Collins.
Tribolium photo from the
NHGRI (Q http://www.genome.
gov/17516871).

Selected divergence dates: The insect lineage diverged from the human lineage ~600 million years ago
         (MYA). Hymenoptera (such as the honeybee A. mellifera) diverged from Lepideopterans (such as 
         the silkworm B. mori) and dipterans (such as fruitfly and mosquito) 300 MYA; silkworm and fruitfly 
         lineages split 280–350 MYA. 
Disease association: mosquitos are vectors for many diseases including dengue and yellow fever.
Organism-specific web resources:  http://www.flybase.org; http://www.anobase.org.

             Haploid            GC content      Number of       Number of          Entrez
             genome size                            chromos.         genes                 Genome ID
Anopheles gambiae             278 Mb            44%                 3                      13,683                1438
Apis mellifera DH4            262 Mb            33%                 16                    10,157                10625
Bombyx mori                           429 Mb                                    28                    18,510                12259, 13125
Drosophila ananassae            217 Mb                                    4                      22,551                12651
Drosophila erecta            135 Mb                                    4                      16,880                12661, 12662
Drosophila grimshawi            231 Mb                                    4                      16,901                12678 , 12679
Drosophila melanogaster        200 Mb            42%                 4                      13,733                13812
Drosophila mojavensis            130 Mb                                    4                      17,738                12682, 12685
Drosophila persimilis               193 Mb                                    4                      23,029                12705, 12708
Drosophila pseudoobscura      193 Mb                                    5                     17,328                10626
Drosophila sechellia                171 Mb                                    4                      21,332                12711, 12712
Drosophila simulans                162 Mb                                    4                      17,049                12464
Drosophila virilis                      364 Mb                                    4                      17,679                12688
Drosophila willistoni                 222 Mb                                    4                      20,211                12664
Drosophila yakuba                  190 Mb                                     4                     18,816                12366
Tribolium castaneum               200 Mb                                    10                    not avail.            12540

Selected lineages:  Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; 
Diptera; Nematocera; Culicoidea; Culicidae; Anophelinae; Anopheles; Anopheles gambiae str. PEST
(African malaria mosquito)

Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; 
Brachycera; Muscomorpha; Ephydroidea; Drosophilidae; Drosophila; Drosophila melanogaster (fruit fly)

Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Coleoptera; 
Polyphaga; Cucujiformia; Tenebrionidae; Tribolium; Tribolium castaneum (red flour beetle)

Aedes aegypti Anopheles gambiaeTribolium castaneum

The principal database for

D. melanogaster (and for other

species of the family

Drosophilidae) is FlyBase

(Q http://www.flybase.org/)

(Wilson et al., 2008). Many gene

prediction algorithms, including

GenScan, overpredict the correct

number of genes (see Chapter 16).

Currently, the Ensembl database

lists �23,000 mouse genes and

�49,000 GenScan predictions

(Q http://www.ensembl.org/
Mus_musculus/).
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can be attributed to the availability of more expressed sequence tags, complete

cDNAs that can be aligned to genomic DNA, and continued genomic DNA sequen-

cing. These studies have clarified the extent of untranslated regions, which are diffi-

cult to assign using ab initio gene-finding algorithms.

While one task of genome annotation is the description of protein-coding genes,

another task is to assign function to those genes. This can be approached by assessing

the extent to which predicted proteins have identifiable orthologs. Rubin et al. (2000)

systematically blastp searched the proteomes of the fly, C. elegans, and S. cerevisiae.

They drew several conclusions which appear valid today although the exact numbers

of annotated genes improves over time:

† The “core proteomes” of these organisms represent the set of unique proteins,

excluding paralogs. These sizes are 4383 proteins (yeast), 8065 proteins (fly),

and 9453 proteins (worm). Thus, despite the fact that S. cerevisiae is unicel-

lular while fly and worm are multicellular, the core proteomes are only twofold

different.

† About 30% of the fly genes have orthologs in worm; 20% have an ortholog in

both worm and yeast. Such proteins may be in common to all eukaryotic cells.

† Half of the fly proteins have a mammalian homolog (at an E value cutoff below

10210), consistent with a model in which the fly is more closely related to

humans than is the worm (see Fig. 18.11).

† A substantial number of Drosophila proteins are not significantly related to pro-

teins from yeast, worm, or mammals.

† The fly and worm each have about 2200 multidomain proteins. However,

yeast has only 672. Proteomic analyses such as these may elucidate the mol-

ecular basis of phenotypic differences between organisms. For example, in

contrast to yeast, the fly and worm have many proteins with extracellular

domains having roles in cell–cell contact and cell–substrate contact.

Twelve Drosophila-related genomes have currently been sequenced (Figs. 18.19

and 18.20). Following the sequencing of D. melanogaster and D. pseudoobscura

(Richards et al., 2005), a consortium of 250 researchers sequenced ten more gen-

omes (Drosophila 12 Genomes Consortium, 2007). Seven genomes were sequenced

to deep coverage (8.4x to 11.0x) and others to intermediate or low coverage to pro-

vide population variation data. These include several species that are closely related

(e.g., D. yakuba and D. erecta, or D. pseudoobscura and D. persimilis) as well as some

distantly related (e.g., D. grimshawi is a species restricted to Hawaii). Total genome

size varies less than threefold among the 12 species, and the gene content ranges

from �14,000 to �17,000. Based on comparative annotation of protein-coding

genes, Stark et al. (2007) identified almost 1200 new protein-coding exons and

resulted in a modification of 10% of the annotated protein-coding genes in

D. melanogaster.

The availability of this many related genome sequences permits a deeper under-

standing of many areas of evolution, including genomic rearrangements, the acqui-

sition of transposable elements, and protein evolution. Most genes evolve under

evolutionary constraint at most of their sites, so that the ratio v of nonsynonymous

to synonymous mutaions (dN/dS) tends to be low. Of all D. melanogaster proteins,

the majority (77%) are conserved across all 12 species. The number of noncoding

RNA genes is also conserved, ranging from �600 to �900.

Rubin et al. (2000) defined

orthologs as having significant

similarity (based on E values) over

at least 80% of the query protein

length. This leads to an underes-

timate of the number of orthologs

because some matched regions are

small.
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The sequencing and analysis of 12 Drosophila genomes as well as multiple fungal

genomes (Chapter 17) represent important, pioneering effort in eukaryotic compara-

tive genomics. Such approaches will result in improved catalogs of coding and non-

coding genes, regulatory features, and functional regions of genomic DNA, as well as

a clearer understanding of evolutionary events, including when species diverged, and

how and when genomes have been sculpted by forces from chromosomal alterations

to lateral transfer of transposable elements.

The Second Insect Genome: Anopheles gambiae
The mosquito A. gambiae is most well known as the malaria vector that carries the

protozoan parasite P. falciparum (as well as P. vivax, P. malariae, and P. ovale).

Mosquitoes are responsible for a variety of human diseases, although most of these

(except West Nile) are generally restricted to the tropics (Table 18.9).

Holt et al. (2002) reported the genomic sequence of a strain of A. gambiae using

the whole-genome sequencing strategy. The genome is 278 Mb arranged in an X

chromosome (numbered 1) and two autosomes (numbered 2 and 3). A particular

challenge in sequencing this genome is the high degree of genetic variation, as

manifested in “single-nucleotide discrepancies.” Thus there is a mosaic genome

TABLE 18-9 Human Diseases Borne by Mosquitoes
Disease Mosquito Species Number of Cases

Malaria Anopheles gambiae 500 million

Dengue Aedes aegypti 50 million per year

Lymphatic filariasis Culex quinquefasciatus, Anopheles gambiae 120 million

Yellow fever Aedes aegypti 200,000 per year

West Nile virus disease Culex tarsalis, Culex pipiens, other �4200 per year

West Nile virus disease data are for the year 2006 in the United States (Centers for Disease Control and
Prevention, http://www.cdc.gov).
Source: Adapted from Budiansky (2002) and Holt et al. (2002).

FIGURE 18.20. Phylogeny of 12
sequenced Drosophila species. The
tree was created using the neigh-
bor-joining method with additional
strong support from Bayesian and
maximum parsimony analyses
(see Chapter 7). The branch lengths
indicate the number of mutations
per site at four-fold degenerate
sites. Redrawn from Drosophila
12 Genomes Consortium (2007).
Used with permission.

D. melanogaster
D. simulans
D. sechellia

D. yakuba
D. erecta

D. pseudoobscura
D. persimilis

D. willistoni

D. virilis

D. mojavensis

D. grimshawi

0.1 mutations per site

S
ubgenus S
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S
ubgenus

D
rosophila

D. ananassae

A haplotype is a combination of

alleles of closely linked loci that are

found in a single chromosome and

tend to be inherited together.

AnoBase is a major resource for

anopheline species (Topalis et al.,

2005) ( Q http://www.anobase.

org). The Ensembl genome

browser for the mosquito is avail-

able at Q http://www.ensembl.

org/Anopheles_gambiae/.
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structure caused by two haplotypes of approximately equal abundance. In contrast,

the D. melanogaster and M. musculus genomes are relatively homozygous.

You can view and explore the A. gambiae genome at the Ensembl genome brow-

ser. Annotation by the Ensembl pipeline (Chapter 13) and Celera suggests the exist-

ence of 13,683 genes. As with all eukaryotic genome projects, the A. gambiae

annotation is known to contain many incomplete or incorrect gene assignments

(Holt et al., 2002).

The A. gambiae genome is more than twice the size of that of Drosophila. This

difference is largely accounted for by intergenic DNA, and Drosophila appears to

have undergone a genome size reduction relative to Anopheles species (Holt et al.,

2002). Anopheles gambiae and D. melanogaster diverged about 250 MYA (Zdobnov

et al., 2002). Almost half the genes in these genomes are orthologs, with an average

amino acid sequence identity of 56%. By comparison, the lineage leading to modern

humans and pufferfish (see below) diverged 450 MYA, but proteins from those two

species share even slightly higher sequence identity (61%). Thus, insect proteins

diverge at a faster rate than vertebrate proteins. An outstanding problem is to under-

stand the ability of Anopheles to feed on human blood selectively and to identify thera-

peutic targets. For this effort, it is important to identify arthropod-specific and

Anopheles-specific genes (Zdobnov et al., 2002).

Silkworm
The cocoon of the domesticated silkworm Bombyx mori is the source of silk fibers. Xia

et al. (2004) determined the sequence of its genome (see Fig. 18.19). At 429 Mb it is

3.6 times larger than that of fruitfly, and 1.5 times larger than mosquito; some of this

size can be attributed to the presence of more genes (18,510 relative to �13,700 in

D. melanogaster) and also larger genes. Transposable elements have also shaped the

genome, comprising 21%. Of that fraction, half arrived just 5 million years ago as

a single gypsy-Ty3-like retrotransposon insertion. Analysis of the B. mori genome

has helped to elucidate the function of the silk gland (a modified salivary gland),

and although silkworms do not fly nor do they have colorful wing patterns, there

are homologs of genes implicated in wing development and pattern formation.

Honeybee
The western honeybee Apis mellifera is of special interest because of its highly social

behavior. Bee hives are organized around a queen and her workers who transition

from roles in the hive (such as nurses and hive maintainers) to the outside (such as

foragers and defenders). The queens typically live ten times longer than the

workers and lay up to 2000 eggs per day. The workers have brains with only a million

neurons but display highly intricate behaviors. Somehow all these differentiated phe-

notypes are directed by a single underlying genome. The Honeybee Genome

Sequencing Consortium (2006) sequenced the A. mellifera genome. There are 15

acrocentric chromosomes, and a large metacentric chromosome 1; as is the case

for human chromosome 2 (Chapter 19; Fan et al., 2002), this is thought to represent

a fusion of two acrocentrics. Relative to other insect genomes it has a lower GC con-

tent, and fewer predicted protein-coding genes (summarized in Fig. 18.19). The rela-

tively low gene count could be influenced both by the limited number of expressed

sequence tags and by the divergence between Apis and other sequenced insect gen-

omes; in general, a typical pattern is that additional genes are discovered as the

genomes of more closely related species are sequenced. Although CpG dinucleotides

We described the Drosophila Down

syndrome cell adhesion molecule

(DSCAM) in Chapter 8, a gene

that potentially encodes up to

38,000 distinct proteins through

alternative splicing (NP_523649).

The A. gambiae ortholog appears

to share the same potential for

massive alternative splicing

(Zdobnov et al., 2002). See

GenBank protein accession

XP_309810.
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are underrepresented fivefold in the human genome (Chapter 19) and other genomes

(Chapter 16), they are surprisingly overrepresented 1.67-fold in honeybee. The

Honeybee Genome Sequencing Consortium (2006) provided a detailed analysis of

the proteins in honeybee relative to other insects and to other animals; for example,

the A. mellifera gene catalog illuminates those highly conserved proteins that are

absent in a particular species such as Drosophila.

The Road to Chordates: The Sea Urchin
As we survey the metazoan animals and move from the Protostomia (including the

insects, nematodes, molluscs and annelids) to the Deuterostomia (Fig. 18.16), we

first come to the sister phyla of the hemichordates and echinoderms. The purple

sea urchin Strongylocentrotus purpuratus is an echinoderm that has served as a

model organism for studies of cell biology (including embryology and gene regu-

lation) and evolution. The sea urchin serves as an outgroup for the chordates. This

creature is a marine invertebrate, has a radial adult body plan (as shown in the photo-

graph in Fig. 18.21), and has no apparent brain although there are neurons and brain

functions. An individual can have a lifespan over a century. And so it may be surpris-

ing to consider that it is more closely related to humans than nematodes or fruitflies

with their well-defined brains and complex behaviors.

The assembled S. purpuratus genome is 814 megabases (Sea Urchin Genome

Sequencing Consortium, 2006). The assembly includes hundreds of scaffolds

(also called supercontigs), and although linkage and cytogenetic maps are unavail-

able the number of chromosomes has been estimated to be �40. There were several

outstanding technical issues in sequencing the genome (reviewed in Sodergren et al.,

2006). One is that the sea urchin exhibits tremendous heterozygosity, with 4% to 5%

FIGURE 18.21. Overview of simple
(nonvertebrate) deuterostome gen-
omes. Photograph of purple sea
urchin from NCBI Entrez Genomes
website (by Andy Cameron).

Key dates: divergence from human lineage: ~550 million years ago
Disease relevance:   These organisms have many orthologs of human disease genes.
Genome features: The average gene density is one gene per 7.5 kb in Ciona, 1 gene per 9 kb in fruitfly,
 and 1 gene per 100 kb in human. Some C. intestinalis and sea urchin genome features are 
 intermediate between protostomes and vertebrates (e.g. 5 exons/gene in Drosophila, 6.8/gene
 in Ciona, and 8.8/gene in human). 
Websites: Sea Urchin Genome Project (http://sugp.caltech.edu/; http://www.spbase.org) 

Ciona intestinalis 
Ciona savignyi  
Oikopleura dioica 
S. purpuratus   

Haploid
genome size

GC Number of
chromos.

Number of Entrez
Genome IDgenes

~160 Mb 35% 14 15,852 166   
190 Mb 1435   
72 Mb ~15,000 12901   
814 Mb 36.9% ~40 23,300 10736   

Genus, species:
Ciona intestinalis (sea squirt) 
Ciona savignyi    
Oikopleura dioica (tunicate)
Strongylocentrotus purpuratus 
   (purple sea urchin)

Selected lineages: Eukaryota; Metazoa; Chordata; Urochordata; Ascidiacea; Enterogona; 
Phlebobranchia; Cionidae; Ciona; Ciona intestinalis

Eukaryota; Metazoa; Echinodermata; Eleutherozoa; Echinozoa; Echinoidea; 
Euechinoidea; Echinacea; Echinoida; Strongylocentrotidae; Strongylocentrotus; 
Strongylocentrotus purpuratus

Strongylocentrotus purpuratusCiona intestinalis 

For a brief and useful overview of

how to interpret the relatedness of

different species by inspection of a

phylogenetic tree, see Baum et al.

(2005).
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nucleotide differences between single copy DNA of different individuals (this

includes SNPs and insertions/deletions, and contrasts with �0.5% heterozygosity

in humans). The single male sea urchin that was sequenced displayed tremendous

heterozygosity between its two haplotypes, making it challenging to distinguish

sequencing errors from haplotype variants or from segmentally duplicated regions.

One way this problem was overcome was to sequence bacterial artificial chromosome

(BAC) clones of �150,000 base pairs each, in which each BAC corresponds to a

single haplotype. A minimal tiling path of BAC clones spanned the genome

and was sequenced at low (2x) coverage. This complemented a deep whole-

genome shotgun assembly. This combined approach was introduced in the sequen-

cing of the rat genome and has become an increasingly common strategy for genome

sequencing.

The Sea Urchin Genome Sequencing Consortium (2006) predicted about

23,300 genes for S. purpuratus. Some InterPro and Pfam domains (Chapter 10)

are especially overrepresented in sea urchin relative to mouse, Drosophila, C. elegans,

and sea squirt. Most dramatic are three families of receptor proteins that function in

the innate immune response (Toll-like receptors; NACHT and leucine-rich repeat-

containing proteins; and scavenger receptor cysteine-rich domain proteins). Each

of these genes is present in over 200 copies, while other animals from humans to fruit-

fly and nematode typically have about 0 to 20 copies. Another surprising finding is

the presence of over 600 genes encoding G-protein coupled chemoreceptors, as

well as genes involved in photoreception, expressed on the tube feet.

750 Million Years Ago: Ciona intestinalis and the
Road to Vertebrates
The vertebrates include fish, amphibians, reptiles, birds, and mammals. All these

creatures have in common a segmented spinal column. From where did the ver-

tebrates originate? Vertebrates are members of the chordates, animals having a noto-

chord (Fig. 18.16). The sea squirt C. intestinalis is a urochordate (also called

tunicate), one of the subphyla of chordates but not a vertebrate. Ciona is a hermaph-

roditic invertebrate that offers us a window on the transition to vertebrates (Holland,

2002). The title of this section begins “750 million years ago” referring to the

approximate date of a last common ancestor with the human lineage; in the remain-

ing sections of this chapter we will continue to track the relatedness of each group

to humans.

Dehal et al. (2002) produced a draft sequence of the C. intestinalis genome by the

whole-genome shotgun strategy. At 160 Mb it is about 12 times larger than typical

fungal genomes and 20 times smaller than the human genome. There are 15,852

predicted genes organized on 14 chromosomes. Most of these predicted genes are

supported by evidence from expressed sequence tags.

The availability of the Ciona genome sequence allows a comparison with proto-

stomes and other deuterostomes and supports its position as related to an ancestral

chordate (Dehal et al., 2002). Almost 60% of Ciona genes have protostome ortho-

logs; these presumably represent ancient bilaterian genes. Several hundred genes

have invertebrate but not vertebrate homologs, such as the oxygen carrier hemocya-

nin. These comparative studies will be augmented by the genome sequencing of the

related urochordates Ciona savignyi and Oikopleura dioica. O. dioca has one of the

smallest chordate genomes (about 72 Mb; Seo et al., 2001), and it is an attractive

experimental organism because its lifespan is two to four days, it can be maintained

The phylum Cnidaria is an out-

group to the bilateria, having

diverged about 600 to 750 MYA.

Its members include sea ane-

mones, hydras, corals, and jelly-

fishes. CnidBase organizes

genomic and other information on

diverse cnidarians (Q http://
cnidbase.bu.edu) (Ryan and

Finnerty, 2003).

The Department of Energy Joint

Genome Institute operates the

C. intestinalis genome home page

(Q http://genome.jgi-psf.org/
Cioin2/Cioin2.home.html). The

GenBank accession number for

the genome is AABS00000000,

and you can find a Ciona BLAST

server through the NCBI

Genomes page of eukaryotic pro-

jects. The Ghost database, a Ciona

EST project that includes a

BLAST server and gene

expression data, is available at

Q http://ghost.zool.kyoto-u.ac.

jp/indexr1.html.

The Broad Institute offers a Ciona

savignyi database (Q http://www.

broad.mit.edu/annotation/
ciona/).
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in culture, and its females are fecund. C. savignyi, a sea squirt, exhibits considerable

heterozygosity, with variable degrees of heterozygosity across the genome. Eric

Lander and colleagues (Vinson et al., 2005) introduced an algorithmic approach

to assembling genome sequences from diploid genomes. This method assembles

the two haplotypes separately, and thus requires twice the sequencing depth of

other whole genome sequencing projects. The result is substantial improvement in

sequence quality and contiguity. Such approaches will be increasingly useful as

more outbred genomes are sequenced.

There are 2570 Ciona intestinalis genes (one-sixth) that have orthologs in ver-

tebrates but none in protostomes; these genes arose in the deuterostome lineage

before the last common ancestor diverged into vertebrates, cephalochordates, and

urochordates (e.g., Ciona). There are 3399 Ciona genes (one-fifth) that have no

identifiable homolog in vertebrates or invertebrates and thus may be tunicate-specific

genes that evolved after the divergence of the urochordate lineage.

Ciona has genes involved in processes such as apoptosis (programmed cell

death), thyroid function, neural function, and muscle action. This provides an oppor-

tunity for comparative analyses of fundamentally important genes within the chor-

date lineage. For example, nerves communicate with muscles by releasing the

neurotransmitter acetylcholine from synaptic vesicles in presynaptic nerve terminals.

This transmitter diffuses across the synapse (a gap between cells) to bind and

activate postsynaptic receptors. Ciona has genes encoding proteins that function in

neurotransmission, including a transferase enzyme that synthesizes acetycholine,

an acetycholine transporter that pumps the neurotransmitter into vesicles, synaptic

vesicle proteins, and neurotransmitter receptors. Similar genes are present in sea

urchin as well, such as the agrin gene encoding a protein that clusters acetylcholine

receptors postsynaptically.

450 Million Years Ago: Vertebrate Genomes of Fish
The teleosts (or ray-finned fishes, Actinopterygii) are the largest group of vertebrates,

with �24,000 known species (more than half the total number of vertebrate species).

The ray-finned fishes diverged from the lobe-finned fishes (Sarcopyerygii) about 450

million years ago. These relationships are depicted in the phylogenetic tree of Fig.

18.22a. The teleosts are further shown in Fig. 18.22b, including the first four

sequenced fish genomes: those of the pufferfishes Takifugu rubripes and Tetraodon

nigroviridis, the medaka Oryzias latipes, and the zebrafish Danio rerio (see Fig.

18.23). Shallow sequencing (1.4x coverage) of the elephant shark Callorhinchus

milii has also been reported (Venkatesh et al., 2007), representing a cartilaginous

fish that is an outgroup to the teleosts (Fig. 18.22a).

The second vertebrate genome sequencing project (after human) was that of the

Japanese pufferfish T. rubripes, in part because it has a remarkably compact genome.

This teleost fish has a genome size of 365 Mb, about one-eighth the size of the human

genome (Aparicio et al., 2002). However, Takifugu and humans have comparable

numbers of predicted protein-coding genes.

There are several reasons that the Takifugu genome is relatively compact

(Aparicio et al., 2002):

† Only 2.7% of the Takifugu genome consists of interspersed repeats, based on

analyses with RepeatMasker. This contrasts with 45% interspersed repeats

in the human genome (Chapter 19). Still, every known class of eukaryotic

A Ciona protein (NP_001027621)

has 46% identity to human cho-

line acetyltransferase

(NP_065574) and 51% identity to

a sea urchin ortholog

(XP_001185550). A Ciona gene

(accession AB071998) encodes a

protein with 56% identity to a

human vesicular acetylcholine

transporter (NP_003046). Many

such genes also function in

neurotransmission in

invertebrates.

Fugu rubripes is also called

Takifugu rubripes. The

International Fugu Genome

Consortium was responsible for

the sequencing of its genome. The

Takifugu Browser is at Q http://
www.ensembl.org/Takifugu_

rubripes/. Produced by the

Wellcome Trust Sanger Institute

and the European Bioinformatics

Institute, it is a major portal to this

genome and others. Other major

gateways to Fugu resources are at

the U.S. Department of Energy

Joint Genome Institute site

(Q http://genome.jgi-psf.org/
Takru4/Takru4.home.html),

Q http://www.genoscope.cns.fr/
externe/English/Projets/Projet_

C/C.html, and Q http://www.

fugu-sg.org/.
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transposable elements is represented in Takifugu. The most common Takifugu

repeat is the LINE-like element Maui (6400 copies), while in humans there

are over one million copies of the most common repeat, Alu.

† Introns are relatively short. Seventy-five percent of Takifugu introns are

,425 bp in length, while in humans 75% of introns are ,2609 bp. In

Takifugu, about 500 introns have a length greater than 10 kb, while in

humans more than 12,000 introns are greater than 10 kb.

† Gene loci occupy about 108 Mb of the total euchromatic DNA (320 Mb).

This represents about one-third of the genome, a far higher fraction than in

mouse or human.
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FIGURE 18.22. (a) Phylogenetic
tree of the vertebrates. The vertical
axis corresponds to the abundance
of extant species in each group,
with representative names given.
The Sarcopterygii (lobe finned
fishes) include coelacanths, lung-
fish, and tetrapods (amphibians,
birds, reptiles, mammals); a more
detailed tree of the tetrapods is pre-
sented in Fig. 18.25 below. The
x axis shows the divergence times
based on fossil records, which
differ somewhat from estimates
made by molecular sequence ana-
lyses. Redrawn from Venkatesh
et al. (2007). Used with per-
mission. (b) Phylogenetic tree of
the teleosts showing the relation-
ships of the first four sequenced
fish genomes. Redrawn and modi-
fied from Kasahara et al. (2007).
Used with permission.
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After the Takifugu genome was completed, Jaillon et al. (2004) reported the

sequence of another pufferfish, Tetraodon nigroviridis. This permitted comparative

analyses between Tetraodon and human (resulting in the prediction of �900 novel

human genes). A main focus of the genome analysis was on the evidence that telosts

are descendants of an organism that underwent ancient whole genome duplication.

This was followed by massive gene loss, as we described for separate whole genome

duplication events in the fungi (Chapter 17). Jaillon et al. further inferred that the

ancestral vertebrate genome had 12 chromosomes.

Yuji Kohara and colleagues (Kasahara et al., 2007) generated a draft sequence of

the medaka. Upon comparing the four available fish genomes with the human

genome they proposed a model of genome evolution in which a fish/human ancestor

had 13 chromosomes. There are other models of the ancestral karyotype. However,

there is a consensus that several whole genome duplications occurred in the teleost

lineage (e.g., Van de Peer, 2004; Christoffels et al., 2004; Postlethwait, 2007).

Once duplicate genes are identified within and between genomes (such as fish and

human), the date of the duplication events can be estimated by using phylogenetic

trees (e.g., neighbor-joining trees assuming a constant molecular clock). About

one-third of the duplicated genes in Takifugu seem to derive from a whole genome

duplication event that occurred �320 MYA, as suggested by Ohno (1970).

Approximately 1000 pairs of duplicated genes (paralogs) were identified in both

Tetraodon and Takifugu, and based on Ks frequencies, 75% represent ancient

FIGURE 18.23. Overview of fish
genomes. The D. rerio image is
from the NHGRI (Q http://www.
genome.gov/17516871).

Key dates: divergence from human lineage: ~450 million years ago. T. nigroviridis and T. rubripes
           diverged 18–30 MYA.
Disease relevance: D. rerio and other fish provide models for human genetic diseases.
Genome features: Some fish species are characterized by relatively small genome sizes; T. rubripes is only
 one-eighth the size of the human genome (while having a comparable number of genes), and the 
 medaka O. latipes (medaka) is half the size of zebrafish. The stickleback (G. aculeatus) has 
 undergone extreme adaptive radiation in recent millennia by occupying different environments and 
 acquiring diverse phenotypes, making it an excellent model organism in which to study adaptive 
 evolution. Many fish, such as the rainbow trout O. mykiss, are recent tetraploids.
Websites: http://www.ensembl.org/ (for multiple fish genomes); http://zfin.org/ (zebrafish).

Tetraodon nigroviridis
Takifugu rubripes

Genus, species (common name):
Callorhinchus milii (elephantfish)
Danio rerio (zebrafish)
Gasterosteus aculeatus (three spined stickleback)
Oryzias latipes (Japanese medaka)
Takifugu rubripes (pufferfish)
Tetraodon nigroviridis (freshwater pufferfish)

Selected lineages: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; 
Neopterygii; Teleostei; Ostariophysi; Cypriniformes; Cyprinidae; Danio; Danio rerio

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; Neopterygii; Teleostei; 
Euteleostei; Neoteleostei; Acanthomorpha; Acanthopterygii; Percomorpha; Tetraodontiformes; 
Tetradontoidea; Tetraodontidae; Takifugu; Takifugu rubripes (pufferfish)
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duplications that occurred prior to the divergence of the Takifugu and Tetraodon

lineages. Two other whole genome duplication events occurred earlier (at the time

of divergence of jawless and jawed vertebrates, �500 MYA) and more recently in

the salmonid lineage �50 MYA (reviewed in Postlethwait, 2007).

According to Kasahara et al. (2007), about 336 to 404 MYA the teleost lineage

underwent a whole genome duplication, followed quickly (within 50 million years) by

major chromosomsal rearrangements (fissions, fusions, translocations) and

reduction to 24 chromosomes. Today, half of all teleosts have 24 or 25 chromosomes.

Medaka is unusual because after its divergence from zebrafish its genome did not

undergo rearrangements for �300 million years.

310 Million Years Ago: Dinosaurs and the Chicken Genome
Our approach in this chapter has been to proceed through the tree of the eukaryotes

in Fig. 18.1 moving towards the primates. When the chicken genome was sequenced

by the International Chicken Genome Sequencing Consortium (2004) it provided a

unique perspective on the human genome because those lineages diverged about 310

million years ago (Fig. 18.24). The chicken is far closer to humans than fish, but

farther than the rodents (diverged �80 MYA). Thus it provided an excellent distance

for identifying highly conserved functional elements (Chapter 16). The genome is

1200 megabases and is organized in 38 autosomes and a pair of sex chromosomes

(ZW is female and ZZ is male, that is, the female is heterogametic; chromosome

W is extremely small). Thus the karyotype is 2n ¼ 78. The autosomes include

many minichromosomes, typically having a high GC content, a high gene content,

and very high recombination rates (a median value of 6.4 centmorgans [cM] per

megabase; by comparison the human genome ranges from 1 to 2 cM/Mb and the

mouse genome ranges from 0.5 to 1.0 cM/Mb).

A reason that the chicken genome is smaller than the human genome by a factor

of three is that it has relatively few repetitive elements. Interspersed repeats occur as

transposable elements in decay. There is no evidence for active short interspersed line

Key dates: divergence from human lineage: ~310 million years ago
Disease relevance: chicken is an important nonmammalian vertebrate model organism for studies
           of embryonic development, virus infection (the first tumor virus, Rous sarcoma virus, and the
           first oncogene, src were identified in the chicken). 
Genome features: the genome is ~threefold smaller than other mammalian genomes, and has a
           relatively small proportion of interspersed repeat content. About 70 Mb of the sequence
           is alignable with human. 

Gallus gallus

Genus, species:
Gallus gallus 

Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Archosauria; Dinosauria; Saurischia; Theropoda; 
Coelurosauria; Aves; Neognathae; Galliformes; Phasianidae; 
Phasianinae; Gallus; Gallus gallus (red jungle fowl)

Entrez
Genome IDgeneschromos.
1334220–23,000391200 Mb

Number ofNumber ofGC content
genome size
Haploid

FIGURE 18.24. Overview of the
chicken genome. Photograph from
the NHGRI (Q http://www.
genome.gov/17516871).

The red jungle fowl, for which the

genome was sequenced, is the

precursor to the domesticated

chicken. NCBI offers a guide to

chicken genome resources at

Q http://www.ncbi.nlm.nih.gov/
projects/genome/guide/chicken/.
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elements (SINEs) in the past 50 million years, in contrast to their active roles in the

human genome. Expansions and reductions of protein-coding gene families occur;

for example, an avian-specific family of keratins are used to create claws, scales,

and feathers. One surprising expansion is a family of 218 genes that are predicted

to encode olfactory receptors and are orthologous to two human genes (OR5U1

and OR5BF1).

180 Million Years Ago: The Opposum Genome
There are three main groups of mammals: (1) eutherians (placental mammals such

as humans), (2) metatherians (marsupials) such as the opossum, koala, and kangaroo

(3) prototherians such as the platypus (Fig. 18.25). The genome sequence of the

gray, short-tailed opossum Monodelphis domestica is the first from the metatherians

(Mikkelsen et al., 2007) (Fig. 18.26). Its genome size is comparable to that of

humans, organized into eight autosomes (257 megabases to 748 megabases).

These autosomes are extremely large (the shortest one is longer than the longest

human one, chromosome 1). In contrast, the opossum X chromosome is extremely

short (�76 megabases), smaller than that of any known eutherian.

The GC content of the M. domestica genome is 37.7%, lower than that of other

amniote genomes (40.9% to 41.8%). Mikkelsen et al. note that the average recombi-

nation rate for the autosomes (�0.2 to 0.3 cM/Mb) is lower than in other amniotes,

consistent with a model in which the genome has undergone limited recombination.

In eutherian mammals, females achieve dosage compensation of the X chromo-

some by the random inactivation of either the maternal or paternal X in female

embryos. This is accomplished by an X inactivation center (XIC) that includes the

XIST gene. Its RNA product coats and silences one X chromosome copy. In contrast,

metatherian mammals such as the opossum inactivate the paternal X. Mikkelsen

et al. found no evidence for XIST in the opossum genome. While the human

FIGURE 18.25. Phylogenetic tree
depicting mammalian genomes.
The genomes of some of these
organisms have been sequenced,
and the others are beginning to be
sequenced. Note that the branch
lengths of the rat and mouse
lineages are long relative to other
members of the clade containing
humans (the Euarchontoglires),
reflecting a faster evolutionary
rate. The data are available at
Q http://www.nisc.nih.gov/data/
and in Margulies et al. (2005).
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X chromosome has undergone remarkably little change since the eutherian radiation

�100 million years ago, the opossum X chromosome has undergone large-scale

rearrangments (affecting the XIC and X-linked pseudoautosomal region).

The predicted gene content of M. domestica (18,000 to 20,000) is comparable to

that of humans, with relatively small numbers of organism-specific genes. Conserved

noncoding elements (CNEs; Chapter 16), rather than genes, comprise the majority

of the well-conserved sequence elements.

100 Million Years Ago: Mammalian Radiation from Dog to Cow
A spectacular radiation of mammalian species approximately 100 million years ago

(Fig. 18.25). In creating that tree, Margulies et al. (2005) considered the question of

how many separate genomes need to be sequenced, even at low coverage, in order to

identify highly conserved regions. Eddy (2005) estimated that for a given element of

length 50 bases, it is sufficient to compare just human and mouse sequences (having a

total branch length D of 0.45). For an element having a length of 8 bases it is necess-

ary to have D � 4 (e.g. having 40 species each with branch length 0.1 from a root).

Margulies et al. estimated the divergence of each species from human, calibrating

the mouse/human distance of 0.45 (Table 18.10). The values in this table are branch

lengths. Column A of the table shows the divergence from human; some organisms

such as the rhesus macaque are closely related (branch length 0.05) while others are

very divergent (e.g. opossum, �0.95). Column B shows the increase in total diver-

gence D that is added, if the genome sequence of each successive species (i.e. each

row) is added to the total set of sequenced genomes. Column C shows the total diver-

gence D which would approach a value of 4.6 once all these genomes are sequenced.

For example, by sequencing the rat genome (row 3) in addition to human and mouse

the total divergence rises from 0.45 to 0.53. The purpose of this analysis is to devise a

strategy for choosing genomes to sequence to systematically identify conserved

elements (such as gene regulatory sequences) that are likely to be functional. This

depends on the length of the element, the extent of its conservation, and its rate of

evolution (Kellis et al., 2003; Eddy, 2005).

Selected divergence dates: The marsupial lineage diverged from the human lineage ~180 million years 
       ago (MYA). 
Genome features: the autosomes are extremely large (the smallest, at 257 Mb, is larger than human
       chromosome 1). 
Disease association: M. domestica is a model for radiation-induced malignant melanoma. Newborn 
        opposums are unique in their ability to recover from complete transections of the spinal cord.
Organism-specific web resources:  http://www.broad.mit.edu/mammals/opossum

Monodelphis domestica

Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Metatheria; Didelphimorphia; 
Didelphidae; Monodelphis; Monodelphis domestica 
(gray short-tailed opossum)

EntrezNumberofNumberofGC contentHaploid
Genome ID
1256118–20,000937.7%3600 Mb

geneschromos.genome size

FIGURE 18.26. Overview of the
genome of the short-tailed opossum
Monodelphis domestica, a marsu-
pial. Photograph from the
NHGRI (Q http://www.genome.
gov/17516871).
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The genomes of many of these organisms are now being sequenced. Following a

1.5x coverage of the dog genome by Craig Venter and colleagues (Kirkness et al.,

2003), Lindblad-Toh et al. (2005) reported a high quality draft genome sequence.

There are �400 modern dog breeds and many have a high prevalence of particular

diseases due to breeding. A boxer was selected because that breed has relatively

high homozygosity. There are fewer predicted genes than in human (see Fig.

18.27), and almost all dog genes have human counterparts. Lindblad-Toh et al.

noted that many functionally related genes that undergo rapid acceleration in the

human genome relative to mouse have been proposed to represent human-specific

innovations, but often these genes also show rapid evolution in the canine lineage.

Thus, it is important to be cautious about the significance of changes in comparative

studies with limited numbers of species.

80 Million Years Ago: The Mouse and Rat
The sequencing and analysis of the mouse genome represents a landmark in the his-

tory of biology. Following the human, the mouse is the second mammal to have its

TABLE 18-10 Divergence of Mammalian Species in Fig. 18.25 from Human

Species
(A) Divergence from

Human
(B) Divergence

Added
(C) Total

Divergence

Human 0 0 0

Mouse 0.45 0.45 0.45

Rat 0.456016 0.0800223 0.530022

Chimpanzee 0.00870256 0.00385479 0.533877

Dog 0.308722 0.187998 0.721875

Rhesus macaque 0.0506105 0.0235448 0.74542

Opossum 0.945002 0.810721 1.55614

Cow 0.362861 0.202799 1.75894

Elephant 0.322285 0.161317 1.92026

Armadillo 0.306693 0.156254 2.07651

Free-tailed bat 0.289354 0.131334 2.20785

Cat 0.292095 0.0815974 2.28944

Ring-tailed lemur 0.225151 0.118897 2.40834

Shrew 0.413912 0.26018 2.66852

Tenrec 0.483987 0.277295 2.94581

Caviomorph 0.423043 0.26171 3.20752

Bushbaby 0.277728 0.136447 3.34397

Hedgehog 0.437285 0.241742 3.58571

Mousette fruit bat 0.293293 0.106385 3.6921

Sciurid 0.299576 0.147832 3.83993

Tree shrew tupaia 0.300747 0.183026 4.02296

Hyrax 0.395407 0.162658 4.18562

Rabbit 0.309612 0.178759 4.36437

Short-eared elephant
shrew

0.441402 0.225011 4.58939

Divergence corresponds to branch lengths in units of substitutions per site.
Data are from Margulies et al. (2005) and Q http://www.nisc.nih.gov/data/.
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genome sequenced. The mouse is an excellent model for understanding human

biology (Fig. 18.28):

† Remarkably, although these two organisms diverged about 80 MYA, only

about 300 of the annotated genes in the mouse genome have no counterpart

in the human genome.

† In addition to sharing thousands of orthologous protein-coding genes, the

mouse and human genomes have large tracts of homologous non-protein-

coding DNA. These conserved sequences provide insight into regulatory

regions of the genome or noncoding genes (Hardison et al., 1997;

Dermitzakis et al., 2002).

Selected divergence dates: The Canidae (dogs) include 34 closely related species that diverged in the
        past ~10 million years. 
Genome features: About 5.3% of the human and dog lineages contain functional elements that have
        been under purifying constraint. These have almost all been retained in the mouse as well.

Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Laurasiatheria; Carnivora; 
Caniformia; Canidae; Canis; Canis lupus familiaris (dog) 

EntrezNumber ofNumber ofGC contentHaploid
Genome IDgeneschromos.genome size
1317919,3003941%2500 Mb FIGURE 18.27. Overview of the

dog genome. The photograph is of
a boxer (Tasha) whose genome
was sequenced. Photograph from
the NHGRI website (Q http://
www.genome.gov/17516871).

Selected divergence dates: Mouse and rat last shared a common ancestor 12–24 MYA. The rodent lineage
       diverged from the human lineage ~80 MYA.
Genome features: About 5% of the human and rodent lineages contain functional elements that have
        been under purifying constraint. 
Disease relevance. There are over 450 inbred mouse strains, and many of these serve as disease models.
        Knockouts and other manipulations of mouse genes allow studies of human diseases. Rats
        (like mice) are host to many pathogens, and are carriers for over 70 human diseases.
Web resources: Mouse Genome Informatics (http://www.informatics.jax.org/);
         Rat Genome Database (http://rgd.mcw.edu/wg/)

Mus musculus

Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; 
Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus; 
Mus musculus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; 
Glires; Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; 
Rattus; Rattus norvegicus (see photo)

Entrez
Genome ID
13183
10629

genes
23,049
20,973

chromos.genome size
20
21

42%2600 Mb 
~42%2750 MbRattus norvegicus

Number ofNumber ofGC contentHaploid

FIGURE 18.28. Overview of
rodent genomes. The photograph
of a rat is from the NHGRI
website (Q http://www.genome.
gov/17516871).
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† The mouse and human share many physiological features. Thus, mice make

an important model for hundreds (or thousands) of human diseases, from

infectious diseases to complex disorders.

† There are over 1000 mouse strains having spontaneous mutations. Mutations

can be introduced into the mouse through random mutagenesis approaches

such as chemical mutagenesis or radiation treatment (Chapter 12).

Mutations and other genetic modifications can also be introduced through

directed approaches such as transgenic, knock-out, and knock-in technologies.

Two groups independently sequenced the mouse genome: the Mouse Genome

Sequencing Consortium (Waterston et al., 2002) and Celera Genomics. These ver-

sions of the genome were directly compared by Xuan et al. (2003). They selected over

8300 mouse entries having RefSeq accession numbers as queries and used BLAT

(Chapter 5) to compare the coverage and accuracy of the two assemblies. Most

mRNAs were matched with both assemblies.

Waterston et al. (2002) sequenced the genome of a female mouse of the B6

strain. The sequencing strategy entailed a combined whole-genome shotgun

approach (with sevenfold coverage) and a hierarchical shotgun approach (with

sequencing of BAC clones that were physically mapped to chromosomes). The

assembly covers most of the mouse genome. Of the RefSeq cDNAs, 99.3% could

be aligned to the genomic sequence. Also, the Waterston et al. (2002) assembly

closely matches an independent draft sequence of mouse chromosome 16 (Mural

et al., 2002).

Waterston et al. (2002) described 11 main conclusions of the mouse genome-

sequencing project:

1. The total length of the euchromatic mouse genome is 2.5 Gb in size, about

14% smaller than the human genome (2.9 Gb). In contrast to other, more

compact genomes we have discussed, the mouse genome (like the human

genome) averages about one gene every 100,000 bp of genomic DNA.

The GC content is comparable, with mean values of 42% (mouse) versus

41% (human). There are 15,500 CpG islands, about half the number

observed in humans (see Chapter 19).

2. Over 90% of the mouse and human genomes can be aligned into conserved

synteny regions. After the divergence of mouse and human about 75 to 80

MYA, chromosomal DNA was shuffled in each species. However, large

regions of DNA obviously correspond. As an example of how to visualize

this, the EBI offers a human/mouse conserved synteny viewer that we will

explore in Chapter 19.

3. About 40% of the human genome can be aligned to the mouse genome at the

nucleotide level. This represents most of the orthologous sequence shared by

these genomes. For 12,845 orthologous gene pairs, 70.1% of the corre-

sponding amino acid residues were identical.

4. The neutral substitution rate in each genome can be estimated by comparing

thousands of repetitive DNA elements to the inferred ancestral consensus

sequence. The average substitution rate is 0.17 per site in humans and

0.34 per site in mouse. The mouse genome also shows a twofold higher

rate of acquisition of small (less than 50 bp) insertions and deletions.

5. The proportion of small (50 to 100 bp) segments in the mammalian

genome that is under purifying selection is about 5%. This is estimated by

Sequencing a female assured

equal coverage of the X chromo-

some and each autosome. The Y

chromosome in both human and

mouse is small and contains highly

repetitive DNA elements (see

Chapter 19).

The GenBank accession number

of the mouse genome is

CAAA01000000. It is accessible

through the three main genome

browser sites: Q http://www.

ensembl.org/Mus_musculus/,

Q http://genome.ucsc.edu/, and

Q http://www.ncbi.nlm.nih.gov.

The mouse sequencing consor-

tium (Waterston et al., 2002,

p. 526) defined a syntenic segment

as “a maximal region in which a

series of landmarks occur in the

same order on a single chromo-

some in both species.” They

identified 558,000 orthologous

and highly conserved landmarks

in the mouse assembly, compris-

ing 7.5% of the mouse assembly.
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comparing the neutral rate to the extent of sequence conservation in the

genome. Since this 5% value is greater than the proportion of protein-

coding genes in the genome, genomic regions that do not code for genes

must be selected for, such as regulatory elements. Regulatory regions such

as those that control liver-specific and muscle-specific expression were con-

served between mouse and human to an extent greater than regions of neu-

tral DNA, although less than regions that are protein coding.

6. The mammalian genome is evolving in a nonuniform manner, with variation

in the rates of sequence divergence across the genome. The neutral substi-

tution rate varied across all chromosomes (and was lowest on the X chromo-

some), with a higher substitution rate associated with extremes of GC

content.

7. The mouse and human genomes were each proposed to contain about

30,000 protein-coding genes. (Note that these 2002 estimates have been

revised with ongoing annotation and comparative genomics efforts, as sum-

marized in Fig. 18.28.) About 80% of mouse genes have a single identifiable

human ortholog. Less than 1% of human genes have no identifiable ortholog

in the mouse, and vice versa. The sequencing effort revealed the existence of

9000 previously unknown mouse genes as well as 1200 new human genes.

8. Dozens of local gene family expansions have occurred in the mouse genome,

such as the olfactory receptor gene family. About 20% of this family are

pseudogenes in mouse, suggesting a dynamic interplay between gene

expansion and gene deletion. The lipocalins also underwent a mouse line-

age-specific expansion. For example, the mouse X chromosome contains a

cluster of genes related to odorant-binding protein that are absent in

humans. Such expansions may account in part for the physiological differ-

ences between primates and rodents in terms of reproductive processes,

feeding, or other behaviors.

9. Particular proteins evolve at a rapid rate in mammals. For example, genes

involved in the immune response appear to be under positive selection,

which drives their evolution.

10. Similar types of repetitive DNA sequences are found in both human and

mouse. We will discuss human repetitive sequences in Chapter 19.

11. The public consortium described 80,000 single-nucleotide polymorphisms

(SNPs). We introduced SNPs in Chapter 16 and will discuss them further in

Chapter 19.

A fundamental problem is to understand the genetic variation that underlies the

phenotype differences of different mouse strains. Frazer et al. (2007) resequenced the

genomes of 15 mouse subspecies or strains. These included four wild-derived strains

(M. m. musculus, M. m. castaneus, M. m. domesticus, and M. m. molossinus). They also

sequenced 11 wild-derived strains which were genetically more pure because they

have been bred to homozygosity. Frazer et al. resequenced almost 1.5 billion bases

(58%) of these genomes and, by comparing them to the reference strain C57BL/

6J, they identified 8.3 million SNPs. (The false positive rate of discovery was 2%,

the accuracy of genotype calls was .99%, and the false negative rate was assessed

as roughly half.) They generated a haplotype map across the mouse genome, defining

ancestry breakpoints at which pairwise comparisons indicated a transition to (or from)

high SNP densities. The genomewide SNP map included over 40,000 segments with

Nadeau and Taylor (1984) esti-

mated that there are about 180

conserved synteny regions of the

mouse and human genomes.

Waterston et al. (2002) provided

evidence for 342 such regions,

each greater than 300 kb in size.

The SNP resequencing data are

available at NCBI and at Q http://
mouse.perlegen.com/mouse/.

The Perlegen website includes a

genome browser that displays

haplotype blocks. As an example,

enter a query hbb-b1 to see the

beta globin locus on mouse

chromosome 7 and the associated

haplotype blocks across all 15

mouse strains.
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an average length of 58 kilobases and a range of 1 kilobase to 3 megabases. The signi-

ficance of this project is that it describes thegenetic basis of variation in these 15strains,

all of which have unique properties such as behaviors or disease susceptibilities.

The most comprehensive mouse resource on the World Wide Web is the Mouse

Genome Informatics (MGI) database and its associated sites (see Chapter 12) (Blake

et al., 2003).

Rats and mice last shared a common ancestor about 12 to 24 MYA. The Rat

Genome Sequencing Project Consortium (2004) described a high-quality draft

genome sequence of the Norway rat, allowing comparisons of the rat, mouse, and

human genomes. All have comparable sizes (2.6 to 2.9 billion bases) and encode

similar numbers of genes (see Fig. 18.28). Some properties differ: segmental dupli-

cations span over 5% of the human genome (Chapters 16 and 19) but just 3% of the

rat genome and 1% to 2% of the mouse genome. About 40% of the euchromatic rat

genome (or �1 billion bases) aligns to orthologous regions of both mouse and

human, containing most exons and known regulatory elements. A portion of this

alignable sequence, spanning about 5% of each genome, is under selective constraint

(negative selection) while the remainder evolves at the neutral rate. Another 30% of

the rat genome aligns only with the mouse but not human, and is largely comprised of

rodent-specific repeats.

The rodent lineage is evolving at a faster rate than the human lineage, as

indicated by the longer rodent branch lengths in Fig. 18.25. This includes a

threefold higher rate of nucleotide substitution in neutrally evolving DNA, based

on analyses of repetitive elements shared since the last common ancestor of

humans and rodents.

5 to 50 Million Years Ago: Primate Genomes
How did humans evolve from other primates? What features of the human genome

account for our distinct traits, such as language and higher cognitive skills? A com-

parison of several primate genomes may elucidate the molecular basis of our

unique traits—or, depending on one’s perspective, such a comparison may highlight

how closely similar we are to the great apes at a genetic level.

For an overview of primates, we can begin by making a phylogenetic tree with

lysozyme protein sequences (Fig. 18.29). The chimpanzee (Pan troglodytes) and the

bonobo (pygmy chimpanzee, Pan paniscus) are the two species most closely related

to humans. These three species diverged from a common ancestor 5.4+1.1

MYA, based on analyses of 36 nuclear genes (Stauffer et al., 2001). Our next closest

species is the gorilla, which diverged an estimated 6.4+1.5 MYA. Next in the

branching order are the orangutan Pongo pygmaeus (11.3+1.3 MYA) and the

gibbon (14.9+2.0 MYA) (Stauffer et al., 2001). The hominoids diverged from

the Old World monkeys (e.g., the macaque and baboon) 23 MYA, close to the age

of the earliest extant hominoid fossils. New World monkeys (such as the tamarin)

are even more distantly related.

Following humans, the next two genomes to be sequenced were the chimpanzee

and the rhesus macaque (Fig. 18.30). The Chimpanzee Sequencing and Analysis

Consortium (2005) described the genome sequence of Clint, a captive-born male.

By comparing a human reference to an individual chimpanzee, the analysis focused

on those relatively few differences that could be found. (In contrast, comparisons of

the human genome to the fish or chicken focused on the relatively few similarities that

could be detected, such as ultraconserved regions or coding sequences.) The

MGI is available at Q http://www.

informatics.jax.org and is oper-

ated by the Jackson Laboratory

(Q http://www.jax.org). MGI has

multiple components, including

the Mouse Genome Database

(MGD), the Gene Expression

Database (GDX), the Mouse

Genome Sequencing (MGS) pro-

ject, and the Mouse Tumor

Biology (MTB) database

(Q http://www.informatics.jax.

org/mtb). Web document 18.3 at

Q http://www.bioinfbook.org/
chapter18 lists additional web

resources for the study of the

mouse and rat.
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South American squirrel 
monkey (Saimiri sciureus)

White ear-tufted marmoset
(Callithrix jacchus)
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(Saguinis oedipus)
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gorilla (Gorilla gorilla)
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FIGURE 18.29. Phylogeny of the
primates. A neighbor-joining tree
representing primate phylogeny
based on lysozyme protein
sequences. These sequences were
aligned using ClustalW and dis-
played as a neighbor-joining tree.
The accession numbers are as fol-
lows: gibbon (P79180), orangutan
(P79180), bonobo (AAB41214),
chimpanzee (AAB41209), human
(P00695), gorilla (P79179),
Kenya baboon (P00696), African
green monkey (P00696), rhesus
macaque (P30201), proboscis
monkey (P79811), marmoset
(P79158), tamarin (P79268),
and South American squirrel
monkey (P79294). The sequences
are available in web document
18.4 at Q http://www.bioinfbook.
org/chapter18.

Selected divergence dates: The rhesus macaque and human lineages diverged ~25 MYA; chimpanzee and
         human lineages diverged ~6 MYA, also at the time of divergence from the bonobo.
Genome features: In aligned regions, DNA shares ~98% identity from chimp to human, and 93.5% identity 
         from macaque to human. High confidence macaque–human orthologs share an average of 97.5% 
         identity.
Disease relevance. Macaques are a widely used model for human disease because of their recent 
         divergence (25 MYA rather than 80 MYA for rodents), similar anatomy, physiology, susceptibility to 
         infectious agents related to human pathogens.
Web resources: see the Ensembl database at http://www.ensembl.org.

Pongo pygmaeus
Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 
Haplorrhini; Catarrhini; Hominidae; Gorilla; Gorilla gorilla

 ... Catarrhini; Cercopithecidae; Cercopithecinae; 
Macaca; Macaca mulatta (rhesus macaque)

...Catarrhini; Hominidae; Pan; Pan troglodytes (chimpanzee)

...Catarrhini; Hominidae; Pongo; Pongo pygmaeus (orangutan)

Entrez
Genome ID
18247Gorilla gorilla
13178
12537
13184
18245

genes

~20–25,000
~20,000
~20–25,000

chromos.

23
21
24

genome size

40.7%
40.7%
~41%

3038 Mb
2870 Mb
3350 Mb

Homo sapiens
Macaca mulatta
troglodytes
Pongo pygmaeus

Number ofNumber ofGC contentHaploid

FIGURE 18.30. Overview of pri-
mate genomes. The photograph of
an orangutan is from the NHGRI
website (Q http://www.genome.
gov/17516871).
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assembly represents a consensus of two haplotypes from the diploid individual (with

one allele from heterozygous sites arbitrarily selected for the assembled sequence);

the situation is similar to that of the first sequence of a diploid human individual

genome (Chapter 19). Nucleotide divergence was found to occur at a mean rate of

1.23%, with 35 million SNPs catalogued (including �1.7 million high quality

SNPs determined by sequencing portions of seven additional chimpanzees). Most

of these changes reflect random genetic drift rather than being shaped by positive

or negative selection pressures. The 1.23% nucleotide divergence rate includes

both fixed divergence between humans and chimpanzees (�1.06%) and poly-

morphic sites within each species. Variation in the nucleotide substitution rates

was especially prominent in subtelomeric regions. Of all the observed substitutions,

substitutions at CpG dinucleotide sites were most common. Considering the

chromosomes separately, the human/chimpanzee divergence is greatest for the Y

chromosome (1.9%, perhaps reflecting the greater mutation rate in male) and least

for the well-conserved X chromosome (0.94% divergence).

While the number of substitutions is large (35 million), insertion/deletion

(indel) events are notable for being fewer (�5 million events) but spanning more

of the genomes (there are 40 to 45 megabases of species-specific euchromatic

DNA, totaling �90 megabases and corresponding to a �3% difference between

the human and chimpanzee genomes).

While humans have a haploid set of 23 chromosomes, chimpanzees have one

more, reflecting the fusion of two chromosomes corresponding to chimpanzee 2a

and 2b. Additionally there have been nine pericentric inversions (Chapter 16).

Many other features have been characterized. Among the repetitive elements,

SINEs have been threefold more active in humans, while several new retroviral

elements (PtERV1, PtERV2) have invaded the chimpanzee genome selectively.

Most of the protein-coding genes are highly conserved, with �29% being identical.

However, 585 out of 13,454 chimpanzee-human ortholog pairs have a KN/KS ratio

greater than 1, suggestive of positive selection. These include glycophorin C, which

mediates a P. falciparum invasion pathway in human erythrocytes, and granulysin

which is involved in defense against pathogens such as Mycobacterium tuberculosis

(Chapter 15).

A comparison of sequences in humans and chimpanzees does not reveal which

genes or other elements evolved rapidly. A phylogenetic reconstruction is necessary

in order to infer lineage-specific changes that occurred, leading to the present-day

sequences that we can observe. This is one reason that the sequencing of the

second nonhuman primate, the rhesus macaque Macaca mulatta, was so significant.

The rhesus macaque is an Old World monkey (superfamily Cercopithecoidea,

family Cercopithecidae; Fig. 18.30) that diverged from the human/chimpanzee

lineage �25 million years ago. Its DNA has an average nucleotide identity of

�93% compared to human, in contast to the �99% identity between human and

chimpanzee. The Rhesus Macaque Genome Sequencing and Analysis Consortium

(2007) sequenced the genome using whole genome shotgun sequences. They pre-

dicted �20,000 genes, of which high-confidence orthologs share 97.5% identity to

human sequences at the DNA and protein levels. Using the macaque as an outgroup,

it was possible to analyze many features of the human and chimpanzee genomes.

For example, of the nine pericentric inversions that occurred, seven could now be

assigned to the chimpanzee lineage and two to the humans (on chromosomes

1 and 18).

Accessions for glycophorin C are

NM_002101, NP_002092

(human) and XM_001135559,

XP_001135559 (chimpanzee).

Primate resources are listed in web

document 18.5 at Q http://www.

bioinfbook.org/chapter16. The

genome browsers at Ensembl

(Q http://www.ensembl.org),

UCSC (Q http://genome.ucsc.

edu), and NCBI are important

starting points.
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The sequencing consortium detailed many features of the rhesus macaque

genome, including that 66.7 megabases (2.3%) consist of segmental duplications,

and there are many lineage-specific expansions and contractions of gene families.

Ultimately, as for other genome sequencing projects outlined in this chapter, this

may permit the analysis of the cellular processes that ultimately underlie the

unique biology of this primate.

PERSPECTIVE

One of the broadest goals of biology is to understand the nature of each species of life:

What are the mechanisms of development, metabolism, homeostasis, reproduction,

and behavior? Sequencing of a genome does not answer these questions directly.

Instead, we must first try to annotate the genome sequence in order to estimate its

contents, and then we try to interpret the function of these parts in a variety of phys-

iological processes.

The genomes of representative species from all major eukaryotic divisions are

now becoming available. This will have dramatic implications for all aspects of

eukaryotic biology. For pathogenic organisms, it is hoped that the genome sequence

will lead to an understanding of their cellular mechanisms of toxicity, their mechan-

isms of host immune system evasion, and their pharmacological response to drug

treatments. From studies of evolution, we will further understand mutation and

selection, the forces that shape genome evolution. The reconstruction of ancestral

karyotypes is a newly emerging discipline.

As complete genomes are sequenced, we are becoming aware of the nature of

noncoding and coding DNA. Major portions of the eukaryotic genomic landscape

are occupied by repetitive DNA, including transposable elements. The number of

protein-coding genes varies from several thousand in fungi to tens of thousands in

plants and mammals. Many of these protein-coding genes are paralogous within

each species, such that the “core proteome” size is likely to be on the order of

10,000 genes for many eukaryotes. New proteins are invented in evolution through

expansions of gene families or through the use of novel combinations of DNA encod-

ing protein domains.

PITFALLS

An urgent need in genomics research is the continued development of algorithms to

find protein-coding genes, noncoding RNAs, repetitive sequences, duplicated blocks

of sequence within genomes, and conserved syntenic regions shared between gen-

omes. We may then characterize gene function in different developmental stages,

body regions, and physiological states. Through these approaches we may generate

and test hypotheses about the function, evolution, and biological adaptations of

eukaryotes. Thus we may extract meaning from the genomic data.

We are now in the earliest years of the field of genomics. Many new lessons are

emerging:

† Draft versions of genome sequences are extremely useful resources, but gene

annotation often improves dramatically as a sequence becomes finished.
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† It is extraordinarily difficult to predict the presence of protein-coding genes in

genomic DNA ab initio. It is important to use complementary experimental

data on gene expression, such as expressed sequence tag information, and

comparative genomics to align orthologous sequences has become the norm.

† We still know relatively little about the nature of noncoding RNA molecules, but

comparative genomic studies have demonstrated their conservation across hun-

dreds of millions of years of evolution (e.g., between opossum and human).

† Large portions of eukaryotic genomes consist of repetitive DNA elements.

† Comparative genomics is extraordinarily useful in defining the features of each

eukaryotic genome.

Most publications describing genomes (both eukaryotic and prokaryotic) define

orthologs as descended by speciation from a single gene in a common ancestor.

Typically, the predicted proteins from an organism are searched by BLAST against

the complete proteome of other species using an E value cutoff such as 1024.

However, two orthologous proteins could have species-specific functions. Thus it

is appropriate to remain cautious in assigning functions to genes.

WEB RESOURCES

DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

We have presented key resources for many eukaryotic organisms

and their genome-sequencing websites. An excellent starting

point is the Ensembl website (Q http://www.ensembl.org/),

which currently includes gateways for the mouse, rat, zebrafish,

fugu, mosquito, and other genomes. The Department of Energy

Joint Genome Institute (DOE JGI) includes web resources for

many of the organisms discussed in this chapter (Q http://

genome.jgi-psf.org/euk_home.html).

[18-1] If there were no repetitive DNA of any kind, how would the

genomes of various eukaryotes (human, mouse, a plant, a

parasite) compare in terms of size, gene content, gene

order, nucleotide composition, or other features?

[18-2] Web document 18.6 at Q http://www.bioinfbook.org/

chapter18 consists of a word document with 256,157

bases of DNA from a eukaryotic genome in the fasta

format. How could you identify the species? Assume you

cannot use BLAST to directly identify the species. Also,

the accession number is given so that you can later look

up the species, but assume you cannot use that information

at first. What features distinguish the genomic DNA

sequence of a protozoan parasite from an insect, or a

plant from a human, or one fish from another?

[18-1] A universal minicircle binding protein (GenBank accession

A54598) has been purified from a trypanosome that infects

insects, Crithidia fasciculata. A blastp search reveals that there

are homologous proteins in plants, fungi, and metazoans

(such as the worm Caenorhabditis elegans). How is this

protein named in various organisms? What is its presumed

function? What is its domain called in the Conserved

Domain Database?

[18-2] Leishmania major has repetitive DNA elements (e.g., accession

AF421497). How can you decide how common this element is

and where it is localized (e.g., to a particular chromosome or to

a chromosomal region).

[18-3] The green algae (such as Chlamydomonas and Ostreococcus) are

Viridiplantae that share some genes in common with the animals

but not the angiosperms. Use TaxPlot at NCBI (from the home

page, select Tools on the left sidebar). Set the query genome to

Ostreococcus lucimarinus, then set the comparison genomes to

Homo sapiens and Arabidopsis thaliana (as examples of an animal

and a plant). Several proteins are dramatically absent from either

human or Arabidopsis. What are they? What is their function?
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SELF-TEST QUIZ

[18-1] The Giardia lamblia genome is unusual because

(a) It contains hardly any transposable elements or introns

(b) It is circular

(c) It contains extremely little nonrepetitive DNA

(d) Its AT content is nearly 80%

[18-2] The genome of the trypanosome T. brucei

(a) Has an intricate network of circular rings of genomic DNA

(b) Almost completely lacks introns

(c) Almost completetly lacks pseudogenes

(d) Varies in size by up to 25% in different isolates

[18-3] The genome of the malaria parasite Plasmodium falciparum is

notable for having a AT content of 80.6%. Which amino

acids are overrepresented in its encoded proteins?

(a) F, L, I, Y, N, K

(b) F, L, I, Y, V, M

(c) A, P, C, G, T, R

(d) N, S, Y, I, M, H

[18-4] The Paramecium tetraurelia genome has the following properties

except which one?

(a) It has about 800 macronuclear chromosomes.

(b) It has two nuclei, each with distinct functions.

(c) Its genome encodes about twice as many proteins as the

human genome.

(d) It has undergone whole genome duplication with massive

gene loss.

[18-5] Plant genomes from species such as Arabidopsis (125 Mb)

and the black cottonwood tree Populus trichocarpa (480 Mb)

were selected because they are relatively small. Nonetheless,

each of these genomes is characterized by large amounts of

repetitive DNA, and each whole genome duplicated one or

more times.

(a) True

(b) False

[18-6] Which of these pairs of organisms diverged the longest time

ago?

(a) Caenorhabditis elegans and Caenorhabditis briggsae

(b) Drosophila melanogaster (fruitfly) and Anopheles gambiae

(mosquito)

(c) Homo sapiens and Canis familiaris (dog)

(d) Arabidopsis thaliana and Oryza sativa (rice)

[18-7] What do the Takifugu rubripes (pufferfish) and Gallus gallus

(chicken) genomes have in common that distinguishes them

from the human genome?

(a) They have genome sizes 3- to 10-fold smaller than that of

human, but a comparable number of genes.

(b) They have a smaller total genome size but dozens more

chromosomes.

(c) They have smaller genome sizes and approximately half as

many protein-coding genes.

(d) They have a series of minichromosomes of variable size.

[18-8] How are the mouse and human genomes different?

(a) The mouse genome has a lower GC content.

(b) The mouse genome has more protein-coding genes.

(c) The mouse genome has undergone specific expansions of

genes encoding particular protein families such as olfactory

receptors.

(d) The mouse genome has fewer telomeric repeats per

chromosome, on average.

[18-9] Many features distinguish the chimpanzee and human gen-

omes, including all of the following except which one?

(a) Chimpanzees have more chromosomes.

(b) About 35 million nucleotide substitutions have been

described.

(c) There have been hundreds of pericentric inversions.

(d) Over 500 chimpanzee-human ortholog pairs may be under

positive selection.

SUGGESTED READING

We presented a phylogentic tree from Bauldauf et al. (2000). For a

more recent evolutionary analysis of eukaryotic evolution, includ-

ing a discussion of models of eukaryotic origins and the role of mito-

chondria, see Embley and Martin (2006). For a brief review of the

significance of Apicomplexan genome projects, see Roos (2005).

Paterson (2006) provides an excellent overview of plant genomics.

For a review of the methods applied to sequencing a particular

eukaryotic genome, including BAC and whole genome shotgun

sequencing and assembly issues, see the review of the sea urchin

project by Sodergren et al. (2006).
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Our current efforts to understand the human genome include a focus on the genetic similarities and differences among various ethnic
groups. The International HapMap Project has initially generated detailed genotype information on 270 individuals from four groups
with diverse geographic ancestry: the Yoruba from Ibadan, Nigeria; Utah residents of Northern and Western European ancestry; Han
Chinese in Beijing; and Japanese in Tokyo. In past centuries there have been many attempts to understand the bases of phenotypic
differences among humans. Baron Georges Cuvier (1769–1832) attempted a systematic classification of animals, describing four
great divisions of the animal kingdom: vertebrate animals, molluscous animals, articulate animals, and radiate animals (also
called Zoophytes). His work included a classification of humans based on anatomical differences. These images are from The
Animal Kingdom, Arranged According to Its Organization by Cuvier (1849, plates I–IV) and depict varieties of human races.
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Human Genome

INTRODUCTION

The human genome is the complete set of DNA in Homo sapiens. This DNA encodes

the proteins and other products that define our cells and ultimately define who we are

as biological entities. Through the genomic DNA, protein-coding genes are

expressed that form the architecture of the trillions of cells that comprise each of

our bodies. It is variations in the genome that account for the differences between

people, from physical features to personality to disease states.

The initial sequencing of the human genome in 2003 was a triumph of science. It

followed almost 50 years exactly after the publication of the double-stranded helical

structure of DNA by Crick and Watson (1953). The genome sequence has been

achieved through an international collaboration involving hundreds of scientists.

(In the case of the publicly funded version, this was the International Human

Genome Sequencing Consortium [IHGSC], described below.) This project

could not have been possible without fundamental advances in the emerging fields

of bioinformatics and genomics.

In this chapter we will first summarize some of the major findings of the human

genome project. Second, we will review web-based resources for the study of the

human genome at three sites: the National Center for Biotechnology Information

(NCBI), the Ensembl project, and the genome center at the University of

California, Santa Cruz.

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner
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791



In 2001 the sequencing and analysis of a draft version of the human genome was

reported by a public consortium (International Human Genome Sequencing

Consortium [IHGSC], 2001) and Celera Genomics (Venter et al., 2001). In the

third part of this chapter, we will follow the outline of the public consortium’s

62-page article to describe the human genome from a bioinformatics perspective.

We will also describe subsequent findings on finishing the euchromatic sequence

(IHGSC, 2004) and characterizing each of the 22 autosomes and two sex chromo-

somes (as well as the mitochondrial genome). Finally, we will describe variation in

the human genome, including the analysis of individual genomes.

MAIN CONCLUSIONS OF HUMAN GENOME PROJECT

As an introduction to the Human Genome Project, we begin with a summary of its

main findings. These are from the IHGSC (2001) paper, supplemented with more

recent observations:

1. There were reported to be about 30,000 to 40,000 predicted protein-coding

genes in the human genome. However, the initial sequencing and annotation

were incomplete, and in subsequent years a variety of new tools were devel-

oped (Chapter 16) as well as comparative approaches as more vertebrate

genomes were sequenced. A revised estimate suggests that there are 20,000

to 25,000 protein-coding genes (IHGSC, 2004). These estimates are

surprising because we have about the same number of genes as much simpler

organisms such as Arabidopsis thaliana (26,000 genes) and pufferfish

(21,000 genes), and marginally more genes than are found in many nematode

and insect genomes.

2. The human proteome is far more complex than the set of proteins encoded by

invertebrate genomes. Vertebrates have a more complex mixture of protein

domain architectures. Additionally, the human genome displays greater

complexity in its processing of mRNA transcripts by alternative splicing.

3. Hundreds of human genes were acquired from bacteria by lateral gene transfer,

according to the initial report (IHGSC, 2001; Ponting, 2001). Subsequently

Salzberg et al. (2001) suggested a revised estimate of 40 genes that underwent

horizontal transfer. These genes are homologous to bacterial sequences but

appear to lack orthologous genes in other vertebrate and invertebrate species.

In recent years the emphasis has changed from laterally acquired genes (dis-

cussed in Chapter 15) to the vast number of prokaryotic and viral genes

from organisms living inside the human body, called the human microbiome.

It has been estimated that there are at least 10 times more microbial cells than

human cells in a human body, and perhaps 10 times more prokaryotic and viral

genes than human genes. In 2007 the Human Microbiome Project was

launched to characterize these organisms and their roles in human health.

4. More than 98% of the human genome does not code for genes. Much of

this genomic landscape is occupied by repetitive DNA elements such as

long interspersed elements (LINEs) (20%), short interspersed elements

(SINEs) (13%), long terminal repeat (LTR) retrotransposons (8%), and

DNA transposons (3%). Thus half the human genome is derived from trans-

posable elements. However, there has been a decline in the activity of these

elements in the hominid lineage. At the same time, the mouse genome

displays a continued vigorous activity of transposable elements.

These findings are summarized

from several sources, including

IHGSC (2001), Venter et al.

(2001), and the Wellcome Trust

Sanger Institute (Q http://www.

sanger.ac.uk/HGP/
publication2001/facts.shtml).

The Ensembl website currently

lists 22,730 human protein coding

genes (Q http://www.ensembl.

org/Homo_sapiens/, database

version 48.36j, January 2008).

Information about the Human

Microbiome Project is available

at Q http://nihroadmap.nih.gov/
hmp/.

We introduced these various types

of repetitive elements in Chapter

16, and will further define them

below.
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5. Segmental duplication is a frequent occurrence in the human genome,

particularly in pericentromeric and subtelomeric regions. This phenomenon

is more common than in yeast, fruitfly, or worm genomes. There are three

principal ways that gene duplications arise in the human genome (Green

and Chakravarti, 2001). First, tandem duplications (created from sequence

repeats in a localized region) occur rarely. Second, processed mRNAs

are duplicated by retrotransposition. This produces intronless paralogs that

are present at one or many sites. Third, segmental duplications occur in

which large sections of a chromosome transfer to a new site. We introduced

these concepts in Chapter 16.

6. There are several hundred thousand Alu repeats in the human genome. These

have been thought to represent elements that replicate promiscuously.

However, their distribution is nonrandom: they are retained in GC-rich

regions and thus may confer some benefit on the human genome.

7. The mutation rate is about twice as high in male meiosis than in female

meiosis. This suggests that most mutation occurs in males.

8. More than 1.4 million single nucleotide polymorphisms (SNPs) were

identified. SNPs are single nucleotide variations that occur once every 100

to 300 base pairs (bp). The International HapMap Consortium (2007)

reported a haplotype map of 3.1 million SNPs, and today the genotype and

copy number of one million SNPs are routinely measured on a single

sample using a microarray. This is already having a profound impact on

studies of variation in the human genome.

The ENCODE Project
In the years since the initial sequencing of the human genome, an important

movement has been the ENCyclopedia Of DNA Elements (ENCODE) Project

(ENCODE Project Consortium, 2004, 2007). We described this project and

its principal conclusions in Chapter 16. That project initially focused on 1% of

the human genome. The results so far have shown that the genome is pervasively

transcribed (see Chapter 8). We now have a deeper understanding of transcriptional

regulation (including transcription start sites) and chromatin structure. In the

coming years the project will continue to expand. Its major goals include the

following:

† High throughput sequencing of chromatin regulatory elements including

transcription factor binding sites, using chromatin immunoprecipitation

followed by high throughput DNA sequencing.

† Comprehensively identifying active functional elements in human chromatin,

in part using DNase I hypersensitivity assays.

† Characterizing the human transcriptome.

† Developing a reference gene set for protein-coding genes, noncoding genes,

and pseudogenes.

The results of the project will continue to be centralized at the UCSC ENCODE

data coordination center. The experimental and computational approaches spawned

by ENCODE and related projects will help to reveal the architecture of the genome

and its functional properties, from its gene content to its regulatory roles.

The NCBI database of SNPs

currently lists over 11.8 million

RefSNPs, of which over 6.2

million have been validated (build

128, January 2008; see below and

Q http://www.ncbi.nlm.nih.gov/
SNP/).

You can read about the ENCODE

project at Q http://www.genome.

gov/26023194. The UCSC

ENCODE project website is

Q http://genome.ucsc.edu/
ENCODE/.
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GATEWAYS TO ACCESS THE HUMAN GENOME

Although there are many ways to access information about the human genome, we

will briefly describe several, including the three principal browsers for the human

genome: NCBI, Ensembl, and UCSC.

NCBI
The NCBI offers two main ways to access data on the human genome. From the main

page of NCBI, you can select “human genome resources,” which provides links to

each chromosome and a variety of web resources. Alternatively, you can select the

Map Viewer (Fig. 19.1). This page allows searches by clicking on a chromosome

or by entering a text query.

The human Map Viewer integrates human sequence and data from cytogenetic

maps, genetic linkage maps, radiation hybrid maps, and YAC chromosomes. A query

with “hbb” (Fig. 19.1) links to the Map Viewer (Fig. 19.2). This map can display

dozens of kinds of information and links to Entrez Gene, Entrez Nucleotide, and

Entrez Protein. Other features include links to human and mouse UniGene and a

human–mouse homology map. There is also an “evidence viewer” (Fig. 19.3) that

displays evidence supporting the proposed structure of a gene and highlights possible

discrepancies in the nucleotide sequence, exon–intron boundaries, or other aspects

of an annotated gene. As an example, the evidence viewer shows the density of ESTs

that have been identified corresponding to each predicted exon of beta globin

(Fig. 19.3).

Ensembl
Ensembl is a comprehensive resource for information about the human genome as

well as many other genomes (Flicek et al., 2008). This resource effectively intercon-

nects a wide range of genomics tools with a focus on annotation of known and newly

FIGURE 19.1. The Human Map
Viewer is accessible from the main
page of NCBI. This resource dis-
plays cytogenetic, genetic, physical,
and radiation hybrid maps of
human genome sequence. Here,
entering the query “hbb” results
in links to beta globin on chromo-
some 11 (see Fig. 19.2).

A Human Genome Resources

page is available at Q http://www.

ncbi.nlm.nih.gov/genome/guide/
human/. The Map Viewer (for

human and other organisms) is

accessed via Q http://www.ncbi.

nlm.nih.gov/mapview/. You can

read about the genome resources

at NCBI at Q http://www.ncbi.

nih.gov/About/Doc/hs_

genomeintro.html.

The Map Viewer provides a link to

Entrez Gene. If instead you begin

with any Entrez Gene entry (Fig.

2.8), you can click “map” to move

directly to the Map Viewer.
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FIGURE 19.2. (a) The Human
Map Viewer from NCBI shows the
region of chromosome 11 contain-
ing the beta globin gene. The
location is shown on an ideogram
on the left sidebar (arrow 1),
above which is a tool to zoom in
or out or to specify genomic coordi-
nates. The main information is
displayed in vertical tracks (col-
umns from left to right across the
page) such as a track of gene struc-
tures (arrow 2) and RefSeq genes.
The Maps & Options link (arrow
3) allows annotation tracks to be
added or removed. A series of
links includes Entrez Nucleotide
(arrow 4), Entrez Gene (arrow
5), an indication of the orientation
of the gene (arrow 6), and the fol-
lowing links: ug (UniGene), sv
(Entrez Nucleotide sequence
view), pr (Entrez Protein), ev
(the Evidence Viewer, shown in
Fig. 19.3), BLink (precomputed
BLAST results), and CCDS (con-
sensus coding sequence database).

FIGURE 19.3. The NCBI evi-
dence viewer provides data con-
cerning the structure of human
genes. The viewer provides links to
the genomic contig (C), GenBank
mRNAs (G), a RefSeq mRNA
(R), and expressed sequence tags
(ESTs) (E) with a color-coding
scheme showing the density of
ESTs at different positions of the
gene. The evidence viewer also
describes experimental evidence
for each exon, including mis-
matches and insertions/deletions
(indels). The evidence viewer is
useful to conveniently assess the
basis for a particular gene model.
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predicted genes. In addition to making annotation information on genes easily

accessible, Ensembl provides access to the underlying data that support models of

gene prediction. This is described below. The current statistics for the contents of

the Ensembl human build are shown in Table 19.1.

From the main page of Ensembl, you can type a text query (such as HBB for

human beta globin), perform a BLAST search, or browse by chromosome

(Fig. 19.4). There are six main entry points to access the Ensembl database:

1. Contig view allows you to search across an entire chromosome (Fig. 19.5),

while also viewing a smaller region in detail (Fig. 19.6). The Contig view inte-

grates features from a variety of external data sources such as UniGene and

RefSeq. The tile path shows BAC clones used in the current assembly.

2. Gene view allows a text query for hbb that leads to a typical Ensembl gene

report or to the contig view, “transview” evidence report, protein report, data-

base links (such as RefSeq, SwissProt, and InterPro) and Ensembl homology

matches. This view includes the transcript DNA sequence and information

on exon–intron boundaries (splice sites). The links to evidence reports are

especially important in helping you to evaluate the experimental support

for a given gene structure.

3. Anchor view allows you to select two features from a chromosome as “anchor

points” and to display the intervening region.

4. Disease view links to disease entries in OMIM (Chapter 20). In the case

of RBP4, this view option leads to the relevant OMIM entry for deficiency

of RBP4.

5. Map view shows an ideogram of each chromosome, including the known genes,

GC content, and SNPs. By clicking on the synteny link (also accessed from the

Contig view of Fig. 19.5), you can see the corresponding region of chromosomes

from other organisms where a gene such as HBB is localized (Fig. 19.7).

This figure shows the correspondence of four mouse chromosomal regions

TABLE 19-1 Human Genome Statistics from Ensembl
Known protein-coding genes: 21,388

Novel protein-coding genes: 28

Pseudogenes: 9,899

RNA genes: 5,732

Immunoglobulin/T-cell receptor
gene segments:

388

Genscan gene predictions: 49,796

Gene exons: 297,252

Gene transcripts: 62,877

SNPs: 15,040,632

Base Pairs:� 3,253,037,807

Golden path length:�� 3,093,120,360

�Total number of base pairs ¼ sum of lengths of DNA table.
��Reference assembly (Golden path) length ¼ sum of nonredundant
top level sequence regions.
Source: Ensembl (Q http://www.ensembl.org/Homo_sapiens),
January 2009, database version 52 (NCBI 36 assembly).

Ensembl, a joint project between

the European Molecular Biology

Laboratory-European

Bioinformatics Institute (EMBL-

EBI) and the Sanger Institute is

available at Q http://www.

ensembl.org. The human data-

base is at Q http://www.ensembl.

org/Homo_sapiens/. We

described Ensembl projects for

mouse, rat, zebrafish, fugu, mos-

quito, and other organisms in

Chapter 18.

We saw an example of the Ensembl

BLAST server in Figs. 5.1 and

5.2.
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to human chromosome 11. For contrast, it shows the most-conserved chromo-

some (the X chromosome) and the least-conserved chromosome (the Y

chromosome).

6. Cyto view displays genes, BAC end clones, repetitive elements, and the tiling

path across genomic DNA regions.

FIGURE 19.5. The Ensembl
ContigView for human beta
globin (linked from the HBB gene
report) shows an ideogram of
chromosome 11 at the top, includ-
ing the position of the HBB gene
near the 11p telomere in band
11p15.4 (boxed). The overview sec-
tion includes an overview of contigs
and markers in the 11p15.4 region
and annotated genes including
HBB (arrow 1). The left sidebar
offers a variety of links such as
views of conserved syntenic regions
(arrow 2), shown in Fig. 19.7
below, as well as links to the
UCSC and NCBI genome
browsers.

FIGURE 19.4. Front page of
the Ensembl human genome
browser (Q http://www.ensembl.
org/Homo_sapiens/). A direct way
to begin searching the site is to
enter a search term such as HBB
(top) for beta globin. Other ways
to begin searching include the
chromosome ideograms or a
BLAST server.
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University of California at Santa Cruz Human
Genome Browser
The “Golden Path” is the human genome sequence annotated at UCSC. Along

with the Ensembl and NCBI sites, the human genome browser at UCSC is one

of the three main web-based sources of information for both the human genome

and other genomes. It has become a basic resource in the fields of bioinformatics

and genomics, and we have relied on it throughout this book (particularly in

Chapter 16).

FIGURE 19.6. (a) The Ensembl
ContigView for human beta
globin includes a detailed view.
This contains a series of horizontal
annotation tracks (analogous to
the UCSC Genome Browser). The
top row includes a series of pull-
down menus, shown in (b).

The UCSC Genome

Bioinformatics site is accessible

at Q http://genome.ucsc.edu/.

It was developed by David

Haussler’s group (Kent et al.,

2002).
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FIGURE 19.7. The MapView and ContigView at Ensembl link to conserved syntenic maps
including those for human/mouse. (a) Human chromosome 11 (including the HBB gene,
boxed) is shown in the center as an ideogram. It corresponds to mouse chromosomes 7, 2, 19,
and 9. Although the lineages leading to modern humans and mice diverged about 80 million
years ago, it is still straightforward to identify regions of conserved synteny. (b) The human
X chromosome is extremely closely conserved with the mouse X chromosome. (c) The Y chromo-
somes of human and mouse are extraordinarily poorly conserved.
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NHGRI
The National Human Genome Research Institute (NHGRI) has a leading role in

genome sequencing, coordinating pilot-scale and large-scale sequencing efforts,

technology development, and policy development.

The Wellcome Trust Sanger Institute
The Wellcome Trust Sanger Institute is a leading genomics institute that, like NCBI

and NHGRI, is essential to the fields of bioinformatics and genomics.

THE HUMAN GENOME PROJECT

The two articles on the human genome project that appeared in February 2001

provide an initial glimpse of the genome (IHGSC, 2001; Venter et al., 2001). In

the next portion of this chapter, we will follow the outline of the public consortium

paper (IHGSC, 2001). We will not summarize all the major findings, but we will

focus on selected topics. The sequence reported in 2001 represents 90% completion

of the human genome.

Finishing the human genome is a process that involves producing finished maps

(with continuous, accurate alignments of large-insert clones spanning euchromatic

loci) and producing finished clones (completely, accurately sequenced).Additional pub-

lications have described the sequence of all 24 human chromosomes in more detail

(22 autosomes and the two sex chromosomes); we will summarize the findings below.

The IHGSC (2004) reported finishing the euchromatic sequence of the human

genome. Even at that stage, 341 gaps remained, spanning about 1% of the euchromatic

genome. Furthermore, heterochromatic regions which are far harder to sequence con-

tain many genes and other elements of interest. Thus, while the human genome has

been sequenced, finishing and annotating this sequence represent ongoing processes.

Background of the Human Genome Project
The Human Genome Project was first proposed by the National Research Council

(1988). This report proposed the creation of genetic, physical, and sequence maps

of the human genome. At the same time, parallel efforts were supported for model

organisms (bacteria, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila

melanogaster, and Mus musculus).

The major goals of the Human Genome Project are listed in Table 19.2. One

component of the human genome project is the Ethical, Legal and Social Issues

(ELSI) initiative. From 3% to 5% of the annual budget has been devoted to ELSI,

making it the world’s largest bioethics project.

Examples of issues addressed by ELSI include:

† Who owns genetic information?

† Who should have access to genetic information?

† How does genomic information affect members of minority communities?

† What societal issues are raised by new reproductive technologies?

† How should genetic tests be regulated for reliability and validity?

† To what extent do genes determine behavior?

† Are there health risks associated with genetically modified foods?

An NHGRI introduction to the

human genome project is available

at Q http://www.genome.gov/
10001772. A document describ-

ing an NHGRI vision for the

future of genomics research is at

Q http://www.genome.gov/
11007524 or Collins et al. (2003).

The website for human genetics at

the Wellcome Trust Sanger

Institute (WTSI) is Q http://
www.sanger.ac.uk/humgen/. The

Human Genome Project gateway

is at Q http://www.sanger.ac.uk/
HGP/.

The euchromatin is the primary

gene-containing part of the

genome, although there are also

genes in heterochromatin.

The National Human Genome

Research Institute describes the

finishing process atQ http://www.

genome.gov/10000923.

The National Academy Press

(Q http://www.nap.edu) offers

this 1988 book free online at

Q http://www.nap.edu/
openbook.php?isbn ¼

0309038405/.

You can read about ELSI at

Q http://www.genome.gov/
10001618 or Q http://www.ornl.

gov/hgmis/elsi/elsi.html.

800 HUMAN GENOME



TABLE 19-2 Eight Goals of the Human Genome Project (1998 ^ 2003)
1. Human DNA sequence † Finish the complete human genome sequence by the

end of 2003.

† Achieve coverage of at least 90% of the genome in a
working draft based on mapped clones by the end of
2001.

† Make the sequence totally and freely accessible.

2. Sequencing technology † Continue to increase the throughput and reduce the
cost of current sequencing technology.

† Support research on novel technologies that can lead
to significant improvements in sequencing technology.

† Develop effective methods for the development and
introduction of new sequencing technologies.

3. Human genome sequence
variation

† Develop technologies for rapid, large-scale
identification and/or scoring of single-
nucleotide polymorphisms and other DNA
sequence variants.

† Identify common variants in the coding regions of the
majority of identified genes during this five-year
period.

† Create an SNP map of at least 100,000 markers.

† Create public resources of DNA samples and cell
lines.

4. Functional genomics
technology

† Generate sets of full-length cDNA clones and
sequences that represent human genes and model
organisms.

† Support research on methods for studying functions
of nonprotein-coding sequences.

† Develop technology for comprehensive analysis of
gene expression.

† Improve methods for genomewide mutagenesis.

† Develop technology for large-scale protein analyses.

5. Comparative genomics † Complete the sequence of the roundworm C. elegans
genome and the fruitfly Drosophila genome.

† Develop an integrated physical and genetic map for
the mouse, generate additional mouse cDNA
resources, and complete the sequence of the mouse
genome by 2008.

6. Ethical, legal, and social
issues

† Examine issues surrounding completion of the human
DNA sequence and the study of genetic variation.

† Examine issues raised by the integration of genetic
technologies and information into health care and
public health activities.

† Examine issues raised by the integration of knowledge
about genomics and gene–environment interactions
in nonclinical settings.

† Explore how new genetic knowledge may interact with
a variety of philosophical, theological, and ethical
perspectives.

† Explore how racial, ethnic, and socioeconomic factors
affect the use, understanding, and interpretation of

(Continued )
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All these issues are becoming increasingly important, particularly as we begin to

obtain the nearly complete genomic DNA sequence of individuals (described

below).

Strategic Issues: Hierarchical Shotgun Sequencing
to Generate Draft Sequence
The public consortium approach to sequencing the human genome was to employ

the hierarchical shotgun sequencing strategy. The rationale for taking this approach

was as follows:

† Shotgun sequencing can be applied to DNA molecules of many sizes, includ-

ing plasmids (typically several kilobases), cosmid clones (40 kilobases [kb]),

yeast, and BACs (up to 1 or 2 megabases [Mb]).

† The human genome has large amounts of repetitive DNA (about 50% of the

genome; see below). Whole-genome shotgun sequencing, the main approach

taken by Celera Genomics, was not adopted by the public consortium because

of the difficulties associated with assembling repetitive DNA fragments. In the

public consortium approach, large-insert clones (typically 100 to 200 kb)

from defined chromosomes were sequenced.

† The reduction of the sequencing project to specific chromosomes allowed the

international team to reduce and distribute the sequencing project to a set of

sequencing centers. These centers are listed in Table 19.3.

TABLE 19-2 Continued
genetic information, the use of genetic services, and
the development of policy.

7. Bioinformatics and
computational biology

† Improve content and utility of databases.

† Develop better tools for data generation, capture, and
annotation.

† Develop and improve tools and databases for
comprehensive functional studies.

† Develop and improve tools for representing and
analyzing sequence similarity and variation.

† Create mechanisms to support effective approaches
for producing robust, exportable software that can be
widely shared.

8. Training and manpower † Nurture the training of scientists skilled in genomics
research.

† Encourage the establishment of academic career paths
for genomic scientists.

† Increase the number of scholars who are
knowledgeable in both genomic and genetic sciences
and in ethics, law, or the social sciences.

Source: Adapted from Q http://www.ornl.gov/sci/techresources/Human_Genome/hg5yp/goal.shtml.

The 2001 draft version of the

human genome was based on the

sequence and assembly of over

29,000 BAC clones with a total

length of 4.26 billion base pairs

(Gb). There were 23 Gb of raw

shotgun sequence data.

802 HUMAN GENOME



Early in the evolution of the Human Genome Project, it was thought that break-

throughs in DNA sequencing technology would be necessary to allow the completion

of such a large-scale project. This did not occur until the recent arrival of

next-generation sequencing. Instead, the basic principles of dideoxynucleotide

sequencing by the method of Sanger (see Chapter 13) were improved upon. Some

TABLE 19-3 Twenty InstitutionsThat Form the Human Genome Sequencing Consortium

Genome Sequencing Center
Location/

Description URL

Baylor College of Medicine Houston, Texas Q http://www.hgsc.bcm.tmc.
edu/

Beijing Human Genome Center,
Institute of Genetics, Chinese
Academy of Sciences

Beijing, China Q http://www.chgb.org.cn/
en_index.htm

Cold Spring Harbor Laboratory,
Lita Annenberg Hazen Genome
Center

Cold Spring
Harbor,
New York

Q http://www.cshl.edu/
public/genome.html

Gesellschaft fur Biotechnologische
Forschung mbH

Braunschweig,
Germany

Q http://genome.gbf.de/

Genoscope Evry, France Q http://www.genoscope.cns.
fr/externe/English/
Projets/projets.html

Genome Therapeutics Corporation Waltham,
Massachusetts

Q http://www.genomecorp.
com/

Institute for Molecular
Biotechnology

Jena, Germany Q http://genome.imb-jena.
de/

Joint Genome Institute, U.S.
Department of Energy

Walnut Creek,
California

Q http://www.jgi.doe.gov/

Keio University Tokyo, Japan Q http://www-alis.tokyo.jst.
go.jp/HGS/top.pl

Max Planck Institute for Molecular
Genetics

Berlin, Germany Q http://seq.mpimg-berlin-
dahlem.mpg.de/

Multimegabase Sequencing Center,
Institute for Systems Biology

Seattle,
Washington

Q http://www.systemsbiology.
org/

RIKEN Genomic Sciences Center Saitama, Japan Q http://hgp.gsc.riken.go.jp/
index.php/Main_Page

The Sanger Centre Hinxton, United
Kingdom

Q http://www.sanger.ac.uk/
HGP/

Stanford Genome Technology
Center

Palo Alto,
California

Q http://www-sequence.
stanford.edu/

Stanford Human Genome Center Palo Alto,
California

Q http://shgc.stanford.edu/

University of Oklahoma’s Advanced
Center for Genome Technology

Norman,
Oklahoma

Q http://www.genome.ou.
edu/

University of Texas Southwestern
Medical Center

Dallas, Texas Q http://www8.
utsouthwestern.edu/

University of Washington Genome
Center

Seattle,
Washington

Q http://www.genome.
washington.edu/UWGC/

Washington University Genome
Sequencing Center

St. Louis, Missouri Q http://genome.wustl.edu/

Whitehead Institute for Biomedical
Research, MIT (now the Broad
Institute)

Cambridge,
Massachusetts

Q http://www.broad.mit.
edu/
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innovations to Sanger sequencing (see Chapter 13 and Green, 2001) include

capillary electrophoresis-based sequencing machines for the automated detection

of DNA molecules, improved thermostable polymerases, and fluorescent dye-labeled

dideoxynucleotide terminators.

The public consortium draft genome sequence was generated by selecting,

sequencing, and assembling BAC clones. Most libraries contained BAC clones or

P1-derived artificial clones (PACs). These libraries were prepared from DNA

obtained from anonymous donors. Selected clones were subjected to shotgun

sequencing. In conjunction with sequencing of BAC and other large-insert clones,

the sequence data were assembled into an integrated draft sequence (Table 19.4).

An example of the procedure is shown in Fig. 19.8.

The whole genome shotgun assembly approach that was championed by Celera

was proven successful by the sequencing of the Drosophila melanogaster genome in

2000 as well as by the initial sequence of the human genome (Venter et al., 2001).

TABLE 19-4 Contigs Categorized by Size
Range (kb) Number Length (base pairs) Percent of Total

,300 74 12,100,100 0.42

300–1000 48 29,373,700 1.02

1000–5000 59 139,894,000 4.89

.5000 99 2,676,790,000 93.65

See Build 36 version 2 statistics (linked from Q http://www.ncbi.nlm.nih.gov/
genome/guide/human/release_notes.html, January 2008).

FIGURE 19.8. Clone and sequence
coverage of the human genome. A
fingerprint clone contig is assembled
based on restriction endonuclease
digestion patterns in order to select
clones for sequencing that are
inferred to overlap. These
sequenced-clone contigs are merged
to generate scaffolds in which the
order and orientation of each clone
is established. (From IHGSC,
2001.) Used with permission.

Fingerprint clone contig

Pick clones for sequencing

Sequenced-clone contig Sequenced-clone-contig scaffold

Sequence to at least draft coverage

Merge data

Order and orient with mRNA, paired end reads, other information

Merged sequence contig 

Initial sequence contig 

Sequenced clone B 
Sequenced clone A 

A B 

A 

B 

Sequence-contig scaffold 

The NCBI Contig Assembly and

Annotation Process is described at

Q http://www.ncbi.nlm.nih.gov/
genome/guide/build.html.
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Since then it has been widely adopted for hundreds of prokaryotic and eukaryotic

genome sequencing projects. A caveat noted by Evan Eichler and colleagues is that

whole genome shotgun sequencing and assembly performs poorly at correctly

assembling repetitive DNA elements such as the segmental duplications that

occupy over 5% of the human genome (She et al., 2004). They compared a

whole-genome shotgun sequence assembly to the assembly based on ordered

clones and found that 38.2 megabases of pericentromeric DNA (about 80% of the

size of a small autosome) was either not assembled, not assigned, or misassigned.

Additionally, She et al. suggested that 40% of the duplicated sequence might be

misassembled. Correctly resolving these structures will require a targeted approach

to supplement whole genome shotgun sequencing and assembly.

Features of the Genome Sequence
A draft genome sequence contains a mixture of finished, draft, and predraft data.

A key aspect of the sequence is the extent to which the sequenced fragments are con-

tiguous. The average length of a clone or a contig is not a consistently useful measure

of the extent to which a genome has been sequenced and assembled. Instead the N50

length describes the largest length L such that 50% of all nucleotides are contained in

contigs or scaffolds of at least size L. For the draft version of the human genome

sequence, half of all nucleotides were present in a fingerprint clone contig of at

least 8.4 megabases (Table 19.5). The N50 length rose to 38.5 megabases with the

most recent freeze of the genome assembly (Table 19.5).

The quality of the genome sequence is assessed by counting the number of gaps

and by measuring the nucleotide accuracy. About 91% of the unfinished draft

sequence had an error rate of less than 1 per 10,000 bases (PHRAP score .40).

A PHRAP score of 40 corresponds to an error probability of 10240/10, or 99.99%

accuracy (see Chapter 13).

Another fundamental category of error is misassembly. This can be especially

problematic for regions of highly repetitive DNA or for duplicated regions of the

genome (see below; Eichler, 2001). Comparisons of the genome sequences produced

by the IHGSC and Celera Genomics indicate substantial differences that reflect

differences in assembly (Li et al., 2002).

TABLE 19-5 Continuity of Draft Genome Sequencea

Clone Length (L), kilobases

Initial sequencing contig 21.7

Sequence contig 82

Sequence-contig scaffold 274

Sequenced-clone contig 826

Fingerprint clone contig 8,400

Reference contig length
(Build 36 version 2)

38,510

aThis is described by N50 statistics, which report the length of various
clone types for which 50% of the nucleotides reside.

Source: Data are adapted from IHGSC (2001) except for Reference
contig length from January 2008 (linked from Q http://www.ncbi.
nlm.nih.gov/genome/guide/human/release_notes.html).

N50 statistics are reported

at the UCSC genome browser

(Q http://genome.ucsc.edu/
goldenPath/stats.html) as well

as at NCBI.
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The Broad Genomic Landscape
We will discuss the 24 human chromosomes in more detail below, based on projects

focused on finishing the sequence of each one. The autosomes are numbered

approximately in order of size. The largest chromosome, chromosome 1, is 223

megabases in length; the smallest, chromosome 21, is about 47 megabases.

Having a nearly complete view of the nucleotide sequence of the human genome,

we can explore its broad features. These include:

† The distribution of GC content

† CpG islands and recombination rates

† The repeat content

† The gene content

We will next examine each of these four features of the genome. Using the genome

browsers at UCSC as well as Ensembl and NCBI, we can explore the genomic land-

scape from the level of single nucleotides to entire chromosomes.

Long-Range Variation in GC Content
The average GC content of the human genome is 41%. However, there are regions

that are relatively GC rich and GC poor. A histogram of the overall GC content

(in 20 kb windows) shows a broad profile with skewing to the right (Fig. 19.9).

Fifty-eight percent of the GC content bins are below the average, while 42% are

above the average, including a long tail of highly GC-rich regions.

Giorgio Bernardi and colleagues have proposed that mammalian genomes are

organized into a mosaic of large DNA segments (e.g., .300 kb) called isochores.

These isochores are fairly homogeneous compositionally and can be divided into

GC-poor families (L1 and L2) or GC-rich families (H1, H2, and H3). The

FIGURE 19.9. Histogram of per-
cent GC content versus the
number of 20 kb windows in the
draft human genome sequence.
Note that the distribution is
skewed to the right, with a mean
GC content of 41% (from
IHGSC, 2001). Used with
permission.
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You can view GC content across

any chromosome in the NCBI,

Ensembl, or UCSC genome

browsers. For example, in the

Ensembl browser (Fig. 19.6) click

“decorations” to add a GC con-

tent layer.

The L (light) and H (heavy) des-

ignations for isochores refer to the

sedimentation behavior of geno-

mic DNA in cesium chloride gra-

dients. Genomic DNA fragments

migrate to different positions

based on their percent GC

content.
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IHGSC (2001) report did not identify clearly defined isochores, and Haring and

Kypr (2001) did not detect isochores in human chromosomes 21 and 22.

Subsequent analyses by Bernardi and colleagues (Bernardi, 2001; Pavlicek et al.,

2002) do support the mosaic organization of the human genome by GC content.

The discrepancies depend in part on the size of the window of genomic DNA that

is analyzed.

CpG Islands
The dinucleotide CpG is greatly underrepresented in genomic DNA, occurring at

about one-fifth its expected frequency. We introduced this topic in Chapter 16.

Most CpG dinucleotides are methylated on the cytosine and subsequently are dea-

minated to thymine bases. However, the genome contains many “CpG islands”

which are typically associated with the promoter and exonic regions of housekeeping

genes (Gardiner-Garden and Frommer, 1987). CpG islands have roles in processes

such as gene silencing, genomic imprinting (Tycko and Morison, 2002), and

X chromosome inactivation (Avner and Heard, 2001).

You can display predicted CpG islands in genomic DNA at the NCBI, Ensembl,

and UCSC genome browser websites (see Fig. 16.19). According to the IHGSC

(2001), there are 50,267 predicted CpG islands in the human genome. After

blocking repetitive DNA sequences with RepeatMasker, there were 28,890 CpG

islands. (This lower number reflects the high GC content of Alu repeats as seen in

Fig. 16.8.) There are 5 to 15 CpG islands per megabase of DNA on most chromo-

somes, although chromosome 19 (the most gene-dense chromosome) contains 43

CpG islands per megabase (Fig. 19.10).

Comparison of Genetic and Physical Distance
It is possible to compare the genetic maps and physical maps of the chromosomes

to estimate the rate of recombination per nucleotide (Yu et al., 2001). Genetic

maps, also known as linkage maps, are chromosome maps based on meiotic recom-

bination. During meiosis the two copies of each chromosome present in each cell are

reduced to one. The homologous parental chromosomes recombine (exchange

DNA) during this process. Genetic maps describe the distances between DNA

sequences (genes) based on their frequency of recombination. Thus, genetic maps
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FIGURE 19.10. The number of
CpG islands per megabase is
plotted versus the number of genes
per megabase as a function of
chromosome. Note that chromo-
some 19, the most gene-rich
chromosome, has the greatest
number of CpG islands per mega-
base (from IHGSC, 2001). Used
with permission.

Gene silencing refers to transcrip-

tional repression. We briefly

described MeCP2, a protein that

binds to methylated CpG islands

(Fig. 10.9). MeCP2 further

recruits proteins such as a histone

deactylase that alters chromatin

structure and represses transcrip-

tion. Mutations in MECP2, the

X-linked gene encoding MeCP2,

cause Rett sydrome (Amir et al.,

1999). This disease causes dis-

tinctive neurological symptoms in

girls, including loss of purposeful

hand movements, seizures, and

autistic-like behavior (Chapter

20). X chromosome inactivation is

a dosage compensation mechan-

ism in which cells in a female body

selectively silence the expression

of genes from either the mater-

nally or paternally derived

X chromosome (Avner and

Heard, 2001).

The UCSC Table Browser lists

28,226 CpG islands in the human

genome. To see this, visit the table

browser (via Q http://genome.

ucsc.edu). Set the clade to ver-

tebrate, the genome to human, the

assembly to March 2006 (or

another assembly), the group to

Expression and Regulation, the

track to CpG islands, and click

summary statistics.
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report DNA sequences in units of centimorgans (cM), which describe relative dis-

tance. One centimorgan corresponds to 1% recombination.

In contrast to genetic maps, physical maps describe the physical position of

nucleotide sequences along each chromosome. With the completion of draft versions

of the human genome, it became possible to compare genetic and physical maps.

Figure 19.11 shows a plot of genetic distance (y axis; in centimorgans) versus

physical distance for human chromosome 12 (x axis; in megabases) (IHGSC,

2001). There are two main conclusions. First, the recombination rate tends to be

suppressed near the centromeres (note the flat slope in Fig. 19.11, arrow 1), while

the recombination rate is far higher near the telomeres. This effect is especially

pronounced in males. Second, long chromosome arms tend to have an average

recombination rate of 1 cM/Mb, while the shortest arms have a much higher average

recombination rate (above 2 cM/Mb). The range of the recombination rate through-

out the genome varies from 0 to 9 cM/Mb (Yu et al., 2001). These researchers

identified 19 recombination “deserts” (up to 5 Mb in length with sex-average recom-

bination rates below 0.3 cM/Mb) and 12 recombination “jungles” (up to 6 Mb in

length with sex-average recombination rates above 3.0 cM/Mb). In Computer Lab

exercise 19.3 at the end of this chapter, we will identify regions of high (or low)

recombination on the UCSC Genome Browser.

Repeat Content of the Human Genome
Repetitive DNA probably occupies over 50% of the human genome. While our

genome has the most fundamental role in defining our biological nature, these

repeats might seem to constitute a vast amount of irrelevant material that has oppor-

tunistically infiltrated and assimilated itself. Through the Human Genome Project

we are beginning to characterize the nature and extent of repetitive DNA in our

genome, including its decisive roles in evolution and disease.

FIGURE 19.11. Comparison of
physical distance (in megabases, x
axis) with genetic distance (in cen-
timorgans, y axis) for human
chromosome 12. Note that the
recombination rate tends to be
lower near the centromere (arrow
1) and higher near the telomeres
(distal portion of each chromo-
some). The recombination is
especially high in the male meiotic
map (arrow 2). (From IHGSC,
2001.) Used with permission.
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Genomic imprinting is the differ-

ential expression of genes from

maternal and paternal alleles.

Tycko and Morison (2002) offer a

database of imprinted genes

(Q http://igc.otago.ac.nz/home.

html).

The NCBI, Ensembl, and UCSC

genome browsers allow you to

view both physical maps and

different kinds of genetic maps.
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There are five main classes of repetitive DNA in humans (IHGSC, 2001; Jurka,

1998), as discussed in Chapter 16:

1. Interspersed repeats (transposon-derived repeats)

2. Processed pseudogenes: inactive, partially retroposed copies of protein-

coding genes

3. Simple sequence repeats: microsatellites and minisatellites, including short

sequences such as (A)n, (CA)n, or (CGG)n

4. Segmental duplications, consisting of blocks of 10 to 300 kb that are copied

from one genomic region to another

5. Blocks of tandemly repeated sequences such as are found at centromeres,

telomeres, and ribosomal gene clusters

We will briefly explore each of these repeats.

Transposon-Derived Repeats
Incredibly, 45% of the human genome or more consists of repeats derived from trans-

posons. These are often called interspersed repeats. Many transposon-derived

repeats replicated in the human genome in the distant past (hundreds of millions

of years ago), and thus because of sequence divergence it is possible that the 45%

value is an underestimate. Transposon-derived repeats can be classified in four

categories (Jurka, 1998; Ostertag and Kazazian, 2001):

† LINEs occupy 21% of the human genome.

† SINEs occupy 13% of the human genome.

† LTR transposons account for 8% of the human genome.

† DNA transposons comprise about 3% of the human genome.

The structure of these repeats is shown in Fig. 19.12, as well as their abundance

in the human genome. LINEs, SINEs, and LTR transposons are all retrotransposons

that encode a reverse transcriptase activity. They integrate into the genome through

an RNA intermediate. In contrast, DNA transposons have inverted terminal repeats

and encode a bacterial transposon-like transposase activity.

Retrotransposons can further be classified into those that are autonomous

(encoding activities necessary for their mobility) and those that are nonautonomous
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FIGURE 19.12. There are four
types of transposable elements in
the human genome: LINEs,
SINEs, LTR transposons, and
DNA transposons (from IHGSC,
2001). Used with permission.

The number of interspersed

repeats was estimated using

RepeatMasker to search RepBase

(see Chapter 16).

Alu elements are so named

because the restriction enzyme Alu

I digests them in the middle of the

sequence. In mouse, these are

called B1 elements.
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(depending on exogenous activities such as DNA repair enzymes). The most

common nonautonomous retrotransposons are Alu elements.

Interspersed repeats occupy a far greater proportion of the human genome than

in other eukaryotic genomes (Table 19.6). The total number of interspersed repeats

is estimated to be 3 million. These repeats offer an important opportunity to study

molecular evolution. Each repeat element, even if functionally inactive, represents

a “fossil record” which can be used to study genome changes within and between

species. Transposons accumulate mutations randomly and independently. It is poss-

ible to perform a multiple sequence alignment of transposons and to calculate the

percent sequence divergence. Transposon evolution is assumed to behave like a mol-

ecular clock, which can be calibrated based on the known age of divergence of species

such as humans and Old World monkeys (23 million years ago [MYA]). Based on

such phylogenetic analyses, several conclusions can be made (IHGSC, 2001)

(Fig. 19.13):

† Most interspersed repeats in the human genome are ancient, predating the

mammalian eutherian radiation 100 MYA. These elements are removed

from the genome only slowly.

† SINEs and LINEs have long lineages, some dating back 150 MYA.

† There is no evidence for DNA transposon activity in the human genome in the

past 50 million years; thus, they are extinct fossils.

FIGURE 19.13. Comparison of
the age of interspersed repeats in
four eukaryotic genomes.
Humans have a small proportion
of recent interspersed repeats
(from IHGSC, 2001). Used with
permission.
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TABLE 19-6 Interspersed Repeats in Four Eukaryotic Genomes
Human Drosophila C. elegans A. thaliana

Bases Families Bases Families Bases Families Bases Families

LINE/SINE 33.4% 6 0.7% 20 0.4% 10 0.5% 10

LTR 8.1% 100 1.5% 50 0% 4 4.8% 70

DNA 2.8% 60 0.7% 20 5.3% 80 5.1% 80

Total 44.4% 166 3.1% 90 6.5% 94 10.5% 160

“Bases” refers to percentage of bases in the genome, “families” to approximate number of families in the
genome.

Source: Adapted from IHGSC (2001). Used with permission.
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Simple Sequence Repeats
Simple sequence repeats are repetitive DNA elements that consist of perfect (or slightly

imperfect) tandem repeats of k-mers. When the repeat unit is short (k is about 1 to 12

bases), the simple sequence repeat is called a microsatellite. When the repeat unit is

longer (from about 12 to 500 bases), it is called a minisatellite (Toth et al., 2000).

Micro- and minisatellites comprise about 3% of the human genome (IHGSC,

2001). The most common repeat lengths are shown in Table 19.7. The most

common repeat units are the dinucleotides AC, AT, and AG. We saw examples of

these with the RepeatMasker program (Chapter 16).

Segmental Duplications
Segmental duplications occur when the human genome contains duplicated blocks

of from 1 to 200 kb of genomic sequence. About 5.5% of the finished human

genome sequence consists of segmental duplications, typically of 10 to 50 kb

(Bailey et al., 2001). Many of these duplication events are recent, because both

introns and coding regions are highly conserved. (For ancient duplication events,

less conservation is expected between duplicated intronic regions.) Segmental

duplications may be interchromosomal or intrachromosomal. The centromeres con-

tain large amounts of interchromosomal duplicated segments, with almost 90% of a

1.5 Mb region containing these repeats (Fig. 19.14). Smaller regions of these repeats

also occur near the telomeres.

Gene Content of the Human Genome
It is of great interest to characterize the gene content of the human genome because of

the critical role of genes in human biology. However, the genes are the hardest

features of genomic DNA to identify (see Chapter 16). This is a challenging task

for many reasons:

† The average exon is only 50 codons (150 nucleotides). Such small elements

are hard to identify as exons unambiguously.

TABLE 19-7 Simple Sequence Repeats (Microsatellites) in the Human Genome

Length of Repeat
Average Bases per

Megabase
Average Number of SSR
Elements per Megabase

1 1660 33.7

2 5046 43.1

3 1013 11.8

4 3383 32.5

5 2686 17.6

6 1376 15.2

7 906 8.4

8 1139 11.1

9 900 8.6

10 1576 8.6

11 770 8.7

Abbreviation: SSR, simple sequence repeat.

Source: IHGSC, 2001.
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† Exons are interrupted by introns, some many kilobases in length. In the

extreme case, the human dystrophin gene extends over 2.4 Mb, the size of

an entire genome of a typical prokaryote. Thus, the use of complementary

DNAs continues to provide an essential approach to gene identification.

† There are many pseudogenes that may be difficult to distinguish from

functional protein-coding genes.

† The nature of noncoding genes ispoorlyunderstood (see Chapter16 and below).

Noncoding RNAs
There are many classes of human genes that do not encode proteins. Noncoding

RNAs can be difficult to identify in genomic DNA because they lack open reading

frames, they may be small, and they are not polyadenylated. Thus, they are difficult

to detect by gene-finding algorithms, and they are often not present in cDNA

libraries. These noncoding RNAs include the following:

† Transfer RNAs, required as adapters to translate mRNA into the amino acid

sequence of proteins

† Ribosomal RNAs, required for mRNA translation

† Small nucleolar RNAs (snoRNAs), required for RNA processing in the

nucleolus

† Small nuclear RNAs (snRNAs), required for spliceosome function

Hundreds of noncoding RNAs were identified in the draft version of the human

genome (Table 19.8). The tRNA genes were most predominant, with 497 such genes

and an additional 324 tRNA-derived pseudogenes. The tRNA genes associated with

the human genetic code can now be described. This version of the genetic code

includes the frequency of codon utilization for each amino acid and the number of

tRNA genes that are associated with each codon. The total number of tRNA genes

is comparable to that observed in other eukaryotes (Table 8.2).

Protein-Coding Genes
Protein-coding genes are characterized by exons, introns, and regulatory elements.

These basic features are summarized in Table 19.9. The average coding sequence

FIGURE 19.14. The centromeres
consist of large amounts of inter-
chromosomal duplicated segments.
The size and location of intrachro-
mosomal (black) and interchromo-
somal (red) segmental duplications
are indicated. Each horizontal
line represents 1 Mb of chromo-
some 22q; the tick marks indicate
100 kb intervals. The centromere
is at top left, and the telomere is
at the lower right (adapted from
IHGSC, 2001). Used with
permission.

Centromere

Telomere

We described cDNA projects in

Chapter 8.
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TABLE 19-8 Noncoding Genes in the Human Genome

RNA Gene

No. of
Noncoding

Genes

No. of
Related
Genes Function

tRNA 497 324 Protein synthesis

SSU (18S) RNA 0 40 Protein synthesis

5.8S rRNA 1 11 Protein synthesis

LSU (28S) rRNA 0 181 Protein synthesis

5S RNA 4 520 Protein synthesis

U1 16 134 Spliceosome component

U2 6 94 Spliceosome component

U4 4 87 Spliceosome component

U4atac 1 20 Minor (U11/U12) spliceosome
component

U5 1 31 Spliceosome component

U6 44 1135 Spliceosome component

U6atac 4 32 Minor (U11/U12) spliceosome
component

U7 1 3 Histone mRNA 30 processing

U11 0 6 Minor (U11/U12) spliceosome
component

U12 1 0 Minor (U11/U12) spliceosome
component

SRP (7SL) RNA 3 773 Component of signal recognition
particle

RNAse P 1 2 tRNA 50 end processing

RNAse MRP 1 6 rRNA processing

Telomerase RNA 1 4 Template for addition of telomeres

hY1 1 353 Component of Ro RNP, function
unknown

hY3 25 414 Component of Ro RNP, function
unknown

hY4 3 115 Component of Ro RNP, function
unknown

hY5 (4.5S RNA) 1 9 Component of Ro RNP, function
unknown

Vault RNAs 3 1 Component of 13 Mda vault RNP

7SK 1 330 Unknown

H19 1 2 Unknown

Xist 1 0 Initiation of X chromosome
inactivation

Known C/D
snoRNAs

69 558 Pre-rRNA processing or site-
specific ribose methylation of
rRNA

Known H/ACA
snoRNAs

15 87 Pre-rRNA processing or site-
specific pseudouridylation of
rRNA

Source: Adapted from IHGSC (2001). Used with permission.
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for human genes is 1340 bp (IHGSC, 2001). This is comparable to the size of an

average coding sequence in nematode (1311 bp) and Drosophila (1497 bp). Most

internal exons are about 50 to 200 bp in length in all three species (Fig. 19.15a),

although worm and fly have a greater proportion of longer exons (note the flatter

tail in Fig. 19.15a). However, the size of human introns is far more variable

(Figs. 19.15b and c). This results in a more variable overall gene size in humans

than in worm and fly.

Protein-coding genes are associated with a high GC content (Fig. 19.16). While

the overall GC content of the human genome is about 41%, the GC content of

known genes (having RefSeq identifiers) is higher (Fig. 19.16a). Gene density

increases 10-fold as GC content rises from 30% to 50% (Fig. 19.16b).

In an effort to catalog all protein-coding genes and their protein products, the

IHGSC (2001) created an integrated gene index (IGI) and a corresponding integrated

protein index (IPI). According to the European Bioinformatics Institute Integr8 data-

base, there are 40,014 proteins in the human proteome. We listed the 15 most common

protein domains inTable10.3.Ensembl predictions are shownfor the 15 most common

protein families (Table 19.10) and most common repeats (Table 19.11).

Comparative Proteome Analysis
The importance of comparative analyses has emerged as one of the fundamental

tenets of genomics. A comparison of human proteins to proteins from the completed

genomes of S. cerevisiae, A. thaliana, C. elegans, and D. melanogaster is shown in

Table 19.12. The IHGSC (2001) analyzed functional groups of these proteins

based on InterPro and Gene Ontology (GO) Consortium classifications. Humans

have relatively more genes that encode proteins predicted to function in cytoskeleton,

transcription/translation, and defense and immunity (Fig. 19.17).

The human proteome was further studied by blastp searching every predicted

protein against the nonredundant database. The distribution of homologs is shown in

Fig. 19.18. Overall, 74% of the proteins were significantly related to other known pro-

teins. As more sequences are accumulated in databases over time, the matches between

human proteins and other eukaryotes (and prokaryotes) will continue to increase.

Complexity of Human Proteome
The number of protein-coding genes in humans is comparable to the number of

genes in other metazoans and plants and only fivefold greater than the number in

TABLE 19-9 Characteristics of Human Genes
Feature Size (median) Size (mean)

Internal exon 122 bp 145 bp

Exon number 7 8.8

Introns 1,023 bp 3,365 bp

30-untranslated region 400 bp 770 bp

50-untranslated region 240 bp 300 bp

Coding sequence 1,100 bp 1,340 bp

Coding sequence 367 aa 447 aa

Genomic extent 14 kb 27 kb

Abbreviations: aa, amino acids; bp, base pairs; kb, kilobases.
Source: Adapted from IHGSC (2001).

The longest coding sequence is

titin (80,780 bp; NM_003319).

The gene for titin, on chromo-

some 2q24.3, has 178 exons and

encodes a muscle protein of

26,926 amino acids (about 3

million Da). By contrast, a typical

protein encoded by an mRNA of

1340 bp is about 50,000 Da.

Chromosome 19, the most GC-

rich chromosome, also houses the

greatest density of genes (26.8 per

megabase). The average density of

gene predictions across the genome

is 11.1 per megabase. The Y

chromosome is least dense, having

6.4 predicted genes per megabase.

EBI proteome analysis via Integr8

is available at Q http://www.ebi.

ac.uk/integr8.

We discussed the GO Consortium

and InterPro in Chapter 10.
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unicellular fungi. Nonetheless the human proteome may be far more complex for

several reasons (IHGSC, 2001):

1. There are relatively more domains and protein families in humans than in

other organisms.

2. The human genome encodes relatively more paralogs, potentially yielding

more functional diversity.

3. There are relatively more multidomain proteins having multiple functions.
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FIGURE 19.15. Size distribution
of (a) exons, (b) introns, and
(c) short introns (enlarged from
[b]) in human, worm, and fly
(from IHGSC, 2001). Used with
permission.
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4. Domain architectures tend to be more complex in the human proteome.

5. Alternative RNA splicing may be more extensive in humans.

There may be a synergistic effect among these factors, leading to a substantially

greater complexity of the human proteome that could account for the phenotypic

complexity of vertebrates, including humans.

In its reannotation of the human genome, the IHGSC (2004) identified the

largest clusters of human paralogous genes that involve recent gene duplications

(Table 19.13). These genes are neighboring (indicating local gene duplication).

The selected sites displayed near neutrality (estimated substitution rate per synon-

ymous site Ks , 0.30, such that each homolog differs from a common ancestral

gene by an average Ks , 0.15). These represent genes that were recently born in

the human lineage (after the divergence from rodents), and many have functions in

olfaction, immune function, and the reproductive system.

24 HUMAN CHROMOSOMES

Each human chromosome has been finished (or nearly finished) by a dedicated

research team. For each chromosome, this has resulted in a publication in the journal

Nature (or Science). There are seven traditional cytogenetic groups A to G, which

categorize the chromosomes (other than the mitochondrial genome) according to

morphological properties (Table 19.14). We next briefly summarize key aspects of

each chromosome, following this organization (Tables 19.15 to 19.21).

The exact number of genes is not yet known (for typical projects comparative

studies suggest that over 95% of the genes have been annotated). The EGASP

FIGURE 19.16. (a) Distribution
of GC content in genes and in the
genome shows that protein-coding
genes are associated with a higher
GC content. (b) The gene density
is plotted as a function of the GC
content. (The density is obtained
by taking the ratio of the values
in [a].) As GC content rises, the
relative gene density increases dra-
matically. (c) Mean exon length is
unaffected by GC content, but
introns are far shorter as GC con-
tent rises (from IHGSC, 2001).
Used with permission.
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competition, described in Chapter 16, highlights the computational challenges in

correctly identifying genes with good sensitivity and specificity. The values of gap

lengths in Tables 19.15 to 19.21 are changeable over time. In almost every case

they represent regions that are refractory to cloning and sequencing because of

the highly repetitive nature of the underlying DNA sequence, even when up to

100-fold coverage of the chromosome is obtained. Overall, the finishing of

TABLE 19-10 Fifteen Most Common Families for Homo sapiens
InterPro Proteins Matched Name

IPR000276 872 Rhodopsin-like GPCR superfamily

IPR000725 547 Olfactory receptor

IPR001909 350 KRAB box

IPR001806 173 Ras GTPase

IPR013753 134 Ras

IPR007114 98 Major facilitator superfamily

IPR001664 88 Intermediate filament protein

IPR011701 82 Major facilitator superfamily MFS-1

IPR001128 74 Cytochrome P450

IPR000832 68 GPCR, family 2, secretin-like

IPR002198 66 Short-chain dehydrogenase/reductase SDR

IPR003579 65 Ras small GTPase, Rab type

IPR001993 61 Mitochondrial substrate carrier

IPR004000 57 Actin/actin-like

IPR002494 55 Keratin, high sulfur B2 protein

Source: From Q http://www.ebi.ac.uk/proteome/, January 2008.

TABLE 19-11 Fifteen Most Common Repeats for Homo sapiens
InterPro Proteins Matched Name

IPR001680 304 WD40 repeat

IPR002110 280 Ankyrin

IPR001611 270 Leucine-rich repeat

IPR003591 131 Leucine-rich repeat, typical subtype

IPR001440 108 Tetratricopeptide TPR-1

IPR008160 81 Collagen triple helix repeat

IPR000357 80 HEAT

IPR006652 72 Kelch repeat type 1

IPR013105 70 Tetratricopeptide TPR2

IPR000884 65 Thrombospondin, type I

IPR008161 52 Collagen helix repeat

IPR002172 50 Low density lipoprotein-receptor, class A

IPR003659 46 Plexin/semaphorin/integrin

IPR000225 44 Armadillo

IPR002165 33 Plexin

Source: From Q http://www.ebi.ac.uk/proteome/, January 2008.
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the euchromatic portion of the human genome included 250 gaps spanning

25 megabases, while the heterochromatic portion had far fewer gaps ( just 33)

spanning a vast size (200 megabases) (IHGSC, 2004).

Group A (Chromosomes 1, 2, 3)
Chromosome 1, the largest chromosome, has 3141 genes and 991 pseudogenes

(Gregory et al., 2006) (Table 19.15). Its gene density (14.2 genes per megabase) is

nearly twice the genome-wide average (7.8 genes per megabase). Typical for essen-

tially all the chromosome finishing projects, sequence integrity and completeness

were assessed three ways: (1) by determining whether all RefSeq genes assigned to

FIGURE 19.17. Functional catego-
ries in eukaryotic proteomes of yeast
(S. cerevisiae), mustard weed (A.
thaliana), worm (C. elegans), fly
(D. melanogaster), and human.
The classification categories were
derived from InterPro (Chapter 10)
(from IHGSC, 2001). Used with
permission.
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TABLE 19-12 Proteome Comparisons between Human and Arabidopsis, C. elegans, Drosophila, and
S. cerevisiae

Organism

No. of
Proteins in
Proteome

Proteins with
InterPro
Matches

Percent of
all

Proteins
No. of

Signatures

No. of
InterPro
Entries

H. sapiens 26,146 18,946 72.5 56,344 6,202

M. musculus 23,429 18,203 77.7 53,657 6,125

A. thaliana 31,892 24,315 76.2 56,148 4,494

C. elegans 20,265 13,919 68.7 31,377 4,232

D. melanogaster 13,967 10,482 75.0 27,712 4,472

S. cerevisiae 5,862 4,542 77.5 11,103 3,379

Source: From Q http://www.ebi.ac.uk/proteome/, January 2008.
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Vertebrates and
other animals
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No animal
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Animals and 
 other eukaryotes
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Eukaryotes and
prokaryotes
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Prokaryotes
only
<1%

FIGURE 19.18. Taxonomic distri-
bution of the protein homologs of
predicted human proteins. Each
protein was searched by blastp,
and proteins with an E value less
than 0.001 were called homologs.
Additional PSI-BLAST searches
were performed (with three iter-
ations) (from IHGSC, 2001).
Used with permission.

TABLE 19-13 Human Paralogous Genes with Largest Cluster Sizes Involved in Recent Gene
Duplications (Ks � 0.3)
Cluster
Size

Minimum Size in
Ancestral Genome

Genes Involved in Recent
Duplications Chromosome Gene Family

64 50 23 11 Olfactory receptor

59 54 10 11 Olfactory receptor

34 25 13 1 Olfactory receptor

30 8 26 2 Immunoglobulin K chain V

23 5 19 19 KRAB zinc-finger protein

23 19 6 11 Olfactory receptor

21 9 15 14 Immunoglobulin heavy chain

20 11 12 22 Immunoglobulin l chain V-region

18 9 13 19 Leukocyte and NK cell
immunoglobulin-like receptors

18 14 6 19 Gonadotropin-inducible transcription
repressor-2-like

16 4 13 9 Interferon a

16 10 7 19 FDZF2-like KRAB zinc-finger protein

14 8 7 12 Taste receptor, type 2

13 3 11 1 PRAME/MAPE family (cancer/germ
line antigen)

13 9 8 17 Olfactory receptor

11 2 11 16 Immunoglobulin heavy chain

10 1 10 19 Pregnancy-specific b-1-glycoprotein

Source: Modified from IHGSC (2004). Used with permission.
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TABLE 19-14 Human Chromosome Groups
Group Chromosomes Description

A 1–3 Largest chromosomes; 1,3 are metacentric; 2 is submetacentric

B 4, 5 Large chromosomes; submetacentric

C 6–12, X Medium size chromosomes; submetacentric

D 13–15 Medium size chromosomes; acrocentric with satellites

E 16–18 Small; 16 is metacentric; 17,18 are submetacentric

F 19, 20 Small, metacentric chromosomes

G 21, 22, Y Smallest chromosomes; acrocentric; satellites on 21 and 22

TABLE 19-15 Group A Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

1 247 3,141 991 21,115 NC_000001

2 243 1,346 1,239 5,412 NC_000002

3 200 1,463 122 3,435 NC_000003

Sources: Gregory et al. (2006); Hillier et al. (2005); Muzny et al. (2006a). Length is from NCBI build 36
version 2. Gap sizes are from IHGSC (2004).

TABLE 19-16 Group B Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

4 191 796 778 4,250 NC_000004

5 181 923 577 432 NC_000005

Sources: Hillier et al. (2005); Schmutz et al. (2004). Length is from NCBI build 36 version 2. Gap sizes are
from IHGSC (2004).

TABLE 19-17 Group C Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

6 171 1,557 633 2,958 NC_000006

7 159 1,150 941 5,499 NC_000007

8 146 793 301 2,852 NC_000008

9 140 1,149 426 19,955 NC_000009

10 135 816 430 3,535 NC_000010

11 134 1,524 765 5,082 NC_000011

12 132 1,342 93 5,095 NC_000012

X 155 1,098 700 3,750 NC_000023

Sources: Mungall et al. (2003); Hillier et al. (2003); Nusbaum et al. (2006); Humphray et al. (2004);
Deloukas et al. (2004); Taylor et al. (2006); Scherer et al. (2003, 2006); Ross et al. (2005). Length is
from NCBI build 36 version 2. Gap sizes are from IHGSC (2004).
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the chromosome were accounted for, (2) by comparing the order of hundreds of

chromosome markers to the Decode genetic map to search for discrepancies, and

(3) by aligning over 32,000 pairs of fosmid end sequences to unique positions in

the sequence. This resulted in the identification of several misassemblies caused by

low-copy repeats. In some cases, naturally occurring polymorphisms confound the

analysis; for example, 50% of individuals lack the GSTM1 gene.

Chromosome 2, the second largest chromosome, is remarkable because it corre-

sponds to two intermediate-sized ancestral, acrocentric chromosomes that fused

head-to-head. In other primates these chromosomes remained separate, as in the

case of chimpanzee chromosomes 2A and 2B (Fig. 19.19). In its finished sequence,

TABLE 19-18 Group D Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

13 114 633 296 17,915 NC_000013

14 106 1,050 393 17,228 NC_000014

15 100 695 250 18,997 NC_000015

Sources: Dunham et al. (2004); Heilig et al. (2003); Zody et al. (2006). Length is from NCBI build 36
version 2. Gap sizes are from IHGSC (2004).

TABLE 19-19 Group E Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

16 89 796 778 10,143 NC_000016

17 79 1,266 274 8,375 NC_000017

18 76 337 171 1,465 NC_000018

Sources: Martin et al. (2004); Zody et al. (2006); Nusbaum et al. (2006). Length is from NCBI build 36
version 2. Gap sizes are from IHGSC (2004).

TABLE 19-20 Group F Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

19 64 1,461 321 5,355 NC_000019

20 62 727 168 2,923 NC_000020

Sources: Grimwood et al. (2003); Deloukas et al. (2001). Length is from NCBI build 36 version 2. Gap
sizes are from IHGSC (2004).

TABLE 19-21 Group G Chromosomes

Chromosome
Length
(Mb)

No. of
Genes

No. of
Pseudogenes

Gap Size
(kb) Accession

21 47 796 778 11,673 NC_000021

22 50 545 134 14,790 NC_000022

Y 58 78 n/a 33,098 NC_000024

Sources: Hattori et al. (2000); Dunham et al. (1999); Skaletsky et al. (2003). Length is from NCBI build 36
version 2. Gap sizes are from IHGSC (2004).
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the fusion site in 2q13-2q14.1 has been localized to hg16:114,455,823-114,455,838

(Hillier et al., 2005). One of the two centromeres (at 2q21) became inactivated, and

contains a-satellite remnants.

Although chromosome 3 is large, it contains the lowest rate of segmental

duplications in the genome (1.7% compared to a genome-wide average of 5.3% of

nucleotides segmentally duplicated) (Muzny et al., 2006a). Chromosomes 3 and

21 derive from a larger ancestral chromosome that split. It also includes a large

pericentric inversion (also present in chimpanzee and gorilla, but not orangutan or

Old World monkeys).

Group B (Chromosomes 4, 5)
Chromosome 4 has an unusually low GC content of 38.2%, compared to the

genome-wide average of 41% (Hillier et al., 2005) (Table 19.16). Over 19% of the

chromosome has a GC content less than 35%. However, portions of the chromosome

have a GC content .70%. You can view these using the UCSC Genome Browser’s

GC content annotation track, or the Table Browser.

FIGURE 19.19. Conserved syn-
teny between human chromosome
2 and two smaller chimpanzee
chromosomes provides evidence
that two ancestral human acro-
centric chromosomes fused. This
image is from the ensembl synteny
viewer (linked from Q http://
www.ensembl.org/Homo_
sapiens/syntenyview).
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Chromosome 5 has both a very low gene density and a very high rate of intra-

chromosomal duplications (Schmutz et al., 2004). It includes 923 gene loci, and

577 pseudogenes. There are many gene-poor loci that are highly conserved and

thus are thought to be functionally constrained.

Group C (Chromosomes 6 to 12, X)
The largest transfer RNA gene cluster is localized to chromosome 6p, with 157 tRNA

genes out of 616 across the entire genome (Mungall et al., 2003). Chromosome 6

(Table 19.17) also contains HLA-B, the most polymorphic gene in the human

genome. We will explore this polymorphism further in Computer Lab exercise

19.5 at the end of this chapter.

Chromosome 7 was sequenced by the public consortium (Hillier et al., 2003)

and by Scherer et al. (2003) using a mixture of Celera whole-genome scaffolds and

International Human Genome Sequencing Consortium data. The centromere is

polymorphic, ranging from 1.5 to 3.8 megabases at one locus (marker D7Z1) and

from 100 to 500 kilobases at another site (D7Z2). There is an unusually large

amount of segmentally duplicated sequence (8.2%). As an example of the conse-

quence of this, Williams–Beuren syndrome results from the hemizygous deletion

of 1.5 million base pairs on chromosome 7q11.23, a region containing about 17

genes. There are flanking repeats that mediate unequal meiotic recombination

(Fig. 16.25) or, in some cases, hemizygous inversions (Osborne et al., 2001).

Other group C chromosomes are 8 (Nusbaum et al., 2006), 9 (Humphray et al.,

2004), 10 (Deloukas et al., 2004), 11 (Taylor et al., 2006), 12 (Scherer et al., 2006),

and X (Ross et al., 2005). Chromosome 9 contains the largest autosomal block of

heterochromatin. Chromosome 11 is notable for having the beta globin gene cluster

as well as the insulin gene.

The X chromosome joins the group C chromosomes because of its comparable

size. It is unique in many ways. Mammals are classified into three groups, in all of

which males have X and Y chromosomes: the eutherians (placental mammals),

the metatheria (marsupials), and the prototheria (egg-laying mammals). Females

undergo X chromosome inactivation (XCI) in which one copy is silenced early in

development. In contrast to the autosomes, the male X chromosome does not recom-

bine during meiosis, except for short pseudoautosomal regions at the tips (PAR1 on

Xp and PAR2 on Xq) that recombine with corresponding portions of the Y chromo-

some. Since males have only a single copy of the X chromosome (thus it is hemizy-

gous), recessive phenotypes are exposed and many X-linked diseases have been

described, from hemophilia to X-linked mental retardation syndromes. The X and

Y chromosomes derive from an ancient autosomal chromosome pair that began

transforming into sex chromosomes over 300 million years ago, and sequencing of

the X (and Y) chromosomes has revealed traces of evolutionary conservation

between the two (Ross et al., 2005 and see below).

Group D (Chromosomes 13 to 15)
The five human acrocentric chromosomes are 13, 14, and 15 (Table 19.18), as well as

21 and 22. For each, the p arm is almost entirely heterochromatic. These regions have

a highly repetitive structure, and all five include arrays of ribosomal DNA genes

as shown in Fig. 8.7. Sequencing and accurately assembling these regions is so chal-

lenging that they were not targeted by the Human Genome Project and are still not

part of the standard human genome assemblies.

24 HUMAN CHROMOSOMES 823



Group E (Chromosomes 16 to 18)
Of this group of chromosomes, 16 and 17 are notable for above-average levels of

segmental duplication (Table 19.19). Chromosome 18 has the lowest gene density

of any autosome (4.4 genes per megabase) and encodes only 337 genes (about a quar-

ter of the number of the similar-sized chromosome 17). One region of chromosome 18

has only 3 genes across 4.5 megabases. The sparse number of genes may explain why

some individuals with trisomy 18 (Edwards syndrome) survive to birth, while all other

autosomal trisomies (except trisomy 13 and trisomy 21) are embryonic lethal.

Group F (Chromosomes 19, 20)
Chromosome 19 has the highest gene density with 26 protein-coding genes per

megabase (Table 19.20). It also has an unusually high density of repeats (55% of

the chromosome, in contrast to a genome-wide average of about 45%). Almost

26% of the chromosome is composed of Alu repeats, consistent with the high

gene density.

Group G (Chromosomes 21, 22, Y)
Group G chromosomes are the smallest (Table 19.21). While the short arms of the

five acrocentric chromosomes are nearly entirely heterochromatic, an exception is

21p11.2, which includes a very small euchromatic region. A view of 12 megabases

extending across the p arm of chromosome 21 and its centromere highlights how

little annotated information is currently available (Fig. 19.20). There are only two

genes there: BAGE (B melanoma antigen) and TPTE (transmembrane phosphatase

with tensin homology). The other acrocentric arms have no genes annotated.

The Y chromosome was the most technically difficult to sequence because of its

extraordinarily repetititve nature (Skaletsky et al., 2003; Jobling and Tyler-Smith,

2003). It has short pseudoautosomal regions at the ends that recombine with the

X chromosome. A large central region, spanning 95% of its length, is termed the

male-specific region (MSY). There are 23 megabases of euchromatin, including 8

Mb on Yp and 14.5 Mb on Yq. There are three notable heterochromatic regions:

FIGURE 19.20. View of the p arm
of the acrocentric chromosome 21.
A region of 12 million base pairs
is shown, extending across the cen-
tromere. It is notable that essen-
tially no features are annotated,
other than those in a small euchro-
matic region containing two genes.
The p arm is filled with ribosomal
DNA genes but these are difficult
to sequence. They are highly similar
across the acrocentric chromosomes
and between adjacent clusters (dis-
cussed in Chapter 8).
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(1) a centromeric region of about 1 Mb, (2) a block of �40 Mb on the long arm, and

(3) an island of 400 kilobases comprised of over 3000 tandem repeats of 125 base

pairs. Of 156 transcription units, about half encode proteins. Skaletsky et al. defined

three classes of euchromatic sequences: (1) X-transposed sequences total 3.4 mega-

bases and share 99% identity to Xq21 DNA sequences. Just 3 to 4 million years ago,

after the human-chimpanzee divergence, there was a massive transposition of X

chromosome sequences to the Y chromosome, followed by an inversion that dis-

persed these sequences on the Y. (2) X-degenerate sequences share 60% to 90%

identity to 27 different X chromosome genes, and represent relics of the ancient auto-

somes from which X and Y evolved. (3) Ampliconic sequences span over 10 mega-

bases and consist of blocks of sequences sharing as much as 99.9% nucleotide

identity over spans of tens or hundreds of kilobases. The amplicons are the most

gene-dense regions of the Y chromosome, and have a low content of interspersed

repeats. The ampliconic regions contain eight giant palindromes, collectively span-

ning 5.7 megabases, each with two long arms interrupted by a unique, central

spacer. The extraordinary conservation of the palindromic arms is due to gene con-

version, the nonreciprocal transfer of sequences from one DNA duplex to another

(Skaletsky et al., 2003; Rozen et al., 2003).

The Mitochondrial Genome
In addition to 22 autosomes and two sex chromosomes, humans have a mitochon-

drial genome. Mitochondrial genomes have a number of fascinating properties

that also make them useful for phylogentic studies (reviewed in Pakendorf and

Stoneking, 2005). They are present in high copy number, typically with hundreds

or even thousands of genomes per cell. They are maternally inherited; all (or

almost all) sperm-derived mitochondria are targeted for destruction in the fertilized

oocyte. One consequence is that molecular phylogenetic studies of mitochondria

follow the history of the maternal lineage, and thus have been traced to a “mitochon-

drial Eve” or proposed earliest human female ancestor. Another consequence of

maternal inheritance is that mitochrondrial DNA does not undergo recombination.

The mutation rate is higher than in nuclear DNA, providing a useful signal for

molecular phylogenetic studies. Excluding the D-loop (which has not evolved at a

constant rate across human lineages), Ingman et al. (2000) estimated the mito-

chondrial mutation rate to be 1.70 � 1028 substitutions per site per year.

The reference genome (at NCBI) is 16,571 base pairs in a circular genome,

obtained from a Yoruba individual (from Nigeria). The GC content is 44.5%,

higher than for the other human chromosomes. The genome includes 37 annotated

genes, spanning 68% of the genome. These include 13 protein-coding genes (encod-

ing proteins involved in oxidative phosphorylation) and 24 structural RNAs (two

ribosomal RNAs and 22 transfer RNAs; see Chapter 8). A region of about 1100

base pairs called the control region has regulatory functions.

VARIATION: SEQUENCING INDIVIDUAL GENOMES

While sequencing the human genome was a massive project that has been compared

in magnitude to landing a human on the moon, resequencing an individual human

genome is relatively easier. The National Human Genome Research Institute

(NHGRI) of the National Institutes of Health has launched programs to reduce

The RefSeq human mitochondrial

accession number is NC_001807.

The Entrez Genome Project

identifier is 168.

The NHGRI genome technology

program website is Q http://www.

genome.gov/10000368.
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the cost of sequencing an individual genome from the recent value (tens of millions of

dollars) to $100,000 and eventually to $1000 each.

The significance of individual genome sequencing is that it has the potential to

facilitate the start of an era of individualized medicine in which DNA changes that

are associated with a disease condition are identified. As discussed in Chapter 20,

most diseases involve an interplay between genetic and environmental factors.

Even for diseases that are seemingly caused by environmental factors, from lead

poisoning to malnutrition to infectious disease, an individual’s genetic constitution

is likely to have a large effect on the disease process. Another significant aspect of

individual genome sequencing is that it will help to elucidate the genetic diversity

and history of the species.

In 2007 the first two individual human genome sequences were announced:

that of J. Craig Venter (Levy et al., 2007) and that of James Watson, Nobel laureate

and co-discoverer of the structure of DNA. The Venter genome was reported

(Levy et al. 2007) as the diploid sequence of an individual. In contrast, the

Celera human genome sequence (Venter et al., 2001) was based on a consensus

of DNA sequences from five individuals, and the public consortium sequence

(IHGSC, 2001) was also based on genomes from multiple individuals. Thus,

these were composite efforts that represented sequence data that were essentially

averaged to yield information on 23 pairs of chromosomes. They did not assess

the variation that occurs in an individual having each autosome derived from

maternal and paternal alleles. The surprising finding of Levy et al. was that there

were four million variants between the parental chromosomes, about fivefold

more than had been anticipated. Also it was not until the years 2004 to 2006

that the great diversity of copy number variants as well as smaller indels and

SNPs became more fully appreciated.

In Computer Lab exercise 19.1 (below) we will perform BLAST searches against

the Venter genome.

The strategy employed by Levy et al. (2007) to sequence, assemble, and

analyze the genome included seven steps: (1) obtaining informed consent to collect

the DNA sample; (2) genome sequencing; (3) genome assembly; (4) comparative

mapping of the individual genome to an NCBI reference genome; (5) DNA variation

detection and filtering; (6) haplotype assembly; and (7) data annotation and

interpretation.

The assembly of Venter’s genome was based on 32 million sequence reads

generating �20 billion base pairs of DNA sequence with a 7.5-fold depth of cover-

age. Sanger dideoxynucleotide sequencing technology was used because each read

is longer than currently available 454 technology (used to sequence Watson’s

genome) or Solexa technology (see Chapter 13). The assembly included

2,782,357,138 bases of DNA. Comparison to the NCBI reference genome revealed

4.1 million variants. These included 3.2 million SNPs (slightly more than one per

1000 base pairs), over 50,000 block substitutions (of length 2 to 206 base pairs),

almost 300,000 insertions/deletions (indels) of 1 to 571 base pairs, �560,000

homozygous indels (ranging up to �80,000 base pairs), 90 inversions, and many

copy number variants. The majority of variants relative to the reference

human genome were SNPs. Insertions and deletions accounted for a smaller pro-

portion of the variable events (22%) but because they tend to involve larger genomic

regions they accounted for 74% of the variant nucleotides relative to the reference

NCBI genome.
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VARIATION: SNPS TO COPY NUMBER VARIANTS

Karyotyping is a traditional approach to identifying chromosomal changes, typically

using metaphase spreads of lymphoblastoid (or other) cell lines (see Chapter 16).

G-banding (Giemsa staining) can detect events such as balanced translocations

(which are relatively infrequent) and inversions (which often have severe phenotypic

effects), as well as deletions and duplications. The resolution of standard G-banding

approaches a limit of detection of approximately 3 megabases for deletions or

duplications.

SNPs represent a fundamental form of variation in the human population. The

International HapMap Project was begun in 2002 and reported the genotypes of

1.3 million SNPs in four geographically diverse populations (International HapMap

Consortium, 2002, 2005): (1) 30 trios (consisting of mother, father, and an adult

child) from the Yoruba tribe in Nigeria, abbreviated YRI; (2) 30 trios of northern

and western European ancestry living in Utah and obtained from the Centre

d’Etude du Polymorphisme Humain (CEPH) collection (abbreviated CEU);

(3) 45 unrelated Han Chinese individuals in Beijing, China (CHB); and (4) 45 unre-

lated Japanese individuals in Tokyo, Japan (abbreviated JPT). In some studies, data

from the Chinese and Japanese populations are pooled to yield three groups of

90 (YRI, CEU, CHB þ JPT). A second generation haplotype map increased the

number of characterized SNPs to 3.1 million (International HapMap Consortium,

2007). On average, the SNPs are spaced apart 875 base pairs across the genome.

Each SNP has characteristic properties, including the sequence of its two (or

more) alleles (although most SNPs are biallelic), its major and minor allele frequen-

cies, and its relationship to neighboring SNPs. SNPs have varying extents of linkage

disequilibrium (LD). In regions of high LD, SNPs are tightly linked to each other and

form blocks in which the behavior of one SNP can serve as a proxy for the genotypes

of neighboring SNPs. Commonly used measures of LD include D’, r2, and LOD.

The HapMap Project includes a website from which all SNP data can be downloaded

or viewed in a browser (Thorisson et al., 2005). An example is shown in Fig. 19.21 for

the beta globin locus. The recombination rate (in cM/Mb) is plotted, and two recom-

bination hotspots are evident (rectangles). In a triangle plot, LD measures for every

pair of SNPs are plotted along lines at 458 to the horizontal track. Here, darker

colors correspond to higher LD.

There are many uses of the dense map of SNPs provided by the HapMap project

(see International HapMap Consortium, 2007; McVean et al., 2005). (1) SNP

microarray analyses are used for genome-wide studies of disease association

(Chapter 20). (2) SNPs reveal patterns of variation, such as shared ancestry, in

human populations. Extended regions of homozygosity can be caused by inbreeding

(in which the phenomenon is termed autozygosity) or it can reflect a genetic change

often associated with disease, uniparental isodisomy (Chapter 20). Svante Pääbo

(2003) has reviewed human genetic diversity, stressing the nature of each individual

genome as a mosaic of haplotype blocks. (3) SNP analyses can reveal regions of the

genome under strong positive selection. Wang et al. (2006) sorted high-frequency

SNP alleles by homozygosity then searched for patterns of LD in neighboring alleles

in order to identify many regions under selection. Also, the HapMap Consortium

(2007) genotyped as many nonsynonymous SNPs as possible (over 17,000 passed

quality control criteria). Nonsynonymous SNPs display an increased frequency of

rare variants and a slight decrease of common variants relative to synonymous

The HapMap website is Q http://
www.hapmap.org. The HapMap

samples are available from the

Coriell Cell Repositories

(Q http://ccr.coriell.org/).

Accession numbers beginning

with NA refer to genomic DNA

samples, while GM accession

numbers refer to cell lines. SNP

data are available at dbSNP at

NCBI (Q http://www.ncbi.nlm.

nih.gov/SNP/).
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SNPs. Sabeti et al. (2007), including members of the HapMap Consortium, used

three criteria to identify SNPs under strong positive selection: they were newly

arisen (derived) alleles, based on comparisons to primate outgroups; they were

highly differentiated between human populations, since recent positive selection is

likely to reflect a local environmental adaptation; and they focused on nonsynon-

ymous coding SNPs and SNPs in evolutionarily conserved sequences (Chapter

16) since those are most likely to have biological effects. Sabeti et al. described 300

candidate regions. In some cases they identified pairs of genes that have related func-

tions and have undergone positive selection in the same populations (e.g., LARGE

and DMD in the YRI population; both encode proteins implicated in Lass fever

virus binding and infection).

Another basic use of SNPs is to identify chromosomal deletions, duplications,

inversions and other abnormalities. We introduced SNP microarray and array com-

parative hybridization (aCGH) technologies in Chapter 16. They have been used

to characterize single nucleotide changes (SNPs) or other very small changes as

well as copy number variants (CNVs, defined by Scherer et al. [2007] as copy

number differences extending over 1000 base pairs). Such changes are studied in

apparently normal individuals, as well as in a variety of diseases such as cancers

and idiopathic mental retardation. Using these platforms, fundamental questions

can be addressed concerning human DNA variation, including the following.

1. What is the extent of variation (including SNPs and copy number variants)

within the apparently normal population? That is, how many variants exist

across the genome, what are their frequencies in the population, and what

are their sizes (Pinto et al., 2007)?

2. Are the copy number variants inherited or do they occur de novo? This is

assessed by investigating the corresponding genomic regions of the parents.

If one (or both) of the parents have the deletion then it is inherited, and if

it is established that the parents are phenotypically unaffected then that

variant is presumed to be benign. If the parents do not have that variant

then it occurs de novo and if it occurs in a patient then it is potentially a

causal abnormality.

3. Are there significantly more copy number variants in one group relative to

another (e.g., autism relative to controls)? This hypothesis was tested by

Sebat et al. (2007), who reported that there were significantly more copy

number variants in individuals with autism than controls, and Weiss et al.

(2008), who reported significantly more 16p11 deletions and duplications

in individuals with autism than controls.

Experimentally, SNP microarrays as well as aCGH have been used in a large

number of studies to assess structural variation in the human genome (Iafrate

et al., 2004; Sebat et al., 2004; McCarroll et al., 2006; Redon et al., 2006; reviewed

in Feuk et al., 2006). Other techniques have been applied as well, such as the sequen-

cing of fosmid paired-end sequences and their comparisons to a human genome

reference sequence (Tuzun et al., 2005). This approach is useful to identify deletions,

insertions, and (in contrast to SNP arrays and aCGH) inversions based on discrepan-

cies that are observed between the sequenced fosmid clones and the reference

genome. Korbel et al. (2007) introduced a related paired-end mapping strategy

that uses 454 sequencing technology (Chapter 16) to sequence 3 kilobase fragments.

The phrase “apparently normal”

refers to the idea that normalcy is

difficult to define and establish.

An individual called “normal” has

no apparent disease such as a

childhood-onset disorder or

cancer, but could get a disease in

the future and could have an

undiagnosed condition in the

present. The phrase “apparently

normal” acknowledges this diffi-

culty of demonstrating normalcy.

Idiopathic means of unknown

origin.
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They reported 1300 structural variants in two HapMap females (one YRI, one

CEU); 45% of these were shared.

Information derived from a variety of approaches is centralized in several data-

bases, including the Database of Genomic Variants (Zhang et al., 2006) and at the

UCSC Genome Browser. Figure 19.22 shows an example of copy number variants

in the beta globin region. Approximately 12 studies have reported copy number var-

iants (e.g., Iafrate et al., 2004; Sebat et al., 2004; Sharp et al., 2005; McCarroll et al.,

2006; reviewed in Scherer et al., 2007). For example, Redon et al. (2006) used a

combination of SNP and aCGH arrays and reported almost 1500 copy number vari-

able regions spanning 360 megabases (12% of the human genome) in 270 HapMap

samples, including three that are shown in Fig. 19.22.

The various approaches for the detection of structural variation have not used

standardized approaches to data collection, data analysis, or quality assessment (dis-

cussed by Scherer et al., 2007). There are discrepancies in the results of various

studies (as is evident from inspection of the nine structural variation tracks in

Fig. 19.22). Analysis tools differ in their sensitivity and specificity. Experimental

approaches vary widely in their resolution (in terms of the size of a deleted or dupli-

cated region); aCGH, based on bacterial artificial chromosome arrays, tends to be

useful to detect relatively large events (greater than several hundred kilobases).

SNP arrays can potentially be used to detect much smaller deletions/duplications

(e.g., just tens of kilobases), but require estimation of both genotype and copy

number for each SNP, with variable genotyping error rates. (For example, heterozy-

gous calls on the male X chromosome represent presumed genotyping errors.) Some

analysis packages estimate discrete numbers of chromosomal copies (1 for a

hemizygous deletion, 2 for euploid, and 3 for a duplication) but biologically, mosai-

cism commonly occurs. For example, some number such as 60% of the cells in a

sample could have a deletion.

FIGURE 19.22. Copy number var-
iants in the human genome. The
ENCODE beta globin region on
chromosome 11 is shown (�one
megabase on 11p). The annotation
tracks include RefSeq genes, segmen-
tal duplications (of which several
are evident), and results for copy
number variants from nine differ-
ent publications, some of which
show regions where deletions or
duplications have been observed
in apparently normal individuals.

The Database of Genomic

Variants is available at Q http://
projects.tcag.ca/variation/.
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Despite the many concerns about the quality and consistency of data, it is clear

that the human genome has a vast number of copy number variants, with a typical

individual having from a dozen to several hundred. This highlights the extent to

which there is not a single human genome, but each of us has a unique pattern of

both sequence (particularly in terms of SNPs as well as larger polymorphisms)

and copy number variants such as deletions, duplications, and inversions. The

phenotypic consequences of most of these alterations are unknown.

PERSPECTIVE

The sequencing of the human genome represents one of the great accomplishments

in the history of science. This effort is the culmination of decades of work in an

international effort. Two major technological advances enabled the human

genome to be sequenced: (1) the invention of automated DNA sequencing machines

in the 1980s allowed nucleotide data to be collected on a large scale and (2) the com-

putational biology tools necessary to analyze those sequencing data were created by

biologists and computer scientists. In the coming years, we can expect the pace of

DNA sequencing to continue to increase. It will soon be possible to compare the

complete genome sequence of many individuals in an effort to relate genotype to

phenotype. The genomic sequence permits analyses of sequence variation such as

SNPs and copy number variants; disease-causing mutations; evolutionary forces;

and genomic properties such as recombination, replication, and the regulation of

gene function.

PITFALLS

As each chromosome has been finished, there have been many technical problems to

solve regarding sequencing depth, assembly (particularly in regions with highly

repetitive DNA), and annotation. There are discrepancies between the results of

gene finding algorithms (as revealed by the ENCODE project, Chapter 16) and

there are often discrepancies between different databases. Copy number variants

can be particularly difficult to identify and assemble because they are often associated

with repetitive DNA, and segmental duplications are difficult to resolve using whole

genome shotgun assembly.

There are a number of outstanding problems that have yet to be solved:

† How can we accurately determine the number of protein-coding genes?

† How can we determine the number of noncoding genes?

† How can we determine the function of genes and proteins?

† What is the evolutionary history of our species?

† What is the degree of heterogeneity between individuals at the nucleotide

level?

Thus, as we take our first look at the human genome, it is appropriate to see this

moment as a beginning rather than an end. Having the sequence in hand, and

having the opportunity to compare the human genome sequence to that of many

other genomes, we are now in a position to pose a new generation of questions.
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DISCUSSION QUESTIONS

PROBLEMS/COMPUTER LAB

[19-1] If you had the resources and facilities to sequence the entire

genome of five individuals, which would you select? Why?

Describe how you would approach the data analysis.

[19-2] The Saccharomyces cerevisiae genome duplicated about 100

MYA, as indicated by BLAST searching (Chapter 17), and

we discussed whole-genome duplication in fish,

Paramecium, and plants (Chapters 16 and 18). Why is it

not equally straightforward to identify large duplications

of the human genome? Is it because they did not occur,

or because the evolutionary history of humans obscures

such events, or because we lack the tools to detect such

large-scale genomic changes? For a thoughtful discussion

of duplications in the human genome, see an article by

Evan Eichler (2001).

[19-1] Determine the sequence of beta globin in Craig Venter’s

genome. First, identify the accession number for beta

globin (NM_000518). Next, identify the accession

number for the genome; Levy et al. (2007) list it as

ABBA00000000. By viewing that record, note that

ABBA00000000 itself does not directly refer to DNA

sequences, but it lists the accessions ABBA01000001 to

ABBA01255300 that do contain whole-genome shotgun

sequence data. Perform a blastn search at NCBI, using the

beta globin query NM_000518 and setting the database to

whole-genome shotgun reads (WGS). In the Entrez query

box enter ABBA01000001:ABBA01255300[PACC] in order

to limit the search to just Venter’s genome sequences. (You

can visit the Entrez help link to learn the appropriate formats

for limits.) Extra problem: the ABCC11 gene (ATP-binding

cassette, subfamily C, member 11; NM_032583) encodes a

protein that Venter has in a variant form that predisposes one

to wet rather than dry earwax. Identify the variant nucleotides

and/or amino acids.

[19-2] Go to Entrez Gene, and select a human gene of interest, such as

alpha-2 globin. Examine the features of this gene at the

Ensembl, NCBI, and UCSC websites. Make a table of various

properties (e.g., exon/intron structure, number of ESTs corre-

sponding to the expressed gene, polymorphisms identified in

the gene, neighboring genes). Are there discrepancies between

the data reported in the three databases? Next, obtain a portion

of genomic DNA (about 100,000 base pairs in the FASTA

format) from the region including this gene. Use the Oak

Ridge National Laboratory pipeline to characterize the geno-

mic DNA and potential protein-coding regions (Q http://

compbio.ornl.gov/tools/pipeline).

[19-3] The recombination rate is higher near the telomeres (see

Fig. 19.11). Use the UCSC Table Browser to identify regions

having very high recombination rates. (1) Go to Q http://

genome.ucsc.edu and select Table Browser. Select the human

genome, mapping and sequencing group, Recomb Rate track.

Clicking on the summary statistics button shows that there

are 2822 entries (one per megabase). (2) Select filter and set

the decodeAvg (DeCode genetic map average value) to greater

than 5. You can try setting the filter using other genetic maps.

(3) When you submit this, the summary statistics show that

there are now just 12 entries (on chromosomes 4, 9, 10, 12,

14, 17, 19, 20, and X). A list of these results is also provided

as web document 19.1 at Q http://www.bioinfbook.org/

chapter19. You can also set the output to hyperlinks to the

Genome Browser, showing that most of these regions are

indeed subtelomeric. (4) Identify sites with the lowest recombi-

nation rate in the genome using a similar strategy. (5) Identify

RefSeq genes that are close to the highest (or lowest) recombi-

nation rates. Use the intersection tool at the UCSC

Table Browser site.

[19-4] Compare the extent of conserved synteny between human and

the rhesus macaque (Macaca mulatta) on chromosomes 1 (the

largest chromosome in humans), 21 (the smallest autosome),

X, and Y. Which shows the most conservation? What specific

genes are conserved between human and rhesus macaque on

the Y chromosome? Why is the extent of conservation on that

chromosome so low? One way to accomplish this exercise is

to visit the Ensembl human genome browser (Q http://www.

ensembl.org/Homo_sapiens), click on a chromosome (e.g.,

Y), then use the pull-down menu “View Chr Y Synteny” on

the left sidebar.

[19-5] HLA-B is the most polymorphic gene in the human genome.

Explore its properties. (1) Set the UCSC Genome Browser

(March 2006 assembly) to coordinates chr6:31,429,000-

31,433,000 and view the SNPs. You can see the spectacular

amount of polymorphism. (2) Obtain a broader perspective

by viewing the SNPs across a one million base pair region,

chr6:31,000,001-32,000,000. (3) Use the Table Browser and

its intersection feature to find the five most polymorphic

genes across the entire genome.

[19-6] Human mitochondrial DNA (RefSeq identifier NC_001807)

has a bacterial origin. (1) Perform a blastn search of the

nonredundant (nr) database, restricting the output to bacteria.

To which group of bacteria is the human sequence most

related? (You may view the Taxonomy Report for a convenient

summary.) (2) To which genes is the human sequence most

related? You may inspect your blastn results. (3) There is

just one bacterial protein that is related to the proteins

encoded by the human mitochondrial genome. What is it?

You may inspect your blastn results, or to search

specifically for proteins encoded by human mitochondrial

DNA use NC_001807 as a query in a blastx search restricted

to bacteria.
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SELF-TEST QUIZ

[19-1] Approximately how large is the human genome?

(a) 3 Mb

(b) 300 Mb

(c) 3000 Mb

(d) 30,000 Mb

[19-2] Approximately what percentage of the human genome

consists of repetitive elements of various kinds?

(a) 5%

(b) 25%

(c) 50%

(d) 85%

[19-3] What percentage of the human genome is devoted to the

protein-coding regions?

(a) 1%–5%

(b) 5%–10%

(c) 10%–20%

(d) 20%–40%

[19-4] The UCSC human genome browser differs from the NCBI

human genome Map Viewer site because

(a) It offers a large number of annotation tracks, about half of

which are supplied by external users of the site

(b) It offers a large number of chromosome maps, including

maps of conserved syntenic regions

(c) It offers a genome assembly based on BLAST

(d) It offers a genome assembly incorporating both clone-

based and whole-genome shotgun assembly data

[19-5] The human genome contains many transposon-derived

repeats. These are described as

(a) Dead fossils

(b) Young, active elements

(c) Human-specific elements

(d) Inverted repeats

[19-6] Approximately how much of the human genome do segmental

duplications occupy?

(a) ,1%

(b) 3%–5%

(c) 20%–30%

(d) 50%

[19-7] In areas of high GC content of the human genome,

(a) Gene density tends to be low

(b) Gene density tends to be high

(c) Gene density is variable

(d) Genes tend to have fewer introns

[19-8] In comparison to other metazoan genomes (such as

nematodes, insects and mouse),

(a) The human genome contains considerably more protein-

coding genes

(b) The human genome has considerably more unique genes

that lack identifiable orthologs

(c) The human genome has a higher GC content

(d) The human genome has somewhat more multi-

domain proteins, paralogous genes, and alternative

splicing.

[19-9] When the human genome project was completed by 2001 to

2004, how much of the genome remained impossible to

sequence due to repetitive content and other technical

challenges?

(a) Essentially none

(b) About 2 megabases (Mb)

(c) About 25 Mb

(d) About 225 Mb

[19-10] Single nucleotide polymorphisms (SNPs) are useful to

characterize all these aspects of the human genome except

which one?

(a) Disease association

(b) Microduplications

(c) Inverse selection

(d) Population migration

SUGGESTED READING

In this chapter, we have focused on the public consortium descrip-

tion of the human genome (IHGSC, 2001) and the finishing of

the euchromatic portion of the genome (IHGSC, 2004). The

companion Celera article (Venter et al., 2001) is also of great

interest, as are the many accompanying articles in those issues of

Science and Nature. We also discussed the Levy et al. (2007) article

on the genome of an individual, with an emphasis on variants of

assorted sizes.

For each of the 22 autosomes and two sex chromosomes,

there has been a paper published in Nature that describes the

chromosome in detail. We provide links to these papers at

Q http://www.bioinfbook.org/chapter19. These important

papers describe the in-depth analyses of finished (or nearly fin-

ished) chromosomal sequences. They highlight the need for com-

plete sequencing in order to perform more accurate annotation

and comparative analyses.
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As soon as proteins were discovered, investigators studied their role in disease. Prosper Sylvain Denis (1799–1863) wrote Études
Chimiques, Physiologiques, et Médicales, Faites de 1835 à 1840, sur les Matières Albumineuses (1842) (Chemical, Physiological
and Medical Studies, done from 1835 to 1840, on the Albuminous Materials). Chapter 9 (p. 141) is entitled “On the chemical modi-
fications in albuminous materials of organic solids and fluids in the sick person.” He wrote (see arrow 1): “In effect, the disorders that so
often torment the economy, frequently manifest themselves in these materials.” This passage includes a reference to caseine (“caséine”)
and concludes (arrow 2) “Such knowledge already acquired proves that we will come to discover, one day, all the chemical modifications
that illnesses carry in the albuminous materials.” The lower panel (from p. 144) shows a table comparing the water, proteins, alkali,
and salts from healthy and diseased serum.



20

Human Disease

Life is a relationship between molecules, not a property of any one molecule. So is therefore

disease, which endangers life. While there are molecular diseases, there are no diseased mol-

ecules. At the level of the molecules we find only variations in structure and physicochemical

properties. Likewise, at that level we rarely detect any criterion by virtue of which to place a

given molecule “higher” or “lower” on the evolutionary scale. Human hemoglobin, although

different to some extent from that of the horse (Braunitzer and Matsuda, 1961), appears in no

way more highly organized. Molecular disease and evolution are realities belonging to superior

levels of biological integration. There they are found to be closely linked, with no sharp border-

line between them. The mechanism of molecular disease represents one element of the mech-

anism of evolution. Even subjectively the two phenomena of disease and evolution may at times

lead to identical experiences. The appearance of the concept of good and evil, interpreted by

man as his painful expulsion from Paradise, was probably a molecular disease that turned out

to be evolution. Subjectively, to evolve must most often have amounted to suffering from a

disease. And these diseases were of course molecular.

—Emile Zuckerkandl and Linus Pauling (1962, pp. 189–190)

HUMAN GENETIC DISEASE: A CONSEQUENCE

OF DNA VARIATION

Variation in DNA sequence is a defining feature of life on Earth. For each species,

genetic variation is responsible for the adaptive changes that underlie evolution.

Bioinformatics and Functional Genomics, Second Edition. By Jonathan Pevsner

Copyright # 2009 John Wiley & Sons, Inc.

Mutation is the alteration of DNA

sequence. The cause may be
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Evolution is a process by which species adapt to their environment. When changes in

DNA improve the fitness of a species, its population reproduces more successfully.

When changes are relatively maladaptive, the species may become extinct. At the

level of the individual within a species, some mutations improve fitness, most mutations

have no effect on fitness, and some are maladaptive (relative to some norm). Disease

may be defined as maladaptive changes that afflict individuals within a population.

Disease is also defined as an abnormal condition in which physiological function is

impaired. Our focus is on the molecular basis of physiological defects at the levels of

DNA, RNA, and protein.

There is a tremendous diversity to the nature of human diseases. This is for

several reasons:

† Mutations affect all parts of the human genome. There are limitless oppor-

tunities for maladaptive mutations to occur. These may be point mutations,

affecting just a single nucleotide, or large mutations, affecting as much as an

entire chromosome or multiple chromosomes.

† There are many mechanisms by which mutations can cause disease (summar-

ized in Table 20.1). These include disruptions of gene function by point

mutations that change the identity of amino acid residues; by deletions or

insertions of DNA, ranging in size from one nucleotide to an entire chromo-

some that is over 100 million base pairs (Mb); or inversions of the orientation

of a DNA fragment. In many cases, different kinds of mutations affecting the

same gene cause distinct phenotypes.

TABLE 20-1 Mechanisms of Genetic Mutation
Mechanisma Usual Effect Example

Large Mutation

Deletion Null Duchenne dystrophy

Insertion Null Hemophila A/LINE

Duplication Null, gene disrupted Duchenne dystrophy

Dosage, gene intact Charcot–Marie–Tooth

Inversion Null Hemophila A

Expanding triplet Null Fragile X

Gain of function? Huntington

Point Mutation

Silent None Cystic fibrosis

Missense or in-frame
deletion

Null, hypomorphic, altered
function, benign

Globin

Nonsense Null Cystic fibrosis

Frame shift Null Cystic fibrosis

Splicing (AG/GT) Null Globin

Splicing (outside AG/GT) Hypomorphic Globin

Regulatory (TATA, other) Hypomorphic Globin

Regulatory (poly A site) Hypomorphic Globin

aAG/GT indicates mutations in the canonical first two and last two base pairs of an intron. Outside AG/
GT indicates mutations in less canonical sequences.
Source: Adapted from Beaudet et al. (2001, p. 9). Used with permission.

errors in DNA replication or

repair, the effects of chemical

mutagens, or radiation. While

there may be negative connota-

tions associated with the concept

of mutations, mutation and fix-

ation are the essential driving

forces behind evolution. From a

medical perspective, disease is “a

pathological condition of the body

that presents a group of clinical

signs, symptoms, and laboratory

findings peculiar to it and setting

the condition apart as an abnor-

mal entity differing from other

normal or pathological condition”

(Thomas, 1997, p. 552). Disorder

is a “pathological condition of the

mind or body” (Thomas, 1997,

p. 559). A syndrome is “a group of

symptoms and signs of disordered

function related to one another by

means of some anatomical, phys-

iological, or biochemical

peculiarity. This definition does

not include a precise cause of an

illness but does provide a frame-

work of reference for investigating

it” (Thomas, 1997, p. 1185).
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† Most genes function by producing a protein as a gene product. A disease-

causing mutation in a gene results in the failure to produce the gene product

with normal function. This has profound consequences on the ability of the

cells in which the gene product is normally expressed to function.

† The interaction of an individual with his or her environment has profound

effects on disease phenotype. Genetically identical twins may have entirely

different phenotypes. Such differences are attributable to environmental influ-

ences or to epigenetic effects. The concordance rate between monozygotic

twins is an indication of the relative extent to which genetic and environmental

effects influence disease. Even for highly genetic disorders, such as autism

(see below) and schizophrenia, the concordance rate is never 100%.

A Bioinformatics Perspective on Human Disease
In Chapter 1, we defined bioinformatics as a discipline that uses computer databases

and computer algorithms to analyze proteins, genes, and genomes. Our approach to

human disease is reductionist, in that we seek to describe genes and gene products that

cause disease. However, an appreciation of the molecular basis of disease may be inte-

grated with a holistic approach to uncover the logic of disease in the entire human

population (Childs and Valle, 2000). As we explore bioinformatics approaches to

human disease, we are constantly faced with the complexity of all biological systems.

Even when we uncover the gene that when mutated causes a disease, our challenge is

to attempt to connect the genotype to the phenotype. We can only accomplish this by

synthesizing information about the biological context in which each gene functions

and in which each gene product contributes to cellular function (Childs and Valle,

2000; Dipple et al., 2001).

The field of bioinformatics offers approaches to human disease that may help us

to understand basic questions about the influence of genes and the environment on

all aspects of the disease process. Some examples of ways in which this field can have

an impact on our knowledge of disease will be highlighted throughout the chapter,

and include the following.

† To the extent that the genetic basis of disease is a function of variation

in DNA sequences, DNA databases offer us the basic material necessary to

compare DNA sequences. These databases include major, general reposi-

tories of DNA sequence such as GenBank/EMBL/DDBJ (Chapter 2),

general resources such as Online Mendelian Inheritance in Man (OMIM),

and locus-specific databases that provide data on sequence variations at

individual loci.

† Geneticists who search for disease-causing genes through linkage studies,

association studies, or other tests (described below) depend on physical and

genetic maps in their efforts to identify mutant genes.

† When a protein-coding gene is mutated, there is a consequence on the three-

dimensional structure of the protein product. Bioinformatics tools described

in Chapter 11 allow us to predict the structure of protein variants, and from

such analyses we may infer changes in function.

† Once a mutant gene is identified, we want to understand the consequence of

that mutation on cellular function. We have described a variety of approaches

to understanding protein function in Chapters 10 to 12. And in our discussion
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of Saccharomyces cerevisiae, we discussed additional high throughput

approaches to understanding eukaryotic protein function (Chapter 12).

Gene expression studies (Chapters 8 and 9) have been employed to study

the transcriptional response to disease states.

† We may obtain great insight into the role of a particular human gene by

identifying orthologs in simpler organisms. We will discuss orthologs of

human disease genes found in a variety of model systems.

In this chapter, we will first provide an overview of human disease, including

approaches to disease classification. Next, we will consider the subject of human dis-

ease at several levels (outlined in Fig. 20.1). First, at the molecular level, we will focus

on the role of genes in disease. In discussing monogenic (single-gene) disorders, we

will introduce Online Mendelian Inheritance in Man (OMIM), which is the principal

disease database. There are also several hundred locus-specific mutation databases,

and we will discuss these. We will also examine both bioinformatics approaches and

databases relevant to the study of RNA, and protein. Second, we will examine web

resources for diseases at the cellularand systems levels, such as organellar disease data-

bases. Third, we will consider the level of the organism: what bioinformatic tools have

been developed to characterize the clinical phenotype of disease (e.g., age of onset,

mode of inheritance, frequency, and severity)? What animal models of disease have

been developed? We will explore orthologs of human disease genes in model organisms

such as fungi and lower metazoans. Finally, we will consider databases that have been

established to provide general information on human disease.

Garrod’s View of Disease
Sir Archibald Garrod (1857–1936) made important contributions to our under-

standing of the nature of human disease. In a 1902 paper, Garrod described his

studies of alkaptonuria, a rare inherited disorder. In alkaptonuria, the enzyme homo-

gentisate 1,2-dioxygenase (HGD) is defective or missing. As a result, the amino acids

phenylalanine and tyrosine cannot be metabolized properly, and a metabolite (homo-

gentisic acid) accumulates. This metabolite oxidizes in urine and turns dark. Garrod

considered this phenotype from the perspective of evolution, noting the influence of

FIGURE 20.1. Bioinformatics re-
sources for the study of human
disease are organized at a variety
of levels.
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locus-specific mutation databases

databases of gene expression (Chapter 8)

UniProt; databases of mutant proteins

databases of peroxisomal, mitochondrial, lysosomal disease

disease databases focused on blood, neuromuscular, retinal,
cardiovascular, gastrointestinal, other

databases with information on age of onset; frequency;
severity; malformations; tissue involvement; other features

human disease orthologs in various deuterostomes (mouse, sea urchin),
protostomes (fly, worm), plants, other species
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The OMIM entry for alkaptonuria

is #20355; the # sign is defined in

Table 20.10 below. The RefSeq

accession of HGD is NP_000178.

The gene is localized to chromo-

some 3q21–q23. You can read

Garrod’s (1902) paper on alkap-

tonuria online as web document

20.1 at Q http://www.bioinfbook.

org/chapter20.
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natural selection on chemical processes. Variations in metabolic processes between

individuals might include those changes that cause disease.

Garrod had the insight that for each of the rare disorders he studied, the disease

phenotype reflects the chemical individuality of the individual. He further realized

that this trait was inherited—he proposed that alkaptonuria is transmitted by

recessive Mendelian inheritance.

At the time, it was thought that most diseases were caused by external forces such

as bacterial infection. In studying this and related recessive disorders (such as cysti-

nuria and albinism) he instead proposed that the manifestation of the disease is

caused by an inherited enzyme deficiency or biochemical error (Scriver and

Childs, 1989). He described this point of view in his first book, Inborn Errors of

Metabolism (1909). Garrod wrote in 1923 (cited in Scriver and Childs, 1989, p. 7):

“If it may be granted that the individual members of a species vary from the normal of the

species in chemical structure and chemical behaviour, it is obvious that such variations or

mutations are capable of being perpetuated by natural selection; and not a few biologists of

the present day assign to chemical structure and function a most important share in the evol-

ution of species . . . Very few individuals exhibit such striking deviations from normal metab-

olism as porphyrinurics and cystinurics show, but I suspect strongly that minimal deviations

which escape notice are almost universal. How else can be explained the part played by heredity

in disease? There are some diseases which are handed down from generation to generation . . .

which tend to develop in later childhood and early adult life . . . It is difficult to escape the con-

clusion that although these maladies are not congenital, their underlying causes are inborn

peculiarities.”

Garrod thus presented a new view of how inborn factors cause disease. He

worked at a time before Beadle and Tatum offered the hypothesis that one gene

encodes one protein, and Garrod never used the word “gene.” But we now under-

stand that the “inborn peculiarities” he described are mutated genes (or other chro-

mosomal loci). A main conclusion of his work is that chemical individuality, achieved

through genetic differences, is a major determinant of human health and disease.

Although the phrase “chemical individuality” is not used often today, the concept

is of tremendous interest in the field of pharmacogenomics. Not everyone who is

exposed to an infectious agent gets sick, and it is imperative to understand why.

Not everyone who takes a drug responds in a similar way.

Garrod further developed these ideas in a second book, Inborn Factors in Disease

(1931). Here he addressed the question of why certain individuals are susceptible to

diseases—whether the disease is clearly inherited or whether it derives from another

cause such as an environmental agent. He argued that chemical individuality predis-

poses us to disease. Every disease process is affected by both internal and external

forces: our genetic complement and the environmental factors we face. In some

cases, such as inborn errors of metabolism, genetic factors have a more prominent

role. In other cases, such as multifactorial disease, mutations in many genes are

responsible for the disease. And in infectious disease, genes also have an important

role in defining the individual’s susceptibility and bodily response to the infectious

agent. We will next proceed to discuss these various kinds of disease.

Classification of Disease
We will describe several general categories of disease below, such as single gene

disorders, complex disorders, chromosomal disorders, and environmental disease.

A trait is a characteristic or prop-

erty of an individual that is the

outcome of the action of a gene or

genes.
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From the perspective of bioinformatics, we are interested in understanding the mech-

anism of disease in relation to genomic DNA, genes, and their gene products. We are

further interested in the consequences of mutations on cell function and on the com-

parative genomics of disease-causing genes throughout evolution. This perspective is

complementary to and yet quite different from that of the clinician or epidemiologist.

For any study of disease a classification system is useful, and many approaches are

available. One is to describe mortality statistics. These data (based on death certifi-

cates in the United States from the year 2005) include rankings of the cause of

death (Table 20.2). This information is helpful in identifying the most common dis-

eases, and projections of the most common causes of death in the future have been

made (Fig. 20.2). According to the World Health Organization the four leading

causes of death globally in 2030 are projected to be ischemic heart disease, stroke,

HIV/AIDS, and chronic obstructive pulmonary disease (Mathers and Loncar,

2006). Tobacco is projected to kill 50% more people than HIV/AIDS in 2015 and

it will be responsible for 10% of all deaths.

Another approach to describing the scope of human disease is to measure the

global burden of disease in terms of the percentage of affected individuals or in

terms of disability-adjusted life years (DALYs) (Lopez et al., 2006). Worldwide, non-

communicable diseases such as depression and heart disease are rapidly replacing

infectious diseases and malnutrition as the leading causes of disability and premature

death (Murray and Lopez, 1996). The World Health Organization ranks the leading

worldwide causes of disease burden (in DALYs) for males and females age 15 years

and older. For the year 2002, unipolar depressive disorders ranked first in females

(and fourth in males) while HIV/AIDS ranked first in males (and second in females).

TABLE 20-2 Leading Causes of Death in the United States (Year 2005)

Rank Cause of Death Number
Percent of All

Deaths

– All causes 2,448,017 100.0

1 Diseases of the heart 652,091 26.6

2 Malignant neoplasms 559,312 22.8

3 Cerebrovascular diseases 143,579 5.9

4 Chronic lower respiratory diseases 130,933 5.3

5 Accidents (unintentional injuries) 117,809 4.8

6 Diabetes mellitus 75,119 3.1

7 Alzheimer’s disease 71,599 2.9

8 Influenza and pneumonia 63,001 2.6

9 Nephritis, nephrotic syndrome, and nephrosis 43,901 1.8

10 Septicemia 34,136 1.4

11 Intentional self-harm (suicide) 32,637 1.3

12 Chronic liver disease and cirrhosis 27,530 1.1

13 Essential (primary) hypertension and hypertensive
renal disease

24,902 1.0

14 Parkinson disease 19,544 0.8

15 Assault (homicide) 18,124 0.7

– All other causes (residual) 433,800 17.7

Cause of death is based on the International Classification of Diseases, Tenth Revision, 1992.
Source: National Vital Statistics Reports, 56(10), January 2008 (Q http://www.cdc.gov/nchs/data/nvsr/
nvsr56/nvsr56_10.pdf).

The data in Table 20.2 are avail-

able from the National Center for

Health Statistics. Their website is

at Q http://www.cdc.gov/nchs/.

A summary of the Global Burden

of Disease report is available at

Q http://www.who.int/whr/
2003/en/whr03_en.pdf. DALYs

are calculated by adding the years

of life lost through all deaths in a

year plus the years of life expected

to be lived with a disability for all

cases beginning in that year. The

DALYs metric was introduced in

the 1990 Global Burden of

Disease study (Murray and Lopez,

1996).
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A far more extensive listing of morbidity data is provided by the International

Statistical Classification of Diseases and Related Health Problems (abbreviated ICD).

This resource, published by the World Health Organization (WHO), is used to classify

diseases (Table 20.3). It provides a standard for coding patients at most hospitals.

Mortality statistics list the most common diseases. We are interested in the full

spectrum of disease, including rare diseases. These are defined as diseases affecting

fewer than 200,000 people. In the United States, an estimated 25 million individuals

(almost 10% of the population) suffer from one or more of 6000 rare diseases.

NIH Disease Classification: MeSH Terms
The National Library of Medicine (NLM) has developed Medical Subjects Heading

(MeSH) terms as a unified language for biomedical literature database searches.
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FIGURE 20.2. Projected global
deaths for selected causes of death,
2002–2030. From the World
Health Organization (World
Health Statistics 2007, online
at Q http://www.who.int/whosis/
whostat2007.pdf). Used with
permission.

TABLE 20-3 ICD Classification System
1. Infectious and parasitic diseases

2. Neoplasms

3. Endocrine, nutritional, and metabolic diseases and immunity disorders

4. Diseases of the blood and blood-forming organs

5. Mental disorders

6. Diseases of the nervous system and sense organs

7. Diseases of the circulatory system

8. Diseases of the respiratory system

9. Diseases of the digestive system

10. Diseases of the genitourinary system

11. Complications of pregnancy, childbirth, and the puerperium

12. Diseases of the skin and subcutaneous tissue

13. Diseases of the musculoskeletal system and connective tissue

14. Congenital anomalies

15. Certain conditions originating in the perinatal period

16. Symptoms, signs, and ill-defined conditions

17. Injury and poisoning

Source: From ICD-9 as described in the KEGG database, Q http://www.genome.ad.
jp and http://icd9 cm.chrisendres.com/.

The WHO ICD website is at

Q http://www.who.int/
classifications/icd/en/. This

resource was begun in 1893 as the

International List of Causes of

Death.

The Office of Rare Diseases at the

National Institutes of Health

(NIH) has a website that serves as

a portal to information on rare

diseases (Q http://rarediseases.

info.nih.gov/).
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The 2003 MeSH term system includes 23 disease categories (Fig. 20.3). PubMed at

NCBI also uses this classification system.

MeSH terms are a controlled vocabulary used to index MEDLINE (and

PubMed, which is based on MEDLINE). A search for the term “Rett Syndrome”

at the NLM MeSH site shows the hierarchical tree structure of the MeSH terms:

Rett syndrome is listed separately under categories such as mental retardation,

neurodegenerative disorders, and inborn genetic diseases.

FOUR CATEGORIES OF DISEASE

What kinds of diseases afflict humans? We can describe four main categories: single

gene (monogenic) disease, complex disease, genomic disease, and environmental

disease (Fig. 20.4). These categories are interconnected in many ways, as we will dis-

cuss next. Consistent with Garrod’s perspective, the pathophysiology of any disease

may be considered multigenic. Two individuals who are exposed to the same disease-

causing stimulus—whether it is a virus or lead paint or a mutated gene—may have

FIGURE 20.3. The Medical Sub-
ject Heading (MeSH) term system
at the National Library of
Medicine includes 16 major cat-
egories (2008 version). The disease
category further includes the 23
headings shown here. See Q http://
www.nlm.nih.gov/mesh/.

We will discuss Rett syndrome

below. You can access the MeSH

system at NLM (Q http://www.

nlm.nih.gov/mesh/mesh) or at

NCBI (from PubMed, select

MeSH terms on the left sidebar,

then enter a query such as

“disease.”

Pathology is the study of the nature

and cause of disease.

Pathophysiology is the study of

how disease alters normal physio-

logical processes.
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entirely different reactions. One person may become ill, while the other is unaffected.

There is a large genetic component to the responses to any disease-causing condition.

Monogenic Disorders
Our perspectives on the molecular nature of disease have evolved in recent decades.

Previously, geneticists recognized a dichotomy between simple traits and complex

traits. More recently, all traits have come to be appreciated as part of a continuum.

Simple traits are transmitted following the rules of Mendel. Several monogenic dis-

orders are listed in Table 20.4. As an example of a single-gene disorder, consider

sickle cell anemia (Box 20.1). In 1949 Linus Pauling and colleagues described

the abnormal electrophoretic behavior of sickle cell hemoglobin (Pauling et al.,

1949). It was subsequently shown that a single amino acid substitution accounts

for the abnormal behavior of the sickle cell and is the basis of sickle cell anemia.

This is a single-gene disorder that is inherited in an autosomal recessive fashion.

Single-gene disorders tend to be rare in the general population. Note that sickle

cell disease is the outcome of having a particular mutant hemoglobin protein.

While there are common features of sickle cell disease, such as sickling of the red

environmental
disease

single-gene
disorders

complex
disorders

genomic 
disorders

Mendelian disorders              11/1000
   autosomal dominant 6/1000
   autosomal recessive 3/1000
   X-linked recessive  1/1000
   X-linked mental retardation   1/1000

Multigenic disorders  ~630/1000
   congenital anomalies 30/1000
   CNS disorders  100/1000
   cardiovascular  500/1000

Examples: 
   Malnutrition
   Lead poisoning
   Traumatic injury
   Infectious disease

Examples:
   Trisomy 21 (Down syndrome)
   Monosomy
   Segmental aneuploidy
   Microdeletion syndromes
   Microduplication syndromes

disease
phenotype

FIGURE 20.4. Human disease can be categorized based on the cause. These include single-gene
disorders (mutations in a single gene; examples include phenylketonuria and sickle cell anemia);
complex disorders (having mutations in two or more genes, such as cancer or schizophrenia);
genomic disorders (such as Down syndrome, involving chromosomal abnormalities); and
environmental disease (including infectious disease). The values for the incidence of these dis-
orders are only approximate estimates. The four quadrants of the circle are not intended to reflect
incidence. Overall, complex disorders are far more common than single-gene disorders. However,
it is far easier to discover the genetic defect that underlies single-gene disorders. For all categories
of disease, the pathophysiology (i.e., the disease-altered physiological processes) depends on the
influence of many genetic and environmental factors.

We examined the structure of

normal beta globin (HBB) as well

as the most common mutated

form (HBS) in Chapter 11. The

E6V substitution (valine in place

of glutamate as the sixth amino

acid) adds a hydrophobic patch to

the protein, promoting the aggre-

gation of globin molecules and the

formation of sickle-shaped red

blood cells. Sickle cell anemia is

unusually common for a single-

gene disorder. This is presumably

because of the protection it con-

fers to heterozygotes exposed to

malaria (Box 20.1). You can read
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BOX 20.1
Sickle Cell Anemia and Thalassemias

Our cells depend on oxygen to live, and blood transports oxygen throughout the

body. However, oxygen is a hydrophobic molecule that requires the carrier protein

hemoglobin to transport it through blood. (The homologous protein myoglobin

transports oxygen in muscle cells.) Adult hemoglobin is composed of two a

chains and two b chains. Other a- and b-type chains are used at different

developmental stages, such as a2/g2 in fetal hemoglobin and a2/12 in embryonic

hemoglobin. Mutation in the b chain (NM_000518 and NP_000509) on

chromosome 11p15.5 causes sickle cell anemia (OMIM 603903). Red blood cells

in patients can assume a curved, “sickled” appearance that reflects hemoglobin

aggregation in the presence of low oxygen levels.

Sickle cell anemia is the most common inherited blood disorder in the United

States, affecting 1 in 500 African Americans. It is inherited as an autosomal

recessive disease. Heterozygotes (individuals with one normal copy of

hemoglobin beta and one mutant copy; the HBS mutation) are somewhat

protected against the malaria parasite, Plasmodium falciparum. This may be

because normal red blood cells infected by the parasite are destroyed. Thus

there is a selective evolutionary pressure to preserve the HBS mutation in the

population that is at risk for malaria.

Red blood cells closely regulate the proportions of a and b globin that are

produced, as well as the heme moiety that is inserted into the globin tetramer

to form hemoglobin. The absence of the b chain causes beta-zero-thalassemia,

while the production of reduced amounts of b globin causes beta-plus-

thalassemia. Reduced levels of a globin cause alpha thalassemias. Thalassemia

can cause severe anemia in which hemoglobin levels are low.

TABLE 20-4 Examples of Monogenic Disorders
Mechanism Disorder Frequency

Autosomal
dominant

BRCA1 and BRCA2 breast cancer 1 in 1000 (1 in 100 for
Ashkenazim)

Huntington chorea 1 in 2500

Neurofibromatosis I 1 in 3000

Tuberous sclerosis 1 in 15,000

Autosomal
recessive

Albinism 1 in 10,000

Sickle cell anemia 1 in 655 (U.S. African
Americans)

Cystic fibrosis 1 in 2500 (Europeans)

Phenylketonuria 1 in 12,000

X linked Hemophilia A 1 in 10,000 (males)

Glucose 6-phosphate dehydrogenase
deficiency

Variable; up to 1 in 10 males

Fragile X syndrome 1 in 1250 males

Color blindness 1 in 12 males

Rett syndrome 1 in 20,000 females

Adrenoleukodystrophy 1 in 17,000

Source: Adapted from Beaudet et al. (2001). Used with permission.
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blood cells, there is not a single disease phenotype. The pleiotrophic phenotype is

caused by the influence of other genes.

Rett syndrome is another example of a single-gene disorder (Box 20.2). This

disease affects girls almost exclusively. While they are apparently born healthy, Rett

syndrome girls acquire a constellation of symptoms beginning at 6 to 18 months of

age. They lose the ability to make purposeful hand movements, and they typically

exhibit hand-wringing behavior. Whatever language skills they have acquired are

lost, and they may display autistic-like behaviors. Rett syndrome is caused by

Following are web resources for sickle cell disease:

Resource URL

NIH fact sheet Q http://www.nhlbi.nih.gov/health/dci/
Diseases/Sca/SCA_WhatIs.html

Genes and Disease (NCBI) Q http://www.ncbi.nlm.nih.gov/disease/sickle.

html

Sickle Cell Disease

Association of America

Q http://www.sicklecelldisease.org/

BOX 20.2
Rett Syndrome

Rett syndrome (RTT; OMIM #312750) is a progressive developmental

neurological syndrome that occurs almost exclusively in females (Hagberg

et al., 1983; Johnston et al., 2005; Percy, 2008). Affected females are

apparently normal through pre- and perinatal development, following which

there is a developmental arrest. This is accompanied by decelerated head and

brain growth, loss of speech and social skills, severe mental retardation, truncal

ataxia, and characteristic hand-wringing motions. Prominent neuropathological

features include reductions in cortical thickness in multiple cerebral cortical

regions, reduced neuronal soma size, and dramatically decreased dendritic

arborization (Jellinger et al., 1988; Bauman et al., 1995).

Mutations in the methyl-CpG-binding protein 2 (MECP2) gene located in

Xq28 have been found in many cases of RS (Amir et al., 1999; Bird, 2008).

MeCP2 binds to methylated CpG dinucleotides throughout the genome and is

involved in methylation-dependent repression of gene expression via the

recruitment of the corepressor mSin3A, and the chromatin remodeling histone

deacetylases HDAC1 and HDAC2. The expression of MeCP2 mRNA in many

tissues and its interaction with regulatory DNA elements in multiple

chromosomes suggest that MeCP2 is a global repressor of gene expression

(Nan et al., 1997). DNA methylation-dependent repression of gene expression

has been associated with genetic imprinting, X-chromosome inactivation,

carcinogenesis, and tissue-specific gene expression (Razin, 1998; Ng and

Bird, 1999).

Several groups generated mouse models of RTT. Guy et al. (2007) in Adrian

Bird’s laboratory showed that knockout of RTT causes a neurological phenotype

and that, remarkably, this phenotype can be reversed by subsequent conditional

activation of MECP2 expression. Even functional changes, such as a reduction in

the Pauling et al. (1949) article

online at Q http://profiles.nlm.

nih.gov/MM/B/B/R/L/. The

National Library of Medicine

(NLM) offers online access to all

the publications of several promi-

nent biologists through its Profiles

in Science site (Q http://profiles.

nlm.nih.gov/). The scientists

include Linus Pauling and other

Nobel Prize laureates such as

Barbara McClintock, Julius

Axelrod, and Oswald Avery.
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mutations in the gene encoding MeCP2, a transcriptional repressor that binds

methylated CpG islands (Amir et al., 1999) (see Chapter 19). It is not yet known

why mutations affecting a transcriptional repressor that functions throughout the

body cause a primarily neurological disorder.

Although Rett syndrome is a disease caused by a mutation in a single gene, it

exemplifies the extraordinary complexity of human disease and even monogenic

disorders:

† The disease occurs primarily in females. It was thought that this could be

explained by the location of the MECP2 gene on the X chromosome: a

mutation in this gene might be lethal for males in utero (having only a

single X chromosome), while females might have the disease phenotype

because they have one normal and one mutant copy of the gene. Instead,

the more likely explanation is that most mutations occur in fathers. The

father is healthy, but a new germline mutation arises and is passed to daugh-

ters. Thus all sons (XY) receive a normal Y chromosome from the father,

while daughters receive a mutant copy of the X chromosome from the father.

† After the discovery that mutations in MECP2 cause Rett syndrome, it was dis-

covered that some males with mental retardation also have mutations in this

gene (Hammer et al., 2002; Geerdink et al., 2002; Zeev et al., 2002).

However, the phenotype of mutations in the male is distinctly different than

in females, often involving severe neonatal encephalopathy. In males, having

a single X chromosome, the mutant gene is expected to adversely affect

virtually every cell in the body. In contrast, females undergo random

X chromosome inactivation: Having two copies of the X chromosome,

every cell expresses only one chromosome (either the maternal or paternal

chromosome, randomly selected early in development). Thus, females are a

mosaic in terms of X chromosome allelic expression, and a Rett syndrome

female typically has on average 50% normal cells throughout her body.

† While Rett syndrome is caused by mutations in a gene encoding a transcrip-

tional repressor, it is almost certain that the consequence of this mutation

involves subsequent effects on the expression of many other genes. Thus,

like any other monogenic disorder, many other genes are involved and may

influence the phenotype of the disease. Huda Zoghbi and colleagues even

showed that MECP2 can function as both a repressor and an activator of trans-

cription in a mouse model (Chahrour et al., 2008).

† Two females having the identical mutation in MECP2 may have entirely

different phenotypes (in terms of severity of the disease). There are two

main explanations for this observation, which is seen for many other single-

gene disorders as well. (1) There may be modifier genes that influence the

disease process (Dipple and McCabe, 2000). Modifier genes have been

identified for patients with sickle cell anemia, adrenoleukodystrophy, cystic

fibrosis, and Hirschsprung disease. Most (if not all) apparently monogenic

hippocampal long-term potentiation (a strengthening of synapses in a brain

region implicated in memory consolidation), were improved upon activation.

This suggests that it is at least conceivable for the human disease to one day be

reversed.
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disorders are complex. (2) A variety of epigenetic influences may drastically

affect the clinical phenotype. For example, the methylation status of genomic

DNA could determine the molecular consequences of mutations in

MECP2. X chromosome inactivation is sometimes skewed, such that the

phenotype is more severe (if the X chromosome copy with mutant MECP2

is preferentially expressed) or less severe (if the healthy X chromosome is

selectively expressed).

Complex Disorders
Complex disorders such as Alzheimer’s disease and cardiovascular disease are caused

by defects in multiple genes. These disorders are also called multifactorial, reflecting

that they are expressed as a function of both genetic and environmental factors. In the

United States, chronic diseases such as heart disease, senile dementia, cancer, and

diabetes are among the leading causes of death and disability. Other examples are

asthma, autism (Box 20.3), depression, diabetes, high blood pressure, obesity, and

osteoporosis. These all have some degree of genetic basis.

In contrast to single-gene disorders, complex disorders are very common in the

population (Todd, 2001). These traits do not segregate in a simple, discrete,

Mendelian manner. It is likely that the vast majority of human diseases involve mul-

tiple genes. Complex disorders are characterized by the following features:

† Multiple genes are thought to be involved. It is the combination of mutations in

multiple genes that defines the disease. In single-gene disorders, even if there

are modifying loci, one gene has a dramatic influence on the disease phenotype.

† Complex diseases involve the combined effect of multiple genes, but they also

are caused by both environmental factors and behaviors that elevate the risk of

disease.

BOX 20.3
Autism: Complex Disorder of Unknown Etiology

Autism (OMIM %209850) is a lifelong neurological disorder with onset before

three years of age (Kanner, 1943; reviewed in Bailey et al., 1996; Ciaranello and

Ciaranello, 1995; Rapin and Tuchman, 2008; Lintas and Persico, 2009). It is

characterized by a triad of deficits: (1) an individual’s failure to have normal

reciprocal social interaction, (2) impaired language or communication skills, and

(3) restricted, stereotyped patterns of interests and activities. Autistic children’s

play is abnormal beginning in infancy, and there is a notable lack of imaginative

play. Approximately 30% of autistic children appear to develop normally but then

undergo a period of regression in language skills between 18 and 24 months of

age. In addition, cognitive function may be impaired. Seventy-five percent of

autistic individuals have mental retardation. Approximately 10% of autistic

individuals have savant-like superior abilities in areas such as mathematical

calculation, rote memory, or musical performance. Autism is accompanied by

seizures; by adulthood about one-third of autistic individuals will have had at least

two unprovoked seizures (Olsson et al., 1988; Volkmar and Nelson, 1990).

A quantitative trait locus (QTL) is

an allele that contributes to a

multifactorial disease.
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† Complex diseases are non-Mendelian: they show familial aggregation but not

segregation. For example, autism is a highly heritable condition (if one iden-

tical twin is affected, there is a very high probability that the other is also

affected).

† Susceptibility alleles have a high population frequency; that is, complex

diseases are generally more frequent than single-gene disorders. Sickle cell

anemia is unusually frequent in the African American population, for a

single-gene disorder, but the heterozygous condition confers a selective

advantage (see Box 20.1 above).

† Susceptibility alleles have low penetrance. Penetrance is the frequency with

which a dominant or homozygous recessive gene produces its characteristic

phenotype in a population. At the extremes, it is an all-or-none phenomenon:

a genotype is either expressed or it is not. In complex disorders, partial pene-

trance is common.

Genomic Disorders
Large-scale chromosomal abnormalities are extremely common causes of disease in

humans. Lupski (1998) has defined genomic disorders as those changes in the struc-

ture of the genome that cause disease. Some genomic disorders involve large-scale

changes such as aneuploidies in which a chromosomal copy is gained (trisomy) or

lost (monosomy). More rarely, two copies are gained (tetrasomy) or lost (nullsomy).

Trisomies 13 (Patau syndrome), 18 (Edwards syndrome), and 21 (Down syndrome)

In the 1990s, the prevalence of autism was estimated to be between 0.2 and

2 per 1000 individuals (Fombonne, 1999; Gillberg and Wing, 1999). More

recently the prevalence has been estimated to be about 1:150. However, the

definition of autism has broadened considerably in recent years, with a large

number of patients formerly defined as having mental retardation now

diagnosed as having autism or autism spectrum disorder. About three to four

times more males are affected than females (Fombonne, 1999).

The cause of autism is unknown, but there is strong evidence that the disorder

is genetic (Szatmari et al., 1998; Turner et al., 2000). The concordance between

monozygotic twins is approximately 60%, and .90% if coaffected twins are

defined as having classically defined autism or more generalized impairments in

social skills, language, and cognition (Bailey et al., 1995). Autism has a far

stronger genetic basis than most other common neuropsychiatric disorders such

as schizophrenia or depression. Many genetic linkage studies have implicated

genes that are significantly associated with autism, and studies of individuals

having translocations or deletions have also led to the identification of genes

harboring mutations. These genes include neuroligins 3 and 4, SHANK3, and

neurexin 1. Other studies have suggested that individuals with autism have

increased numbers of copy number variants. Ramocki and Zoghbi (2008)

discuss a variety of chromosomal loci which when either duplicated or deleted

cause symptoms involving mental retardation and autism. Known medical

conditions affecting the central nervous system, such as fragile X syndrome and

seizure disorder, may account for 10–30% of autistic cases (Barton and

Volkmar, 1998). Indeed, autism may be considered a label for a large collection

of distinct disorders, each involving a related phenotype.

Penetrance is the frequency of

manifestation of a hereditary con-

dition in individuals. Having the

genotype for a disease does not

imply that the phenotype will

occur, especially if multiple genes

have modifying effects on the

presentation of the phenotype.

An aneuploidy is the condition of

having an abnormal number of

chromosomes. Segmental aneu-

ploidy affects a portion of a

chromosome.

852 HUMAN DISEASE



are the only autosomal trisomies that are compatible with life (Table 20.5). Of

these, trisomies 13 and 18 are typically fatal in the first years of life. A variety of

X chromosome aneuploidies are compatible with life.

Many developmental abnormalities involve a portion of a chromosome. Some

involve cytogenetically detectable changes and span millions of base pairs. If they

are too small to be cytogenetically visible (e.g., smaller than three megabases) they

are usually referred to as cryptic changes. Examples of microdeletion syndromes

include Cri-du-chat syndrome, Angelman syndrome, Prader-Willi syndrome,

Smith-Magenis syndrome, and various forms of mental retardation that result

from the gain (microduplication) or loss (microdeletion) of chromosomal

regions. Table 20.6 lists examples of genomic disorders that are inherited in a

Mendelian fashion and involve only one or several genes (Stankiewicz and Lupski,

2002). Table 20.7 provides a similar list of common structural variations that are

associated with disease, reported by the Human Genome Structural Variation

Working Group (2007). That group reported an initiative to characterize structural

variation in phenotypically normal individuals using fosmid libraries.

We considered several mechanisms by which nonallelic homologous recombina-

tion causes deletions or duplications of chromosomal segments in Chapter 16

(see Fig. 16.25). Figure 20.5 shows six possible consequences of such events, such

as loss of normal gene function, the fusion of two genes, or the exposure of a

recessive allele.

Chromosomal alterations may be considered to occur along a spectrum from

having little or no adverse effects to causing disease (Fig. 20.6). Copy number var-

iants (described in Chapters 16 and 19) may have no phenotypic consequences

and may be thought of as chromosomal alterations (in contrast to chromosomal

abnormalities). Some copy number variants may increase disease susceptibility,

perhaps contributing to common complex (multigenic) disorders. Some common

and relatively benign traits such as color blindness can be attributed to copy

number variants. At the extreme end of the spectrum, chromosomal changes may

cause or contribute to a variety of genomic disorders, including aneuploidies, micro-

deletion syndromes, and microduplication syndromes. Genomic disorders are also

notably common in cancers, with occurrence of amplifications and deletions of

loci. We will discuss cancer in more detail below.

Chromosomal disorders are an extremely common feature of normal human

development. Humans have a very low fecundity even relative to other mammals,

TABLE 20-5 Frequency of Chromosomal Aneuploidies among Liveborn Infants
Abnormalities Disorder Frequency

Autosomal Trisomy 13 (Patau syndrome) 1 in 15,000

Trisomy 18 (Edwards syndrome) 1 in 5000

Trisomy 21 (Down syndrome) 1 in 600

Sex chromosome Klinefelter syndrome (47,XXY) 1 in 700 males

XYY syndrome (47,XYY) 1 in 800 males

Triple X syndrome (47,XXX) 1 in 1000 females

Turner syndrome (45,X or 45X/46XX or 45X/
46,XY or isochromosome Xq)

1 in 1500 females

Source: From Beaudet et al. (2001). Used with permission.

The DatabasE of Chromosomal

Imbalance and Phenotype in

Humans using Ensembl

Resources (DECIPHER) is a

major database resource for geno-

mic disease. It is available at

Q http://www.sanger.ac.uk/
PostGenomics/decipher/.
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with perhaps 50% to 80% of all human conceptions resulting in miscarriage.

This low fecundity is primarily due to the common occurrence of chromosomal

abnormalities (Wells and Delhanty, 2000; Voullaire et al., 2000):

† A woman who has already had one child (and thus is of established

fertility) has only a 25% chance of achieving a viable pregnancy in any given

menstrual cycle.

† 52% of all women who conceive have an early miscarriage.

† Following in vitro fertilization, pregnancies that are confirmed positive in the

first two weeks result in miscarriage 30% of the time.

† Over 60% of spontaneous abortions that occur at 12 weeks gestation or earlier

are aneuploid, suggesting that early pregnancy failures are likely due to lethal

chromosome abnormalities.

Environmentally Caused Disease
Environmental diseases are extremely common. We may consider two types.

(1) Infectious diseases are caused by a pathogen (such as a virus, bacterium, proto-

zoan, fungus, or nematode). From birth to old age, infectious disease is the leading

cause of death worldwide. We described the most common diseases caused by viruses

(e.g., Table 14.2) and by bacteria (Table 15.7), and we discussed fungal pathogens

(Chapter 17) and a variety of protozoan pathogens (Chapter 18). (2) Many diseases

or other conditions are not caused by an infectious agent. These include malnutrition

TABLE 20-7 Common Structural Polymorhisms and Disease

Gene Type Locus Size (kb) Phenotype

Copy
Number
Variation

UGT2B17 Deletion 4q13 150 Variable testosterone
levels, risk of prostate
cancer

0–2

DEFB4 VNTR 8p23.1 20 Colonic Crohn’s disease 2–10

FCGR3 Deletion 1q23.3 .5 Glomerulonephritis,
systemic lupus
erythematosus

0–14

OPN1LW/
OPN1MW

VNTR Xq28 13–15 Red/green color
blindness

0–4/0–7

LPA VNTR 6q25.3 5.5 Altered coronary heart
disease risk

2–38

CCL3L1/
CCL4L1

VNTR 17q12 Not known Reduced HIV infection;
reduced AIDS
susceptibility

0–14

RHD Deletion 1p36.11 60 Rhesus blood group
sensitivity

0–2

CYP2A6 Deletion 19q13.2 7 Altered nicotine
metabolism

2–3

Abbreviation: VNTR, variable number tandem repeats.
Source: Human Genome Structural Variation Working Group (2007). Used with permission.

About 8% of all children in the

United States have blood levels

that are defined as “alarming,”

according to the Centers for

Disease Control and Prevention.

See Q http://www.cdc.gov/nceh/
lead/.
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(a) gene dosage

gene interruption

gene fusion

position effect

unmasking recessive allele
or functional polymorphism

transvection effect

(b)

(c)

(d)

(e)

(f)

wild-type copy

hemizygous deletion

wild-type copy

wild-type copy

wild-type copy

hemizygous expression of
mutant gene

impaired communication
between alleles

* *or

hemizygous loss of 
regulatory element

FIGURE 20.5. Models for the molecular mechanisms of genomic disorders. For each, a hemizy-
gous deletion is depicted (i.e., loss of one of the normal two copies of an allele) in brackets, and the
two chromosomal homologs are indicated by horizontal lines. Note that duplications also poten-
tially cause disease, and also, homozygous deletions (resulting in zero copies of a gene) typically
have more severe consequences than hemizygous deletions. (a) Gene dosage effect in which one
(of two) copies is deleted. Genes vary in their dosage sensitivity. (b) Gene interruption. A
rearrangement breakpoint interrupts a gene. (c) Gene fusion in which two genes (and/or regu-
latory elements such as enhancers or promoters) are fused following a deletion. (d) Position
effect: the expression or function of a gene near a breakpoint is disrupted by loss of a regulatory
element. (e) Unmasking a recessive allele. The deletion results in hemizygous expression of a
recessive mutation (asterisk) in a gene or a regulatory sequence. (f) Transvection, in which a
deletion impairs communication between two alleles. Genes are indicated as red (or gray)
filled ovals, while regulatory sequences are smaller ovals. Adapted from Lupski and
Stankiewicz (2005). Used with permission.

FIGURE 20.6. Spectrum of effects
of copy number variants. At one
extreme, copy number variants
cause genomic diseases such as
microdeletion and microduplication
syndromes. At the other extreme,
copy number variants have no
known phenotypic effects and occur
in the apparently normal popu-
lation. For example, many of the
270 HapMap individuals (who are
defined as normal although every-
one is susceptible to some diseases)
have hemizygous and homozygous
deletions as well as extended tracts
of homozygosity. Adapted from
Lupski and Stankiewicz (2005).
Used with permission.
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(whether maternal, fetal, or in an independent individual), poisoning by toxicants

such as lead or mercury, or injury.

Other Categories of Disease
While we have presented four disease categories (monogenic, complex, genomic, and

environmental), these are interrelated categories. If one examines four children

who have the same highly elevated blood lead levels due to lead poisoning, they

may display entirely different responses. One might be aggressive, another mentally

retarded, another hyperactive, and another might appear unaffected. Four individ-

uals exposed to the same pathogen might have different responses. It is likely that

the genetic background has a key role in responses to environmental insults.

Similarly, four children who have the identical single base pair mutation in the

ABCD1 gene might have entirely different severities of adrenoleukodystrophy, or

the identical mutation in MECP2 may cause very different forms of Rett syndrome.

Modifier genes are likely to be involved (highlighting the concept that monogenic

disorders may be caused primarily by the abnormal function of a single gene yet

they always involve multiple genes), and environmental factors are certain to have

large roles in genetic diseases.

There are other ways of classifying basic disease types. For example, particular

ethnic groups or other discrete groups have high susceptibility to some genetic

diseases. Examples include the following:

† Tay-Sachs disease is prevalent among Ashkenazi Jews.

† About 8% of the African American population are carriers of a mutant

HBB gene.

† Males rather than females are susceptible to Alport disease, male pattern

baldness, and prostate cancer.

† Cystic fibrosis affects �30,000 people in the United States with �12 million

carriers, and is the most common fatal genetic disease in that country.

While it affects all groups, Caucasians of northern European ancestry are

particularly susceptible.

Another basis for classifying disease is according to tissue type, organ system, or

subcellular organelle. Eukaryotic cells are organized into organelles, such as the

nucleus, endoplasmic reticulum, Golgi complex, peroxisome, and mitochondrion.

Each organelle serves a specialized function, gathering particular protein products

to form enzymatic reactions necessary for cell survival, separating metabolic

processes, and segregating harmful products. We have considered human disease

from the perspective of genes and gene products. We can also examine disease in

the context of the higher organizational level of organelles and pathways.

Let us consider the mitochondrion. This organelle was described as the site of

respiration in the 1940s, and mitochondrial DNA was first reported by Nass and

Nass (1963). But it was not until 1988 that the first disease-causing mutations in

mitochondria were described (Wallace et al., 1988a, 1988b; Holt et al., 1988).

Today, over 100 disease-causing point mutations have been described (reviewed in

DiMauro and Schon, 2001, 2008; Schon, 2000). The mitochondrial genome con-

tains 37 genes, and encodes 13 proteins (see Fig. 13.6). Any of these can be associ-

ated with disease. Figure 20.7 shows a morbidity map of the human mitochondrial

genome.

GIDEON (Global Infectious

Disease and Epidemiology

Network) is a commercial data-

base of infectious diseases avail-

able at Q http://www.

gideononline.com.

Most (�1500) mitochondrial

proteins are the product of nuclear

genes, and most mitochondrial

diseases are caused by mutations

in nuclear genes. Normally all

mitochondrial genomes are the

same, a condition called homo-

plasy. Pathogenic mutations may

be heteroplasmic (having a mix-

ture of normal and mutated

genomes).
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Mitochondrial genetics differs from Mendelian genetics in three main ways

(DiMauro and Schon, 2001):

1. Mitochondrial DNA is maternally inherited. Mitochondria in the embryo are

derived primarily from the ovum, while sperm mitochondria fail to enter the

egg and are actively degraded. Thus, a woman having a mitochondrial DNA

mutation may transmit it to her children, but only her daughters will further

transmit the mutation to their children.

2. While nuclear genes exist with two alleles (one maternal and one paternal),

mitochondrial genes exist in hundreds or thousands of copies per cell.

(A typical mitochondrion contains about ten copies of the mitochondrial

genome.) An individual may harbor varying ratios of normal and mutated

mitochondrial genomes. Some critical threshold of mutated mitochondrial

genomes is required before a disease is manifested.

3. As cells divide, the proportion of mitochondria having mutated genomes can

change, thus affecting the phenotypic expression of mitochondrial disorders.

Clinically, mitochondrial disorders are expressed at different times and in

different regions of the body. An extremely broad variety of diseases are

associated with mutations in mitochondrial DNA.

MITOMAP is a useful mitochondrial genome database (Ruiz-Pesini et al.,

2007). The site lists a broad variety of information on mutations and polymorphisms

in mitochondrial genomes involving all known genetic mechanisms (inversions,

insertions, deletions, etc.).

FIGURE 20.7. Morbidity map of
the human mitochondrial genome.
Abbreviations are for the genes
encoding seven subunits of complex
I (ND), three subunits of cytochrome
c oxidase (COX), cytochrome b (Cyt
b), and the two subunits of ATP
synthase (ATPase 6 and 8). 12S
and 16S refer to ribosomal RNAs;
22 transfer RNAs are identified by
the one-letter codes for the corre-
sponding amino acids. FBSN, famil-
ial bilateral striatal necrosis; KSS,
Kearns–Sayre syndrome; LHON,
Leber hereditary optic neuropathy;
MELAS, mitochondrial encephalo-
myopathy, lactic acidosis, and stroke-
like episodes; MERRF, myoclonic
epilepsy with ragged-red fibers;
MILS, maternally inherited Leigh
syndrome; NARP, neuropathy,
ataxia, retinitis pigmentosa; PEO,
progressive external ophthalmople-
gia. From DiMauro and Schon
(2001). Used with permission.
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MITOMAP is online at Q http://
www.mitomap.org/).

858 HUMAN DISEASE



DISEASE DATABASES

We next describe two major types of human disease database: (1) central databases

such as OMIM provide great breadth in surveying thousands of diseases, and

(2) locus-specific mutation databases provide great depth in reporting mutations

associated with genes, with a focus on either one specific gene and/or one disease.

Patrinos and Brookes (2005) reviewed these two types of databases, emphasizing

the great challenges associated with relating genotype to phenotype (that is, relating

data on DNA mutations to clinical phenotypes).

OMIM: Central Bioinformatics Resource for Human Disease
OMIM is a comprehensive database for human genes and genetic disorders, particu-

larly monogenic disorders (Hamosh et al., 2005; McKusick, 2007). The OMIM

database contains bibliographic entries for over 18,000 human diseases and relevant

genes. The focus of OMIM is inherited genetic diseases. As indicated by its name, the

OMIM database is concerned with Mendelian genetics. These are inherited traits

that are transmitted between generations. There is relatively little information in

the database about genetic mutations in complex disorders, or chromosomal dis-

orders. Thus, its focus is a comprehensive survey of single-gene disorders, with

richly detailed descriptions as well as links to many database resources.

We can examine OMIM using sickle cell anemia and HBB as examples of a dis-

ease and a gene implicated in a disease. OMIM can be searched from the NCBI

Entrez site, and it is linked from Entrez Gene. Within the OMIM site, there is a

search page that allows you to query a variety of fields, including chromosome,

FIGURE 20.8. Online Mendelian
Inheritance in Man (OMIM),
accessible via the NCBI website
(Q http://www.ncbi.nlm.nih.gov/
omim), allows text searches by cri-
teria such as author, gene identi-
fier, or chromosome. A search of
OMIM for “beta globin” produces
over 100 results, including entries
on that gene, related globin genes,
and diseases such as thalassemias
and sickle cell anemia.

Mendelian Inheritance in Man

(MIM) was started in 1966 by

Victor A. McKusick. The online

version OMIM became integrated

with NCBI in 1995. It is available

at Q http://www.ncbi.nlm.nih.

gov/omim/ or through Entrez at

NCBI. The director of OMIM is

Ada Hamosh of the Johns

Hopkins Medical Institutions.
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map position, or clinical information. The result of a search for “beta globin”

includes both the relevant gene (Fig. 20.8) and relevant diseases (e.g., sickle cell

anemia and thalassemias).

We can next view the entry for beta globin (Fig. 20.9), with its OMIM identifier

þ141900. Each entry in OMIM is associated with a numbering system. There is a

six-digit code in which the first digit indicates the mode of inheritance of the gene

involved (Table 20.8). The beta globin entry is preceded by a plus sign to indicate

that the the entry contains the description of a gene of known sequence and a pheno-

type. The first number (1) indicates that this gene has an autosomal locus (and the

entry was created by 1994). The entry includes bibliographic data such as available

information on an animal model for globinopathies. OMIM entries link to a gene

map, which provides a tabular listing of the cytogenetic position of disease loci.

This gene map further links to the NCBI Map Viewer and to resources for the ortho-

logous mouse gene. The OMIM morbid map also provides cytogenetic loci but is

organized alphabetically. The current holdings of OMIM, arranged by chromosome,

are given in Table 20.9.

An important feature of OMIM entries is that many contain a list of allelic

variants. Most of these represent disease-causing mutations. An example of several

allelic variant entries is shown for HBB (Fig. 20.10). These allelic variants provide

a glimpse of all the human genes that are known to contain disease-causing mutations.

Allelic variants are selected based on criteria such as being the first mutation to be dis-

covered, having a high population frequency, or having an unusual pathogenetic

mechanism. Some allelic variants in OMIM represent polymorphisms. These may

be of particular interest if they show a positive correlation with common disorders

(see below). In the particular case of HBB, hundreds of allelic variants are included.

The current holdings of OMIM based on disease mechanism are summarized

in Table 20.10. OMIM continues to be a crucial and comprehensive resource for

FIGURE 20.9. The OMIM entry
for beta globin includes the OMIM
identifier (þ141900) and a variety
of information, indexed on the side-
bar, such as clinical features, a
description of available animal
models, and allelic variants.
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information on the human genome. The database is maintained and updated by

expert curators (Hamosh et al., 2005). Many other disease databases incorporate

OMIM identifiers to provide a common reference to disease-related genes.

The Human Gene Mutation Database (HGMD) is another major source of

information on disease-associated mutations (Stenson et al., 2008). The database

is partly commercial (requiring payment for full access). George et al. (2008) com-

pared OMIM and HGMD, noting differences in their approaches (such as the

OMIM emphasis on detailed descriptions of genes and disorders, and the HGMD

emphasis on more comprehensive cataloguing of mutations). George et al. further

reviewed projects such as GeneCards (Safran et al., 2003). This is a human gene

compendium that includes a wealth of information on human disease genes.

GeneCards differs from OMIM in that it collects and integrates data from several

TABLE 20-9 Synopsis of OMIM Human Genes per Chromosome (December 2007)
Chromosome Loci Chromosome Loci Chromosome Loci

1 1025 9 390 17 622

2 655 10 374 18 151

3 572 11 659 19 684

4 400 12 555 20 260

5 498 13 191 21 134

6 630 14 328 22 265

7 466 15 307 X 579

8 368 16 418 Y 44

Note: Total number of loci: 10,575.
See Q http://www.ncbi.nlm.nih.gov/Omim/mimstats.html.

TABLE 20-8 OMIM Numbering System
OMIM
Number Phenotype

OMIM
Identifier Disorder (Example) Chromosome

1___ Autosomal dominant þ143100 Huntington disease 4p16.3

2___ Autosomal recessive %209850 Autism,
susceptibility to,
(AUTS1)

7q

3___ X-linked loci or
phenotypes

#312750 Rett syndrome Xq28

4___ Y-linked loci or
phenotypes

�480000 Sex-determining
region Y

Yp11.3

5___ Mitochondrial loci or
phenotypes

#556500 Parkinson disease —

6___ Autosomal loci or
phenotypes

#603903 Sickle cell anemia —

Note: The entries beginning 1 and 2 entered the database before May 1994; those beginning with 6 were
created after May 1994. An asterisk (�) preceding an entry indicates a gene of known sequence. A number
symbol (#) indicates a descriptive entry, usually of a phenotype. For the AUTS1 entry, the number 1 indi-
cates that this is the first listing of several autism susceptibility loci (e.g., AUTS2). A plus sign (þ) indicates
an entry with a gene of known sequence and a phenotype. A percent sign (%) indicates an entry describing
a confirmed mendelian phenotype (or phenotypic locus) for which the underlying molecular basis is not
known.
Source: Adapted from Q http://www.ncbi.nlm.nih.gov/Omim/omimfaq.html#mim_number_symbols
(January 2008).

HGMD is a project of David

Cooper and colleagues at Cardiff

University. It is available at

Q http://www.hgmd.cf.ac.uk/ac.

There are �57,000 mutation

entries for public release and

�76,000 entries for commercial

release (January 2008).

GeneCards, a project of Doron

Lancet and colleagues at the

Weizmann Institute, is available at

Q http://www.genecards.org/.

DISEASE DATABASES 861



dozen independent databases, including OMIM, GenBank, UniGene, Ensembl, the

University of California at Santa Cruz (UCSC), and the Munich Information Center

for Protein Sequences (MIPS). Thus, relative to OMIM, GeneCards uses relatively

less descriptive text of human diseases, and it provides relatively more functional

genomics data.

Locus-Specific Mutation Databases
Central databases such as OMIM and HGMD attempt to comprehensively describe

all disease-related genes. In contrast, locus-specific mutation databases describe vari-

ations in a single gene (or sometimes in several genes) in depth. Curators of these

databases provide particular expertise on the genetic aspects of one specific gene,

TABLE 20-10 Current Holdings of OMIM

Autosomal
X-

Linked
Y-

Linked Mitochondrial Total

� Gene with known sequence 11,407 525 48 37 12,017

þ Gene with known
sequence and phenotype

356 30 0 0 386

# Phenotype description,
molecular basis known

2,014 187 2 26 2,229

% Mendelian phenotype or
locus, molecular basis
unknown

1,470 129 4 0 1,603

Other, mainly phenotypes
with suspected mendelian
basis

1,965 142 2 0 2,109

Total 17,212 1,013 56 63 18,344

Source: http://www.ncbi.nlm.nih.gov/Omim/mimstats.html (December 2007).

FIGURE 20.10. The OMIM entry
for beta globin includes hundreds
of allelic variants, most of which
are disease-causing mutations.
Some allelic variants reflect poly-
morphisms that are not associated
with disease.

In the context of mutation data-

bases, a mutation is defined as an

allelic variant (Scriver et al.,

1999). The allele (or the unique

sequence change) may be disease

causing; such an allele tends to

occur at low frequency. The allele

may also be neutral, not having

any apparent effect on phenotype.
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locus, or disease. Also, the coverage of known mutations tends to be far deeper in

locus-specific databases as a group than in central databases (Scriver et al., 1999).

Thus, these two types of databases serve complementary purposes.

A locus-specific mutation database is a repository for allelic variations. There are

hundreds of such databases. The essential components of a locus-specific database

include the following (Scriver et al., 1999, 2000; Claustres et al., 2002; Cotton

et al., 2008):

† A unique identifier for each allele

† Information on the source of the data

† The context of the allele

† Information on the allele (e.g., its name, type, and nucleotide variation)

Mutation databases have an important role in gathering information about

mutations, but there have not been uniform standards for their creation until recently.

Claustres et al. (2002) surveyed 94 websites that encompassed 262 locus-specific

databases; Cotton et al. (2008) noted over 700 such databases. Both studies noted

great variability in the way data are collected, presented, linked, named, and updated.

Scriver et al. (1999, 2000) and Cotton et al. (2008) described guidelines for the

content, structure, and deployment of mutation databases.

† There is now increased uniformity in naming alleles (Antonarakis, 1998; den

Dunnen and Antonarakis, 2000). For example, the A of the ATG of the

initiator Met codon is denoted nucleotide þ1. Many such rules have been

explicitly stated to allow uniform descriptions of mutations.

† Ethical guidelines have been described, such as the obligation of preserving

the confidentiality of information (Knoppers and Laberge, 2000).

Lowrance and Collins (2007) have reviewed issues of identifiability in geno-

mic research.

† Generic software to build and analyze locus-specific databases has been pro-

vided, such as the Universal Mutation Database template (Beroud et al.,

2000; Brown and McKie, 2000).

Several websites provide gateways to access locus-specific databases

(Table 20.11). A main point of entry is the Human Genome Variation Society

(HGVS). This provides access to about 700 locus-specific mutation databases. Its

major categories include (1) locus-specific mutation databases, organized by

HUGO approved gene symbols; (2) disease-centered central mutation databases,

such as the Asthma Gene Database; (3) central mutation and SNP databases, such

as OMIM, dbSNP, HGMD, and PharmGKB; (4) national and ethnic mutation

databases, such as databases for diseases affecting Finns or Turks; (5) mitochondrial

mutation databases, such as MITOMAP; (6) chromosomal variation databases,

such as the Mitelman Database of Chromosome aberrations in Cancer; (7)

nonhuman mutation databases, such as OMIA (Online Mendelian Inheritance in

Animals); and (8) clinical databases such as the National Organization for Rare

Disorders (NORD).

As an example of a locus-specific database, we can examine HbVar (Giardine

et al., 2007a). The database is a useful resource for sequence variation associated

To see the Universal Mutation

Database template of Beroud et al.

(2000), visit Q http://www.umd.

be/.

HGVS is accessible at Q http://
www.hgvs.org/. The Mitelman

database is available at Q http://
cgap.nci.nih.gov/Chromosomes/
Mitelman. The OMIA website is

Q http://omia.angis.org.au/.
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with hemoglobinopathies, and it is designed for both research purposes and clinical

utility. The search page (Fig. 20.11) includes over a dozen fields that can be expanded

to focus the search on a particular aspect of the globins, such as those with particular

physical properties (stability, chromatographic behavior, structural alterations) or

functional properties (e.g., sickling of red blood cells, affinity of oxygen binding)

or epidemiological aspects (ethnic background, frequency). There are currently

over 1300 entries, including categories such as entries involving hemoglobin variants

(�980); thalassemia (�400 entries); the a1, a2, b, d, Ag, and Gg genes; and

mutations involving insertions, deletions, substitutions, gene fusions, or altered

stability or oxygen binding properties.

FIGURE 20.11. The HbVar data-
base is a resource for information
on globin mutations and thalasse-
mias. It is created and maintained
by experts who annotate many
structural and functional proper-
ties of the globins and globinopa-
thies. See Q http://globin.bx.psu.
edu/hbvar/menu.html.

TABLE 20-11 Gateways to Locus-Specific Databases
Site Description URL

GeneDis From Tel Aviv University; performs
pairwise alignments against a
disease database

Q http://life2.tau.ac.
il/GeneDis/

HUGO Mutation
Database Initiative

Comprehensive list of locus-specific
mutation databases

Q http://www.hgvs.
org/

Human Gene Mutation
Database

From the Institute of Medical
Genetics in Cardiff

Q http://www.hgmd.
cf.ac.uk/ac/index.
php

Universal Mutation
Database

Software and databases for mutations
in human genes, from INSERM

Q http://www.umd.
necker.fr/

The Mammalian Gene
Mutation Database
(MGMD)

Database of published mutagen-
induced gene mutations in
mammalian tissues

Q http://lisntweb.
swan.ac.uk/cmgt/

HbVar is available at Q http://
globin.cse.psu.edu/hbvar/menu.

html. It is a collaboration between

investigators at Penn State

University, INSERM Creteil

(France), and Boston University

Medical Center.
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The PhenCode Project
Locus-specific mutation databases provide tremendous depth and breadth of infor-

mation about one gene and/or disease. However, the information in these databases

is usually separate from the wealth of information contained in major genome

FIGURE 20.12. The PhenCode
(Phenotypes for ENCODE) project
connects human phenotype and
clinical data from locus-specific
databases to the vast resources
of the UCSC Genome Browser.
Users can thus make connections
between clinical data, mutation
data, and genome properties.

FIGURE 20.13. A sample image
from the UCSC Genome Browser
showing a connection from the
HbVar locus-specific mutation
database using PhenCode. Here,
many beta globin mutations affect-
ing the exons are displayed on a
custom track. The RefSeq gene
track is also displayed.

The PhenCode website is

Q http://www.bx.psu.edu/
phencode.
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browsers. The PhenCode project connects data in locus-specific databases with

genomic data from the UCSC Genome Browser (Giardine et al., 2007b), including

the ENCODE project (described in Chapter 16). For a variety of locus-specific

mutation databases, properties of interest can be selected, such as the type and

location of the mutation (Fig. 20.12). This information is then displayed as a

custom track on the UCSC Genome Browser (Fig. 20.13). The significance of

PhenCode is that it facilitates the exploration and discovery of genomic features

associated with disease-causing mutations. For example, the genomic landscape

could include ultraconserved elements in noncoding regions (Chapter 16) that are

associated with disease, or repetitive elements that serve as substrates for recombina-

tion in deleted or duplicated regions.

FOUR APPROACHES TO IDENTIFYING

DISEASE-ASSOCIATED GENES

How can we determine the causes of diseases? There are many approaches to finding

genes that confer risk for the disease. By identifying such genes we may rationally

develop treatments (or, ultimately, find cures). For example, phenylketonuria

(PKU; OMIM þ261600) is an inborn error of metabolism that results in mental

retardation and other symptoms. It is caused by a deficiency in phenylalanine

hydroxylase activity. Knowing this it is possible to screen newborns and if PKU is

found then to provide a diet lacking phenylalanine. PKU provides another example

of the complexity of any disease. The enzyme phenylalanine hydroxylase is localized

to the liver, and yet the symptoms of mental retardation are neurological; if one were

searching for the cause by studying brain tissue it would be challenging to discover

any biochemical defects. Also, while phenylalanine hydroxylase is overwhelmingly

the major cause, it is not the only cause of PKU.

We will next discuss several approaches that are used to identity disease-

associated genes (or other genetic elements). Once a gene has been associated with

a disease, it is further necessary to determine how susceptibility genes confer risk.

Linkage Analysis
A genetic linkage map displays genetic information in reference to linkage groups

(chromosomes) in a genome. The mapping units are centimorgans, based on recom-

bination frequency between polymorphic markers such as SNPs or microsatellites.

(One cM equals one recombination event in 100 meioses; for the human genome,

the recombination rate is typically 1 to 2 cM/megabase.) In linkage studies, genetic

markers are used to search for coinheritance of chromosomal regions within families;

that is, polymorphic markers that flank a disease gene segregate with the disease in

families. Two genes that are in proximity on a chromosome will usually cosegregate

during meiosis. By following the pattern of transmission of a large set of markers

in a large pedigree, linkage analysis can be used to localize a disease gene based on

its linkage to a genetic marker locus. Huntington disease (OMIM), a progressive

degenerative disorder, was the first autosomal disorder for which linkage analysis

was used to identify the disease locus (reviewed in Gusella, 1989).

Linkage is usually performed for single-gene disease models rather than for

complex traits. It also typically involves studies of large pedigrees. For Mendelian dis-

eases the LOD score approach is used, providing a maximum likelihood estimate of
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the position of the disease locus (Ott, 2001). A LOD score of three implies that there

is a 1 in 1000 chance that a given unlinked locus could have given rise to the observed

cosegregation data. Hundreds of software packages are available for linkage analysis.

Among the most widely used is Merlin (Multipoint Engine for Rapid Likelihood

INference) (Abecasis et al., 2002).

Genome-Wide Association Studies
While the genetic basis of over a thousand single gene disorders has been found, it is

far more difficult to identify the genetic causes of common human diseases that

involve multiple genes. Part of the challenge is that a large number of genes may

each make only a small contribution to the disease risk. Association studies provide

an important approach (reviewed in Hirschhorn and Daly, 2005; Altshuler et al.,

2008; McCarthy et al., 2008). Genomewide association studies provide a powerful

new approach that can rely on SNP microarrays (Chapter 16) having 500,000 to 1

million SNPs represented on a single array. There are two main experimental designs

used in association studies (Laird and Lange, 2006). In family-based designs, mar-

kers are measured in affected individuals (probands) and unaffected individuals to

identify differences in the frequency of variants. In population-based designs, a

large number of unrelated cases and controls are studied (typically hundreds in

each group). Larger samples sizes offer increased statistical power (Chapter 9).

Chromosome
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Crohn disease

Coronary artery disease

Bipolar disorder
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FIGURE 20.14. Results of a
genome-wide association study
using 16,179 individuals to search
for genes contributing to seven
common familial disorders. For
each of seven diseases, the y axis
shows the 2log10 P value for
SNPs that were positive for
quality control criteria. The x
axis shows the chromosomes.
P values ,1�1025 are high-
lighted in red. Panels are truncated
at 2log10(P value) ¼ 15. As noted
by McCarthy et al. (2008), for the
type 2 diabetes study, strong associ-
ations were observed on chromo-
somes 10 (transcription factor 7-
like 2; TCF7L2), 16 (fat mass
and obesity associated; FTO) and
6 (CDK5 regulatory subunit
associated protein 1-like 1;
CDKAL1). However, signals on
chromosomes 1, 2, and 12 were
not replicated. Redrawn from Fig.
4 of the Wellome Trust Case
Control Consortium (2007). Used
with permission.

The Laboratory of Statistical

Genetics at Rockefeller University,

directed by Jürg Ott, offers a

website listing dozens of software

packages useful for linkage analy-

sis. The Rockefeller website is

Q http://linkage.rockefeller.edu/.

Merlin was developed by Gonçalo

Abecasis and colleagues and is

available at Q http://www.sph.

umich.edu/csg/abecasis/Merlin.

Another popular software pack-

age, Plink, was developed by

Shaun Purcell and colleagues

(2007) and is at Q http://pngu.

mgh.harvard.edu/ � purcell/
plink/.

FOUR APPROACHES TO IDENTIFYING DISEASE-ASSOCIATED GENES 867



We can illustrate the genomewide association approach with an extremely large-

scale study by the Wellcome Trust Case Control Consortium (2007) involving 50

research groups from the United Kingdom and 16,179 individuals (reviewed by

Bowcock, 2007). Approximately 2000 affected individuals were studied having one

of seven common familial diseases: bipolar disorder, coronary artery disease,

Crohn’s disease, hypertension, rheumatoid arthritis, type 1 diabetes, and type 2

diabetes. There were �3000 control individuals. About 500,000 SNPs were

measured for each individual, and the relationship between each SNP and the phe-

notypic trait (disease status) was measured. Twenty-four strong association signals

were found for six of the seven diseases (Fig. 20.14). Many of these signals corre-

sponded to previously characterized susceptibility loci, and many novel loci were

also identified.

A key aspect of genomewide association studies is that replication studies are

required to confirm that positive signals are authentic. The NCI-NHGRI Working

Group on Replication in Association Studies (2007) has addressed many of the

issues relevant to replication studies, emphasizing the need to eliminate false positive

results that often occur. Proper experimental design is especially important, with

efforts to assess phenotypes in a standard way, and a need to account for biases

such as population stratification.

The National Library of Medicine (NLM) offers the database of Genotype and

Phenotype (dbGaP), a database of archived genomewide association studies

(Mailman et al., 2007). dbGaP contains four types of data: (1) study documentation

(e.g., protocols and data collection instruments), (2) phenotypic data (of individuals

and as a summary), (3) genetic data (genotypes, pedigrees, mapping results), and (4)

statistical results (e.g., linkage and association results). Permission from a committee

is required to access information such as pedigrees or phenotypic data associated with

genotype data.

Identification of Chromosomal Abnormalities
The most common chromosomal aberrations in early development likely involve the

gain or loss of whole chromosomes. Such structural abnormalities may be detected

by standard cytogenetic approaches such as karyotype analysis and fluorescence in

situ hybridization (FISH). These techniques may also reveal commonly observed

phenomena such as large-scale duplications, deletions, or rearrangements involving

many millions of base pairs. One enhancement to FISH is spectral karyotyping/

multiplex-FISH (SKY/M-FISH). This permits each chromosome to be depicted

in a different color, facilitating the identification of abnormal karyotypes. In

Chapter 16 we introduced array comparative genomic hybridization (aCGH), a

form of genomic microarray using bacterial artificial chromosomes (BACs) that

also represents an extension of FISH technology. NCBI offers a SKY/M-FISH &

CGH Database that includes tools to view SKY/M-FISH and aCGH data, particu-

larly as ideograms of cancer data sets (Knutsen et al., 2005).

Both genomic microarrays (aCGH) and SNP microarrays are used routinely

to identify disease-associated chromosomal abnormalities at high resolution.

(Currently, SNP arrays have approximately one million markers per array spaced sev-

eral kilobases apart on average. Typical aCGH platforms have 3000 to 30,000 BAC

clones, each with a length of �200 kilobases, spaced approximately one megabase

apart or less. Other aCGH arrays use millions of oligonucleotides.) In addition to

measuring copy number based on fluorescence intensity measurements, SNP

dbGaP is available at Q http://
www.ncbi.nlm.nih.gov/dbgap.

NCBI’s SKY/M-FISH & CGH

Database is available at Q http://
www.ncbi.nlm.nih.gov/sky/.
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technologies also permit estimates of genotypes, which provides information about

inheritance patterns and homozygosity. Both aCGH and SNP microarrays have

been used to measure chromosomal variations in cancer, idiopathic mental retar-

dation, and a variety of other diseases.

Genomic DNA Sequencing
We introduced high throughput DNA sequencing in Chapter 13, and described

genome sequencing projects in subsequent chapters. Another use of high throughput

sequencing is to resequence genomic regions in patients in order to define nucleotide

differences that may be associated with disease.

We can explore sequencing initiatives in the realm of cancer. Cancer occurs when

DNA mutations confer selective advantage to cells that proliferate, often uncontrol-

lably (Varmus, 2006). Knudson (1971) introduced a two-hit hypothesis of cancer,

suggesting that for dominantly inherited retinoblastoma one mutation is inherited

through the germ cells while a second somatic mutation occurs; for a nonhereditary

form of cancer two mutations occur in somatic cells. There are many types of cancer

and many disease mechanisms, and a growing number of key tumor suppressor genes

and other oncogenic genes has been identified, summarized in a Cancer Gene

Census. Given the completion of the human genome project and the availability of

improved sequencing capabilities, a human cancer genome project has been

launched to determine the DNA sequence of a variety of cancer genomes.

In studies of cancer, high throughput sequencing has revealed vast numbers of

somatic mutations (in contrast to germline mutations) that might sometimes arise

due to environmental exposures to carcinogens or ultraviolet radiation. Greenman

et al. (2007) described two types of somatic mutations. “Driver” mutations confer

growth advantage, are implicated as causing the neoplastic process, and are positively

selected for during tumorigenesis. “Passenger” mutations are retained by chance but

confer no selective advantange and do not contribute to oncogenesis. A challenge is

to identify driver mutations throughout the genome of a cancer cell and to distinguish

them from passenger mutations.

(a) (b)
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FIGURE 20.15. The landscape of mutations in cancer. Nonsilent somatic mutations are plotted
in two dimensions representing the chromosomal positions of RefSeq genes for (a) a colorectal
cancer sample and (b) a breast cancer sample. The telomere of chromosome 1p is at the
upper left, continuing to the telomere of Xq at the bottom right. Peaks correspond to the 60 high-
est-ranking candidate cancer genes that are proposed to be “drivers” (rather than “passengers”).
Some genes are shared such as PIK3CA (chromosome 3). Adapted from Wood et al. (2007). Used
with permission.
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As an example of this approach, Bert Vogelstein, Victor Velculescu, Ken Kinzler,

and colleagues sequenced 20,857 transcripts from 18,191 genes in 11 breast and 11

colorectal cancer samples as well as matched normal tissue (Wood et al., 2007).

These corresponded to Consensus Coding Sequence (CCDS) as well as RefSeq

genes, and followed an earlier large-scale sequencing effort (Sjöblom et al., 2006).

They found 1718 genes (9.4% of those analyzed) that had at least one nonsilent

mutation, mostly consisting of single base substitutions. Wood et al. measured synon-

ymous and nonsynonymous mutation rates and predicted 280 genes in which

mutations are likely to be drivers rather than passengers. They proposed a cancer

landscape for breast and colorectal tumors in which there are several mountains

(corresponding to genes that were found to be mutated in many cancer samples)

interspersed with many hills (corresponding to driver mutations that occur with

lower frequency) (Fig. 20.15). The large number of infrequently mutated genes

represented in the hills may be even more important than the mountains, and may

represent the relevant mutational signature of each cancer. A goal is to relate such

a molecular profile of a cancer to an appropriate therapy to eradicate the cancer.

HUMAN DISEASE GENES IN MODEL ORGANISMS

The study of human disease genes and gene products in other organisms is of

fundamental importance in our efforts to understand the pathophysiology of

human disease. While mutations in genes cause many diseases, it is the aberrant

protein product that has the proximal functional consequence on the cell and

ultimately on the organism. Once a human disease gene is identified in a model

organism, it can often be knocked out or otherwise manipulated. This allows the

phenotypic consequences of specific mutations to be assessed.

Human Disease Orthologs in Nonvertebrate Species
A basic question then is to identify which known human disease genes have orthologs

in model organisms. This approach is of interest even though the consequence of

mutating that ortholog may differ. A group of 55 authors collaborated on a systematic

sequence analysis of the Drosophila melanogaster, Caenorhabditis elegans, and

Saccharomyces cerevisiae genomes (Rubin et al., 2000). They identified 289 genes

that are mutated, altered, amplified, or deleted in human disease. Of these genes,

177 (61%) were found to have an ortholog in Drosophila. These data are displayed

in Fig. 20.16, showing the presence of fly, worm, and yeast orthologs to human dis-

ease genes that are functionally categorized in cancer, neurological, cardiovascular,

endocrine, and other disease types. Reiter et al. (2001) extended this study to 929

human disease genes in OMIM, 714 of which (77%) matched 548 Drosophila protein

sequences (Table 20.12). The Reiter et al. (2001) data have been deposited in

Homophila, a Homo sapiens/Drosophila disease database.

The cataloguing of human disease genes in model organisms is important in

our efforts to establish functional assays for these genes. In addition to the

results in S. cerevisiae, D. melanogaster, and C. elegans, similar descriptions have

been made in other eukaryotes, such as Schizosaccharomyces pombe (Wood et al.,

2002), Arabidopsis (Arabidopsis Genome Initiative, 2000), and the amoeba

At the time that C. elegans was

sequenced, about 65% of human

disease genes had identifiable

C. elegans orthologs (Ahringer,

1997).

The Homophila website is at

Q http://superfly.ucsd.edu/
homophila/. It lists �2100

Drosophila orthologs of human

genes having OMIM allelic var-

iants (January 2008).
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F W Y
ABL1
Acute Myeloid Leukemia-DEK
Adenomat. Polyposis Coli-APC
AKT2
Ataxia Telangiectasia-ATM
BRCA1
BRCA2
Basal Cell Nevus-PTC
B-Cell Lymphoma 2-BCL2
B-Cell Lymphoma 3-BCL3
Bloom-BLM
Burkitt's Lymphoma-MYC
CDKN2C
CSF1R/C-Fms
Chk2 Protein Kinase
PDGFB
CML-BCR
Cyclin D1-CCND1
Cyclin Dep. Kinase 4-CDK4
EGFR
ERBB2
ETS
E-Cadherin-CDH1
Ewing Sarcoma-FLI-1
FGF3
Fanconi's Anemia A-FANCA
Fanconi's Anemia C-FANCC
Fanconi's Anemia G-FANCG
HNPCC*-MSH2
HNPCC*-MSH3
HNPCC*-MSH6
HNPCC*-MLH1
HNPCC*-PMS2
KIT
LCK
Lymphoma-MCF2
MADH4
MDM2
MET
MEN***1
MEN***2A-RET
Multiple Exostosis 1-EXT1
Multiple Exostosis 2-EXT2
NTRK1
Neurofibromatosis 1-NF1
Neurofibromatosis 2-NF2
Nijmegen Breakage 1-NBS1
Nucleoporin-NUP214
P16-INK4
P16-INK4A
P19 ARF
P53
PTEN
RAS
REL
Retinoblastoma-RB1
STK11
Stem Cell Leukemia-TAL1
Tuberous Sclerosis 1-TSC1
Tuberous Sclerosis 2-TSC2
Von Hippel Lindau-VHL
Wilm's Tumor-WT1
Xeroderma Pigment. A-XPA
Xeroderma Pigment. B-ERCC3
Xeroderma Pigment. D-XPD
Xeroderma Pigment. F-XPF
Xeroderma Pigment. G-XPG

Adrenoleukodystrophy-ABCD1
Alzheimer-PS1
Alzheimer-APP
Amyotrophic Lat. Sclero.-SOD1
Angelman-UBE3A
Aniridia-PAX6
Best Macular Dystrophy-VMD2
Ceroid-Lipofuscinosis-PPT
Ceroid-Lipofuscinosis-CLN3
Ceroid-Lipofuscinosis-CLN2
Charcot-Marie-Tooth 1A-PMP22
Charcot-Marie-Tooth 1B-MPZ
Choroideremia-CHM
Creutzfeldt-Jakob-PRNP
Deafness, Hereditary-MYO15
Deafness, X-Linked-TIMM8A
Diaphanous 1-DIAPH1
Dementia, Multi-Infarct-NOTCH3
Duchenne MD+-DMD
Emery-Dreifuss MD+-EMD
Emery-Dreifuss MD+-LMNA
Familial Encephalopathy-Pl12
Fragile-X-FRAXA
Friedreich Ataxia-FRDA
Frontotemporal Dement.-TAU
Fukuyama MD+-FCMD
Huntington-HD
Limb Girdle MD+ 2A-CAPN3
Limb Girdle MD+ 2B-YSF
Limb Girdle MD+ 2E-BSG
Lissencephaly, X-Linked-DCX
Lowe Oculocerebroren.-OCRL
Machado-Joseph-MJD1
Miller-Dieker Lissen.-PAF
Myotonic Dystrophy-DM1
Mytotubular Myopathy 1-MTM1
Naito-Oyangi-DRPLA
Nemaline Myopathy 2-NEB
Neuraminidase Defic.-NEU1
Norrie-NDP
Ocular Albinism-OA1
Oculopharyngeal MD+-PABPN1
Oguchi Type 2-RH KIN
Parkinson-SNCA
Parkinson-PARK2
Parkinson-UCHL1
Prog. Myoclonic Epilepsy-CSTB
Retinitis Pigmentosa-RPGR
Retinitis Pigmentosa 2-RP2
SCA+++ 1-SCA1
SCA+++ 2-SCA2
SCA+++6-CACNA1A
SCA+++7-SCA7
Spinal Muscular Atrophy-SMN1
Stargardt-ABCA4
Tay-Sachs-HEXA
Thomsen-CLCN1
Usher-USH2A
Wilson-ATP7B

Aarskog-Scott-FGD1
Achondroplasia-FGFR3
Alagille-JAG1
Barth-TAZ
Beckwith-Wiedemann-CDKN1C
Cerebral Cavern. Malf.-CCM1
Chondrodyspl. Punct. 1-ARSE
Cleidocranial Dysplasia-OFC1
Cockayne I-CKN1
Coffin-Lowry-RPS6KA3
Diastrophic Dyspl.-SLC26A2
EEC 3-Ket. P63
Greig Cephalopolysynd.-GLI3
Hand-Foot-Genital-HOXA13
Holoprosencephaly 3-SHH
Holoprosencephaly-SIX3
Holt-Oram-TBX5
ICF-DNMT3B
Kallman-KAL1
Laterality, X-Linked-ZIC3
Melnick-Fraser-EYA1
Nail Patella-LMX1B
Opitz-MID1
Renal Coloboma-PAX2
Rieger, Type 1-PITX2
Rubinstein-Taybi-CREBBP
Saethre-Chotzen-TWIST
Septooptic Dysplasia-HESX1
Simpson-Golabi-Behmel-GPC3
Townes-Brockes-SALL1
Treacher-Collins-TCOF1
WMCM-TEK
Wardenburg-PAX3
Zellweger-PEX1

F W Y

F W Y

F W Y F W YCancer Neurological Malformation Syndromes

Endocrine
Adrenal Hypoplasia-NR0B1
Androgen Receptor-AR
Adrenal Hyperplas. III-CYP21A2
Diabetes-INS
Diabetes-INSR
Diabet. Ins. Neurohypop.-AVP
Diabet. w/ Hypertens.-PPARG
Dwarfism-GH1
Dwarfism-GHR
Gonadal Dysgenesis-SRY
Hyperinsulinism-ABCC8
Hyperinsulinism-KCNJ11
Hypothyroidism-TRH
Hypothyroidism-SLC5A5
Leydig Cell Hypoplasia-LHCGR
MODY++ 1-HNF-4A
MODY++ 2-GCK
MODY++ 3-TCF1
MODY++ 4-IPF1
MODY++ 5-TCF2
McCune-Albright-GNAS1
Non-Insulin Dep. Diabet.-PCSK1
Obesity-LEP
Obesity-LEPR
Obesity-MC4R
Obesity-POMC
Pendred-PDS
Thyr. Resistance-THRA
Thyr. Resistance-THRB
Thyrotropin Deficiency-TSHB
Vitamin-D Resis. Rickets-VDR

Cardiovascular
A/V Conduction Defects-CSX
HDL Deficiency 1-ABCA1
Long Q-T 1-KCNQ1
Long Q-T 2-KCNH2
Long Q-T 3-SCN5A
Fam. Cardiac Myopathy-MYH7

Alport-COL4A5
Bartter-SLC12A1
Congenital Nephrotic-NPHS1
Dent-CLCN5
Diabetes Insipidus 2-AQP2
Gitelman-SLC12A3
1o Hyperoxaluria 1-AGXT
1o Hypomagnesemia-CLDN16
Hypophosphatasia-ALPL
Nephronophthisis 1-NPHP1
Polycystic Kidney 1-PKD1
Polycystic Kidney 2-PKD2
Pseudohypoaldoster-NR3C2
Renal Tubul. Acidosis-ATP6B1
Vitamin D Resis. Rickets-PHEX
Williams-Beuren-ELN

Chediak-Higashi-CHS1
Diamond-Blackfan Anem.-RPS19
Essen. Thrombocythemia-THPO
G6PD Deficiency-G6PD
HPLH2-PRF1
Hemophilia A-F8C
Hemophilia B-F9
Hered. Spherocytosis-ANK1
Megaloblas. Anemia-SLC19A2
Myeloperoxidase Defic.-MPO
Osler-Rendu-Weber-ENG
α-Thalassemia-HBA1
β-Thalassemia-HBB
δ-Thalassemia-HBD
ε-Thalassemia-HBE
Thrombophilia-PLG
Von Willebrand-VWF
Wiskott-Aldrich-WAS

α-1-Antitrypsin Deficiency-Pl
Alveolar Proteinosis-SFTPB
Corneal Dystrophy-TGFBl
Cystic Fibrosis-ABCC7
Cystinosis-CTNS
Darier-White-SERCA
Downreg. in Adenoma-DRA
Ehlers-Danlos IV-COL3A1
Fam. Mediterr. Fever-MEFV
Finnish Amyloidosis-GSN
Glycerol Kinase Defic. -GK
Hereditary Pancreatitis-PRSS1
Hermansky-Pudlak-HPS
Hyperexplexia-GLRA2
Juvenile Glaucoma-GLC1A
Keratoderma-KRT9
Marfan-FBN1
Mcleod-XK
Monilethrix-KRTHB
Monilethrix-KRTHB6
Osteogenesis Imperf.-COL1A1
Spondyloepip. Dysp.-COL2A1
Vohwinkel-LOR
Wolfram-WFS1

Bare Lymphocyte-ABCB3
Bare Lymphocyte-RFX5
Bare Lymphocyte-RFX5AP
Bare Lymphocyte-MHC2TA
Bruton Agammaglobulin.-BTK
Chronic Granulom.-NCF1
Chronic Granulom.-CYBB
Immunodeficiency-DNA Ligase 1
Immunodeficiency-CD3G
SCID**-IL2RG
SCID**-IL7R
SCID**-JAK3
SCID**-RAG1
SCID**-RAG2
SCID**-ZAP70
T-Cell Immunodefic.-CD3E
X-Linked Lymphoprol.-SH2D1A

CPT2 Deficiency-CPT2
1o Carnitine Defic.-SLC22A5
Citrullinemia, Type I-ASS
Cystinuria, Type 1-SLC3A1
Hypercalcemia-CASR
Galactokinase-GALK1
Gaucher-GBA
Hemochromatosis-HFE
Lesch-Nyhan-HPRT1
Liddle-SCNN1G
Liddle-SCNN1B
Menkes-ATP7A
Niemann-Pick C-NPC1
SCID**-ADA
Trimetylaminuria-FMO3
Variegate Porphyria-PPOX
Wernicke-Korsakoff-TKT

F W Y

F W Y

F W YF W Y

F W Y

Renal

Hematological

Immune

Metabolic

Other

FIGURE 20.16. A set of 289 pro-
teins encoded by human disease
genes were used as blastp queries
against a set of 38,860 proteins
from the complete genomes of a
fly (F), a yeast (Y), and a worm
(W). Database matches are pre-
sented according to their level of
statistical significance. White
boxes represent E values greater
than 1 � 1026 (no or weak simi-
larity). Light gray boxes represent
E values from 1 � 1026 to
1 � 10240. Red boxes represent
E values from 1 � 10240 to
1 � 102100. Dark gray boxes
represent E values below
1 � 102100. A plus sign indicates
that the Drosophila protein is the
functional equivalent of the
human protein (based on criteria
including sequence similarity,
InterPro domain composition,
and supporting biological evi-
dence). A minus sign indicates
that evidence was not obtained for
functional equivalence to the
human protein. Adapted from
Rubin et al. (2000). Used with
permission.
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TABLE 20-12 Classification of 714 Drosophila Genes According to
Human Disease Phenotypes
Disorder No. of Genes

Neurological

Neuromuscular 20

Neuropsychiatric 9

CNS/developmental 8

CNS/ataxia 9

Mental retardation 6

Other 22

Total 74

Endocrine

Diabetes 10

Other 40

Total 50

Deafness

Syndromic 7

Nonsyndromic 6

Total 13

Cardiovascular

Cardiomyopathy 10

Conduction defects 4

Hypertension 7

Atherosclerosis 3

Vascular malformations 2

Total 26

Ophthalmological

Anterior segment

Aniridia 1

Rieger syndrome 1

Mesenchymal dysgenesis 2

Iridogoniodysgenesis 2

Corneal dystrophy 2

Cataract 3

Glaucoma 2

Subtotal 13

Retina

Retinal dystrophy 1

Choroideremia 1

Color vision defects 4

Cone dystrophy 2

Cone rod dystrophy 1

Night blindness 8

Leber congenital amaurosis 2

Macular dystrophy 4

Retinitis pigmentosa 7

Subtotal 30

Total 43

Pulmonary 4

Gastrointestinal 13

(Continued )
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TABLE 20-12 Continued
Disorder No. of Genes

Renal 13

Immunological

Complement mediated 11

Other 22

Total 33

Hematological

Erythrocyte, general 29

Porphyrias 7

Platelets 6

Total 42

Coagulation abnormalities 28

Malignancies

Brain 3

Breast 4

Colon 11

Other gastrointestinal 3

Genitourinary 5

Gynecological 3

Endocrine 3

Dermatological 3

Xeroderma pigmentosa 6

Other/sarcomas 9

Hematological malignancies 29

Total 79

Skeletal development

Craniosynostosis 5

Skeletal dysplasia 13

Other 8

Total 26

Soft tissue 2

Connective tissue 18

Dermatological 25

Metabolic/mitochondrial 123

Pharmacological 12

Peroxisomal 9

Storage

Glycogen storage 11

Lipid storage 13

Mucopolysaccharidosis 10

Other 3

Total 37

Pleiotropic developmental

Growth, immune, cancer 7

Apoptosis 1

Other 27

Total 35

Complex other 9

Total 714

Source: Adapted from Reiter et al. (2001). Used with permission.
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Dictyostelium discoideum (Eichinger et al., 2005). For S. pombe, orthologs were

identified both for human cancer genes (Table 20.13) and a variety of neurological,

metabolic, and other disorders (Table 20.14). In Dictyostelium, which is intermediate

in complexity between fungi and multicellular animals, many human disease

orthologs were identified, including nine that were absent in S. pombe and/or

S. cerevisiae.

It is perhaps expected that human genes involved in cancer are also present in

fungi; examples include genes encoding proteins involved in DNA damage and

repair and the cell cycle. It might seem surprising that genes implicated in neurologi-

cal disorders are present in single-celled fungi. However, the explanation may be

that neurons are a particularly susceptible cell type with unique metabolic require-

ments. For example, most lysosomal disorders are caused by the loss of an enzyme

that normally contributes to lysosmal function or to intracellular trafficking to

lysosomes. Multiple organ systems are typically compromised, but neurological

TABLE 20-13 Schizosaccharomyces pombe Genes Related to Human Cancer Genes

Human Cancer Gene Scorea

S. pombe
Gene/

Product Systematic Name

Xeroderma pigmentosum D; XPD ,1 � 102100 rad15, rhp3 SPAC1D4.12

Xeroderma pigmentosum B; ERCC3 ,1 � 102100 rad25 SPAC17A5.06

Hereditary nonpolyposis colorectal
cancer (HNPCC); MSH2

,1 � 102100 rad16, rad10,
rad20, swi9

SPBC24C6.12C

Xeroderma pigmentosum F; XPF ,1 � 102100 cdc17 SPCC970.01

HNPCC; PMS2 ,1 � 102100 pms1 SPAC57A10.13C

HNPCC; MSH6 ,1 � 102100 msh6 SPAC19G12.02C

HNPCC; MSH3 ,1 � 102100 swi4 SPCC285.16C

HNPCC; MLH1 ,1 � 102100 mlh1 SPAC8F11.03

Hematological Chediak–Higashi
syndrome; CHS1

,1 � 102100 — SPBC1703.4

Darier–White disease; SERCA ,1 � 102100 Pgak SPBC28E12.06C

Bloom syndrome; BLM ,1 � 102100 Hus2, rqh1,
rad12

SPBC31E1.02C

Ataxia telangiectasia; ATM ,1 � 102100 Tel1 SPAC2G11.12

Xeroderma pigmentosum G; XPG ,1 � 10240 rad13 SPBC3E7.08C

Tuberous sclerosis 2; TSC2 ,1 � 10240 — SPAC630.13C

Immune bare lymphocyte; ABCB3 ,1 � 10240 — SPBC9B6.09C

Downregulated in adenoma; DRA ,1 � 10240 — SPAC869.05C

Diamond–Blackfan anemia; RPS19 ,1 � 10240 rps19 SPBC649.02

Cockayne syndrome 1; CKN1 ,1 � 10240 — SPBC577.09

RAS ,1 � 10240 Ste5, ras1 SPAC17H9.09C

Cyclin-dependent kinase 4; CDK4 ,1 � 10240 Cdc2 SPBC11B10.09

CHK2 protein kinase ,1 � 10240 Cds1 SPCC18B5.11C

AKT2 ,1 � 10240 Pck2, sts6,
pkc1

SPBC12D12.04C

aScore is the expect value from a BLAST search; a score of ,1 � 10240 refers to a score between ,1 �
10240 and 1 � 102100

Source: Adapted from Wood et al. (2002). Used with permission.
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features such as mental retardation are a common consequence of these disorders.

The lysosome is a primary site for catabolism in the cell. In fungi, the vacuole per-

forms similar functions, and many human homologs of fungal vacuolar proteins

have been identified.

TABLE 20-14 Schizosaccharomyces pombe Genes Related to Human Disease Genes
Human Cancer Gene Disease Scorea S. pombe Gene/Product

Wilson disease; ATP7B Metabolic ,1 � 102100 P-type copper ATPase

Non-insulin-dependent
diabetes; PCSK1

Metabolic ,1 � 102100 Krp1, kinesin related

Hyperinsulinism; ABCC8 Metabolic ,1 � 102100 ABC transporter

G6PD deficiency; G6PD Metabolic ,1 � 102100 Zwf1 GP6
dehydrogenase

Citrullinemia type I; ASS Metabolic ,1 � 102100 Arginosuccinate
synthase

Wernicke–Korsakoff syndrome;
TKT

Metabolic ,1 � 10240 Transketolase

Variegate pophyria; PPOX Metabolic ,1 � 10240 Protoporphyrinogen
oxidase

Maturity-onset diabetes of the
young (MODY2); GCK

Metabolic ,1 � 10240 Hxk1, hexokinase

Gitelman syndrome; SLC12A3 Metabolic ,1 � 10240 CCC Na-K-Cl
transporter

Cystinuria type 1; SLC3A1 Metabolic ,1 � 10240 a-Glucosidase

Cystic fibrosis; ABCC7 Metabolic ,1 � 10240 ABC transporter

Bartter syndrome; SLC12A1 Metabolic ,1 � 10240 CCC Na-K-Cl
transporter

Menkes syndrome; ATP7A Neurological ,1 � 102100 P-type copper ATPase

Deafness, hereditary; MYO15 Neurological ,1 � 102100 Myo51 class V myosin

Zellweger syndrome; PEX1 Neurological ,1 � 10240 AAA-family ATPase

Thomsen disease; CLCN1 Neurological ,1 � 10240 ClC chloride channel

Spinocerebellar ataxia type 6
(SCA6); CACNA1A

Neurological ,1 � 10240 VIC sodium channel

Myotonic dystrophy; DM1 Neurological ,1 � 10240 Orb6 Ser/Thr protein
kinase

McCune–Albright syndrome;
GNAS1

Neurological ,1 � 10240 Gpa1 GNP

Lowe’s oculocerebrorenal
syndrome; OCRL

Neurological ,1 � 10240 PIP phosphatase

Dents; CLCN5 Neurological ,1 � 10240 ClC chloride channel

Coffin–Lowry; RPS6KA3 Neurological ,1 � 10240 Ser/Thr protein kinase

Angelman; UBE3A Neurological ,1 � 10240 Ubiquitin–protein lgase

Amyotrophic lateral sclerosis;
SOD1

Neurological ,1 � 10240 Sod1, superoxide
dismutase

Oguschi type 2; RHKIN Neurological ,1 � 10240 Ser/Thr protein kinase

Familial cardiac myopathy;
MYH7

Cardiac ,1 � 102100 Myo2, myosin II

Renal tubular acidosis; ATP6B1 Renal ,1 � 102100 V-type ATPase

Abbreviation: GNP, guanine nucleotide binding.
aScore is the expected value from a BLAST search.
Source: Adapted from Wood et al. (2002). Used with permission.
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Human Disease Orthologs in Rodents
The mouse genome, reported by the Mouse Genome Sequencing Consortium

(Waterston et al., 2002), presents us with the most important animal model of

human disease. A number of important resources are available:

† The FANTOM database, part of the RIKEN Mouse Gene Encyclopedia Project,

contains information on full-length mouse cDNA clones (Bono et al., 2002).

† The Jackson Laboratory website offers a list of mouse/human gene homologs,

including mouse models for human disease.

† High-efficiency mutagens such as N-ethyl-N-nitrosourea (ENU) or radiation

have been applied to mice to generate models of human disease (see Chapter

12) (Hrabe de Angelis and Strivens, 2001). Nolan et al. (2002) discuss

this approach in detail, including web resources for high throughput screening

centers and strategies for finding gene mutations that correspond to novel

phenotypes.

† The Whole Mouse Catalog describes mouse models of human disease.

The sequencing of the mouse genome was achieved by both Celera Genomics

and by a public consortium (Chapter 18). Celera sequenced the genomic DNA of

several mouse strains and noted their differences in susceptibility to infectious disease

(Table 20.15) and complex inherited disease (Table 20.16). Comparative genomic

data will likely help explain why some mouse strains vary in their disease

TABLE 20-15 Infectious Disease Susceptibility of Mouse Strains
Inbred Mouse Strain

Infectious Disease A/J C57BL/6J

Legionnaire’s pneumonia Susceptible Resistant

Malaria Susceptible Resistant

Viral (MHV3) hepatitis Resistant Susceptible

Murine AIDS Resistant Susceptible

TABLE 20-16 Common Complex Disease Susceptibility of Mouse Strains
Inbred Mouse Strain

Complex Disease A/J C57BL/6J

Arthritis Susceptible Resistant

Colon cancer Susceptible Resistant

Lung cancer Susceptible Resistant

Asthma Susceptible Resistant

Atherosclerosis Resistant Susceptible

Hypertension Resistant Susceptible

Type II diabetes Resistant Susceptible

Osteoporosis Susceptible Resistant

Obesity Resistant Susceptible

The Jackson Laboratory website

“Mouse Models for Human

Disease: Mouse/Human Gene

Homologs” is available online

(Q http://jaxmice.jax.org/
jaxmicedb/html/model_975.

shtml).

You can access this mouse infor-

mation at Q http://www.rodentia.

com/wmc/domain_genome.

html#transgenics and Q http://
www.rodentia.com/wmc/
domain_mouse.html.
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susceptibility. Hill (2001) has reviewed the genomics and genetics of infectious

disease susceptiblility in humans.

The public consortium that sequenced the mouse genome reported that 687

human disease genes have clear orthologs in mouse (Waterston et al., 2002).

Surprisingly, for several dozen genes, the wild-type mouse gene sequence was iden-

tical to the sequence that is associated with disease in humans. These genes are listed

in Table 20.17. This suggests that, assuming the mouse does not have these diseases,

any mouse model for human disease must be used with caution. Conceivably, mice

have modifying genes (or paralogous genes) not present in humans. Also, inbred

strains of laboratory mice are exposed to different environmental stressors than

mice in the wild, and their disease susceptibility could vary.

Sequencing of the genome of the Norway rat (Chapter 18; Rat Genome

Sequencing Project Consortium, 2004) allowed the detailed comparison of

human, mouse, and rat disease genes. Of 1112 well-characterized human disease

genes from HGMD (described above), 76% have orthologs in rat. This is a higher

percentage than for all rat versus all human genes (of which 46% have 1:1 ortholo-

gous matches). Only six human disease genes lack rat orthologs. In general, the

Consortium concluded that human disease genes tend to be well conserved in

mouse as also indicated by measurement of KN/KS ratios.

TABLE 20-17 Human Disease-Associated Sequence Variants for Which Wild-Type Mouse
Sequence Matches Diseased Human Sequence
Disease OMIM Mutation

Hirschsprung disease 142623 E251K

Leukencephaly with vanishing white matter 603896 R113H

Mucopolysaccharidosis type IVA 253000 R376Q

Breast cancer 113705 L892S

600185 V211A, Q2421H

Parkinson disease 601508 A53T

Tuberous sclerosis 605284 Q654E

Bardet–Biedl syndrome, type 6 209900 T57A

Mesothelioma 156240 N93S

Long QT syndrome 5 176261 V109I

Cystic fibrosis 602421 F87L, V754M

Porphyria variegata 176200 Q127H

Non-Hodgkin’s lymphoma 605027 A25T, P183L

Severe combined immunodeficiency disease 102700 R142Q

Limb-girdle muscular dystrophy type 2D 254110 P30L

Long-chain acyl-CoA dehydrogenase deficiency 201460 Q333K

Usher syndrome type 1B 276902 G955S

Chronic nonspherocytic hemolytic anemia 206400 A295V

Mantle cell lymphoma 208900 N750K

Becker muscular dystrophy 300377 H2921R

Complete androgen insensitivity syndrome 300068 G491S

Prostate cancer 176807 P269S, S647 N

Crohn disease 266600 W157R

Source: Adapted from Waterston et al. (2002). Used with permission.
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Human Disease Orthologs in Primates
While the chimpanzee and human genomes are extremely closely related

(Chimpanzee Sequencing and Analysis Consortium, 2005; Chapter 18), it is surpris-

ing that many common human disease variants correspond to the wild-type allele in

the chimpanzee. Sixteen examples are presented in Table 20.18. It is possible that not

all of these mutations are true positive disease-associated alleles in humans. When a

particular sequence occurs in both chimpanzee and macaque this indicates that it is

an ancestral allele. Conceivably, specific changes in the human environment in the

past several million years have made such ancestral sequences deleterious, such

that an altered sequence in humans is adaptive. Other compensatory mutations

may be important as well in interpreting the findings. Similar results were reported

by the Rhesus Macaque Genome Sequencing and Analysis Consortium (2007),

including 229 amino acid substitutions for which the amino acid identified as

mutant in human corresponds to the wild-type allele in macaque, chimpanzee,

and/or a reconstructed ancestral genome.

Human Disease Genes and Substitution Rates
What is the significance of having identified human disease gene homologs? Beyond

cataloguing the presence of orthologs, a next step is to relate the information on

mutations in human disease to the conservation of amino acid residues in orthologs.

Miller and Kumar (2001) selected seven genes that when mutated cause disease in

humans: the cystic fibrosis transmembrane regulator (CFTR), glucose-6-phosphate

dehydrogenase (G6PD), neural cell adhesion molecule L1 (L1CAM), phenylalanine

hydroxylase (PAH), paired box 6 (PAX6), the X-linked retinoschisis gene (RS1), and

TABLE 20-18 Human Disease Variants Matching theWild-Type Chimpanzee Allele
Gene Variant Disease Association Ancestral Frequency

AIRE P252L Autoimmune syndrome Unresolved 0

MKKS R518H Bardet–Biedl syndrome Wild type 0

MLH1 A441T Colorectal cancer Wild type 0

MYOC Q48H Glaucoma Wild type 0

OTC T125M Hyperammonemia Wild type 0

PRSS1 N29T Pancreatitis Disease 0

ABCA1 I883M Coronary artery disease Unresolved 0.136

APOE C130R Coronary artery disease and
Alzheimer’s disease

Disease 0.15

DIO2 T92A Insulin resistance Disease 0.35

ENPP1 K121Q Insulin resistance Disease 0.17

GSTP1 I105V Oral cancer Disease 0.348

PON1 I102V Prostate cancer Wild type 0.016

PON1 Q192R Coronary artery disease Disease 0.3

PPARG A12P Type 2 diabetes Disease 0.85

SLC2A2 T110I Type 2 diabetes Disease 0.12

UCP1 A64T Waist-to-hip ratio Disease 0.12

Notes: Variants are listed as benign variant, codon number, disease/chimpanzee variant. Ancestral variants
are inferred using primate outgroups. Frequency is of the disease allele in humans. PON1 (Q192R) is poly-
morphic in chimpanzee.
Source: Chimpanzee Sequencing and Analysis Consortium (2005). Used with permission.
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a tuberous sclerosis gene (TSC2). For each of these genes, two resources are available:

locus-specific databases of mutations that occur in patients and the sequences of a

variety of metazoan homologs (e.g., primates, rodents, fish, insects, and nematodes).

They generated multiple sequence alignments for each of these seven genes to test the

null hypothesis that point mutations occur randomly throughout each gene.

Following statistical tets (x2 analysis), they determined that most amino acids that

can produce human disease mutations are conserved (at least among mammals).

Variable sites correspond to positions where amino acid changes are tolerated due

to relaxed selection constraints.

As we discussed in Chapter 3, PAM and BLOSUM matrices (Figs. 3.14 and

3.17) reveal that the relative rates of evolutionary substitution vary for different

pairs of amino acids. Glutamic acid commonly changes to aspartic acid (in the

PAM250 matrix, the score is þ2); these two residues are both acidic and thus

share common physiochemical properties. However, glutamic acid rarely changes

to lysine (the PAM250 score is 0). In human disease, a glutamic acid-to-lysine

mutation commonly causes disease. Miller and Kumar (2001) displayed these find-

ings in a table showing the relative frequencies of amino acid changes observed in a

variety of eukaryotes (Fig. 20.17, circles) versus amino acid changes that have been

detected in patients (Fig. 20.17, squares).

FIGURE 20.17. Amino acid sub-
stitutions that occur in human
disease are generally not allowed
by natural selection. The figure
shows a table of the amino acids,
indicating the relative frequencies
of amino acid changes observed in
comparisons between various
eukaryotic species (circles) and
those changes detected in patients
with diseases (squares). The size
of the symbols is proportional to
the relative frequency of change
for a given amino acid. Diamonds
indicate changes that cannot be
observed as a result of a single
base mutation. From Miller and
Kumar (2001). Used with
permission.
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These analyses suggest that disease-associated changes tend to occur at

conserved residues. Furthermore, the amino acid changes found in human disease

do not commonly occur in comparisons between species. Sudhir Kumar and col-

leagues further extended these analyses to characterize over 8000 disease-associated

mutations in 541 genes (Subramanian and Kumar, 2006). They also showed a

nonrandom distribution of disease-causing nucleotide mutations within functional

domains (Miller et al., 2003).

FUNCTIONAL CLASSIFICATION OF DISEASE GENES

We conclude our study of human disease by considering the principles of human

disease. The variety of human diseases is extraordinarily broad, yet the field of bioin-

formatics may provide insight into a logic of disease. One such attempt was by

Jimenez-Sanchez et al. (2001), who analyzed 923 human genes that are associated

with human disease. These genes primarily cause monogenic disorders, as expected,

since at present we know of relatively few genes that are mutated in complex dis-

orders. They classified each disease gene according to the function of its protein

product (Fig. 20.18a). Enzymes represent the largest functional category and

account for 31% of the total gene products associated with disease. In contrast,

only 15% of positionally cloned disease genes encode enzymes. Thus, there may

FIGURE 20.18. The functions of
the protein products of disease
genes (from Jimenez-Sanchez
et al., 2001): (a) all genes
(n ¼ 923); (b–f) disease genes
listed according to the typical age
of onset of the disease phenotype.
Used with permission.
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You can see a list of positionally

cloned genes at Q http://genome.

nhgri.nih.gov/clone/.
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be some historical bias toward our knowledge of disease-causing mutations that are

based on enzymatic defects.

Jimenez-Sanchez et al. (2001) further analyzed the correlation between the func-

tion of a gene product and the age of disease onset (Figs. 20.18b to f). Genes encod-

ing enzymes and transcription factors are especially likely to be involved in disease in

utero, reflecting the importance of transcription factors in early development.

Enzymes are particularly involved in disease up to puberty (Figs. 20.18b to d).

The developing fetus has access to its mother’s metabolic systems and thus may be

viable even if it has a gene defect. After birth, such diseases are manifested.

Disease genes encoding enzymes are less prevalent in diseases having a later onset

in life (Fig. 20.18e).

All of the common diseases in this sample occur with only a rare frequency when

analyzed for any of four functional categories of disease—frequency, mode of inheri-

tance, age of onset, and reduction of life expectancy (Fig. 20.19, leftmost column).

This rare frequency reflects the population of disease genes that are currently avail-

able to study, that is, genes implicated in single-gene disorders. The mode of inheri-

tance tends to be autosomal recessive, particularly for genes encoding enzymes. As

described in Fig. 20.18 as well, the age of onset tends to be in utero for transcription

factors, from birth to one year for genes encoding enzymes, between one year and

puberty and into adulthood for receptors, and early adulthood for modifiers of
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(d) FIGURE 20.19. The character-
istics of diseases, organized by the
function of the protein encoded by
the disease gene. Abbreviations:
AR, autosomal recessive; AD, auto-
somal dominant; early adulthood,
puberty to ,50 years old; late
adulthood, .50 years old. From
Jimenez-Sanchez et al. (2001).
Used with permission.
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protein function (such as proteins that stabilize, activate, or fold other proteins). The

severity of the disease, reflected in reduction of life expectancy, varies for diseases

without a strong pattern based on functional categories.

These studies represent an early attempt to define a logic of disease. Such geno-

mic-scale efforts will be enhanced when we have more information available on the

genetic basis of complex disorders. Functional analyses may be combined using all

the tools of bioinformatics and genomics to help elucidate the relationship between

genotype and disease phenotype.

PERSPECTIVE

There are several kinds of bioinformatics approaches to human disease:

† Human disease is a consequence of variation in DNA sequence. These vari-

ations are catalogued in databases of molecular sequences (such as GenBank).

† Human disease databases have a major role in organizing information about

disease genes. There are centralized databases, most notably OMIM and

HGMD, as well as locus-specific mutation databases.

† Functional genomics screens provide insight into the mechanisms of disease

genes and disease processes.

PITFALLS

A fundamental gap in our understanding is how a genotype such as a mutated gene is

related to a disease phenotype. We can approach disease from either end of the spec-

trum. Starting with a disease phenotype, we can ask what genes, when mutated,

might cause this disease? Starting with a gene, we can ask what disease occurs

when this gene is mutated? However, connecting these two ends of the continuum

has been nearly impossible. For the majority of diseases, the discovery of a disease

gene has not yet led to the subsequent discovery of new treatment options or

cures, or to an understanding of pathophysiology. Examples are muscular dystrophy

and Rett syndrome. A hope is that bioinformatics and functional genomics

approaches may lead to an understanding of biochemical pathways that account

for the molecular basis of pathophysiology. This could be accomplished by learning

the function of disease-causing genes in model organisms or through high through-

put technologies such as microarrays that describe the transcriptional response of

susceptible cell types to the presence of a mutated gene.

WEB RESOURCES

We have defined bioinformatics as the use of computer algorithms

and computer databases to study genes, proteins, and genomes.

For human disease, a number of databases are available on the

World Wide Web (Guttmacher, 2001). Table 20.19 lists some of

these resources, including organizations that provide information

to families of those with any of several hundred different diseases.

Table 20.20 lists some web resources for the study and treatment

of cancer.
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TABLE 20-19 GeneralWeb Resources for Study of Human Diseases
Site Description URL

Diseases, Disorders and
Related Topics

Karolinska Institute (Stockholm) Q http://www.mic.ki.se/
Diseases/

The Frequency of
Inherited Disorders
Database (FIDD)

From the Institute of Medical
Genetics University of Wales
College of Medicine

Q http://archive.uwcm.ac.uk/
uwcm/mg/fidd/

GeneCards A database of human genes, their
products, and their involvement
in diseases

Q http://bioinfo.weizmann.ac.
il/cards/

Genes and Disease
(NCBI)

Organized by chromosome,
provides descriptions of 60
diseases

Q http://www.ncbi.nlm.nih.
gov/disease/

GeneClinics A clinical information resource
from the University of
Washington, Seattle

Q http://www.geneclinics.org/

Genetic Alliance International coalition of
individuals, professionals, and
genetic support organizations

Q http://www.geneticalliance.
org/; search form Q http://
www.geneticalliance.org/
diseaseinfo/search.html

Inherited Disease Genes
Identified by
Positional Cloning

From the National Human
Genome Research Institute
(NHGRI) at the NIH

Q http://genome.nhgri.nih.
gov/clone/

The National
Information Center
for Children and
Youth with
Disabilities

An information and referral center
in the United States

Q http://www.nichcy.org/

National Organization
for Rare Disorders
(NORD)

Federation of voluntary health
organizations dedicated to
helping people with rare
“orphan” diseases and assisting
the organizations that serve
them

Q http://www.rarediseases.
org/

Online Mendelian
Inheritance in Man
(OMIM)

Over 12,000 entries Q http://www.ncbi.nlm.nih.
gov/entrez/query.
fcgi?db ¼ OMIM

TABLE 20-20 Web Resources for Study of Cancer
Resource Description URL

ACOR Association of Cancer Online
Resources

Q http://www.acor.org/

Atlas of Genetics and
Cytogenetics in Oncology
and Haematology

A peer-reviewed online journal
and cancer database

Q http://www.infobiogen.
fr/services/
chromcancer/

Cancer Chromosome
Aberration Project

Tools to define and
characterize chromosomal
alterations in cancer

Q http://cgap.nci.nih.gov/
Chromosomes/CCAP

The Cancer Gene Anatomy
Project (CGAP)

At NCBI Q http://www.ncbi.nlm.
nih.gov/ncicgap/

The Cancer Genome Project The Wellcome Trust Sanger
Institute

Q http://www.sanger.ac.
uk/CGP/

(Continued )
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DISCUSSION QUESTIONS

PROBLEMS

TABLE 20-20 Continued
Resource Description URL

CancerNet At the National Cancer
Institute (of the NIH)

Q http://cancernet.nci.
nih.gov/

CancerWEB Cancer resource site Q http://cancerweb.ncl.ac.
uk/

Children’s Cancer Web Directory of childhood cancer
resources

Q http://www.
CancerIndex.org/ccw/

Mitelman Database of
Chromosome Aberrations
in Cancer

Relates chromosomal
aberrations to tumor
characteristics

Q http://cgap.nci.nih.gov/
Chromosomes/
Mitelman

OncoLink Cancer information for the
general public

Q http://oncolink.upenn.
edu/

[20-1] Many neurologicaldiseases such asRett syndrome, vanishing

white matter syndrome, and Huntington disease have devas-

tating consequences on brain function. For some of these dis-

eases, the responsible genes have homologs in single-celled

organisms such as fungi. Why do you think this is so?

[20-2] How have microarrays been used to study human disease?

What are some specific examples of progress that has been

made?

[20-1] How many inherited diseases have a known sequence associ-

ated with them? Visit OMIM and search for the number of

genes having allelic variants.

[20-2] Mutations in MECP2 cause Rett syndrome.

† Explore this gene and this disease in OMIM. What is the phe-

notype of the disease? What chromosome is MECP2 localized

to? How many allelic variants are reported? Are mouse models

available?

† Explore MECP2 at a locus-specific mutation database,

RettBase. Compare the types of information you obtain

from this resource versus OMIM.

† Explore MECP2 at dbSNP. Are there any SNPs that corre-

spond to disease-associated substitutions? Do any SNPs

alter the amino acid sequence?

† Explore MECP2 at the UCSC Genome Browser. Again com-

pare the types of information you obtain from this resource

versus OMIM.

[20-3] Some human disease alleles correspond to the wild-type

sequence of closely related chimpanzee and/or rhesus macaque

proteins. Align the human, macaque, chimpanzee, rat, and

mouse sequences for the proteins encoded by the following

genes. Foreach, the description N . A:CHMTrefers to the con-

sensus human amino acid N (normal), the disease associated

form A (altered), C (chimpanzee), H (inferred human/chimpan-

zee ancestor), M (rhesus macaque), T (inferred human/rhesus

ancestor using mouse and dog as outgroup species).

† ABCA4 (Stargardt disease; chromosome 1), R . Q:RRQR;

H . R:RRRR

† CFTR (cystic fibrosis; chromosome 7), F . L:FFLL; K .

R:KKRK

† PAH (phenylketonuria; chromosome 12), Y . H:YYHY; I .

T:IITI

† OTC (ornithine hyperammonemia; chromosome X), R .

H:RRHH; T . M:MTTT

Resources to find these alignments include the HomoloGene

project at NCBI and the comparative genomics tracks at the

UCSC Genome Browser.
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SELF-TEST QUIZ

[20-1] In humans, disorders that are inherited by simple Mendelian

inheritance account for about what percentage of all human

disease?

(a) 1%

(b) 10%

(c) 50%

(d) It is impossible to accurately measure the percentage.

[20-2] To a significant extent, susceptibility to an environmentally

caused disorder such as poisoning from lead paint is deter-

mined by an individual’s genes.

(a) True

(b) False

[20-3] Which of the following best describes single gene disorders?

Each single gene disorder:

(a) Is caused by a mutation in a single gene. They represent a

basic category of disease that is in contrast to complex

disorders.

(b) Is caused primarily by a mutation in a single gene, but the

disease process always involves the contribution of many

genes. Thus, they represent a category of disease along a

continuum with complex disorders.

(c) Is primarily caused by a mutation in a single gene in which

the mutation almost always introduces a synonymous

substitution.

(d) Is primarily caused by a mutation in a single gene in which

the mutation almost always introduces a nonsynonymous

substitution.

[20-4] In total, rare diseases in the United States affect about how

many people?

(a) 200,000

(b) 2 million

(c) 25 million

(d) 100 million

[20-5] Single gene disorders tend to be

(a) Rare in the general population, with an early onset in

life

(b) Common in the general population, with an early onset in

life

(c) Rare in the general population, with a late onset in life

(d) Common in the general population, with a late onset in

life

[20-6] Online Mendelian Inheritance in Man (OMIM) includes

entries that focus on:

(a) Particular diseases

(b) Particular genes

(c) Either genes or diseases

(d) Complex chromosomal disorders

[20-7] There are several hundred locus-specific databases. What infor-

mation do they offer that is not available in central databases

such as OMIM and GeneCards?

(a) Comprehensive descriptions of the gene implicated in a

disease

(b) Comprehensive lists of mutations associated with disease

(c) Links to foundations and other organizations

(d) Links to chromosome maps displaying the disease-causing

gene

[20-8] Genome-wide association studies

(a) Often use array CGH technology

(b) Sometimes include family-based designs

(c) Sometimes include over 10,000 subjects

(d) Are often applied to single-gene disorders

[20-9] Human disease genes have orthologs in a variety of organisms,

including worms, insects, and fungi. For a number of human

proteins that are implicated in disease, multiple sequence align-

ments with orthologous proteins have been made. These show

that amino acid positions associated with disease-causing

mutations in human proteins tend to be residues that are

(a) Strongly conserved in other organisms

(b) Sometimes conserved in other organisms

(c) Poorly conserved in other organisms

(d) Only sometimes aligned with orthologous sequences

SUGGESTED READING

An essential resource for the study of human disease is The

Metabolic and Molecular Basis of Inherited Disease (Scriver et al.,

2001). This four-volume tome has hundreds of chapters, includ-

ing introductions to disease from a variety of perspectives

(e.g., Mendelian disorders, complex disorders, a logic of disease,

mutation mechanisms, and animal models). A recommended

introduction to disease is an essay by Barton Childs and David

Valle (2000) in the inaugural volume of Annual Review of

Genomics and Human Genetics. The February 2001 issues of

Science and Nature on the human genome included brief articles

on human disease by Leena Peltonen and Victor McKusick

(2001) and Jimenez-Sanchez et al. (2001). For a review of linkage

and association approaches, see Hirschhorn and Daly (2005),

Altshuler et al. (2008), and McCarthy et al. (2008).
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1835 à 1840 sur les Matières Albumineuses. Imprimerie C.-F.

Denis, Commercy, 1842.

DiMauro, S., and Schon, E. A. Mitochondrial DNA mutations in

human disease. Am. J. Med. Genet. 106, 18–26 (2001).

DiMauro, S., and Schon, E. A. Mitochondrial disorders in the

nervous system. Annu. Rev. Neurosci. 31, 91–123 (2008).

Dipple, K. M., and McCabe, E. R. Modifier genes convert

“simple” Mendelian disorders to complex traits. Mol. Genet.

Metab. 71, 43–50, (2000).

886 HUMAN DISEASE



Dipple, K. M., Phelan, J. K., and McCabe, E. R. Consequences of

complexity within biological networks: Robustness and health,

or vulnerability and disease. Mol. Genet. Metab. 74, 45–50

(2001).

Eichinger, L., et al. The genome of the social amoeba Dictyostelium

discoideum. Nature 435, 43–57 (2005).

Flejter, W. L., et al. Cytogenetic and molecular analysis of inv

dup(15) chromosomes observed in two patients with autistic

disorder and mental retardation. Am. J. Med. Genet. 61,

182–187 (1996).

Fombonne, E. The epidemiology of autism: A review. Psychol.

Med. 29, 769–786 (1999).

Garrod, A. E. The incidence of alkaptonuria: A study in chemical

individuality. Lancet ii, 1616–1620 (1902).

Garrod, A. E. Inborn errors of metabolism: The Croonian

Lectures delivered before the Royal College of Physicians of

London, in June, 1908. Frowde, Hodder and Stoughton,

London, 1909.

Garrod, A. E. Inborn Factors in Disease: An Essay. Clarendon Press,

Oxford, 1931.

Geerdink, N., et al. MECP2 mutation in a boy with severe neonatal

encephalopathy: Clinical, neuropathological and molecular

findings. Neuropediatrics 33, 33–36 (2002).

George, R. A., Smith, T. D., Callaghan, S., Hardman, L., Pierides,

C., Horaitis, O., Wouters, M. A., and Cotton, R. G.

General mutation databases: Analysis and review. J. Med.

Genet. 45, 65–70 (2008).

Giardine, B., et al. HbVar database of human hemoglobin variants

and thalassemia mutations: 2007 update. Hum. Mutat. 28, 206

(2007a).

Giardine, B., et al. PhenCode: Connecting ENCODE data with

mutations and phenotype. Hum. Mutat. 28, 554–562 (2007b).

Gillberg, C., and Wing, L. Autism: Not an extremely rare disorder.

Acta Psychiatr. Scand. 99, 399–406 (1999).

Greenman, C., et al. Patterns of somatic mutation in human

cancer genomes. Nature 446, 153–158 (2007).

Gusella, J. F. Location cloning strategy for characterizing genetic

defects in Huntington’s disease and Alzheimer’s disease.

FASEB J. 3, 2036–2041 (1989).

Guttmacher, A. E. Human genetics on the web. Annu. Rev.

Genomics Hum. Genet. 2, 213–233 (2001).

Guy, J., Gan, J., Selfridge, J., Cobb, S., and Bird, A. Reversal of

neurological defects in a mouse model of Rett syndrome.

Science 315, 1143–1147 (2007).

Hagberg, B., Aicardi, J., Dias, K., and Ramos, O. A progressive

syndrome of autism, dementia, ataxia, and loss of purposeful

hand use in girls: Rett’s syndrome: report of 35 cases. Ann.

Neurol. 14, 471–479 (1983).

Hammer, S., Dorrani, N., Dragich, J., Kudo, S., and Schanen, C.

The phenotypic consequences of MECP2 mutations extend

beyond Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev.

8, 94–98 (2002).

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., and

McKusick, V. A. Online Mendelian Inheritance in Man

(OMIM), a knowledgebase of human genes and genetic dis-

orders. Nucleic Acids Res. 33, D514–D517 (2005).

Hill, A. V., The genomics and genetics of human infectious disease

susceptibility. Annu. Rev. Genomics Hum. Genet. 2, 373–400

(2001).

Hirschhorn, J. N., and Daly, M. J. Genome-wide association

studies for common diseases and complex traits. Nat. Rev.

Genet. 6, 95–108 (2005).

Holt, I. J., Harding, A. E., and Morgan-Hughes, J. A. Deletions of

muscle mitochondrial DNA in patients with mitochondrial

myopathies. Nature 331, 717–719, 1988.

Hrabe de Angelis, M., and Strivens, M. Large-scale production of

mouse phenotypes: The search for animal models for inherited

diseases in humans. Brief. Bioinform. 2, 170–180 (2001).

Human Genome Structural Variation Working Group, et al.

Completing the map of human genetic variation. Nature 447,

161–165 (2007).

International Molecular Genetic Study of Autism Consortium.

A full genome screen for autism with evidence for linkage to a

region on chromosome 7q. Hum. Mol. Genet. 7, 571–578

(1998).

Jellinger, K., Armstrong, D., Zoghbi, H. Y., and Percy, A. K.

Neuropathology of Rett syndrome. Acta Neuropathol. 76,

142–158 (1988).

Jimenez-Sanchez, G., Childs, B., and Valle, D. Human disease

genes. Nature 409, 853–855 (2001).

Johnston, M. V., Blue, M. E., and Naidu, S. Rett syndrome and

neuronal development. J. Child Neurol. 20, 759–763 (2005).

Knoppers, B. M., and Laberge, C. M. Ethical guideposts for allelic

variation databases. Hum. Mutat. 15, 30–35 (2000).

Knudson, A. G., Jr. Mutation and cancer: Statistical study of

retinoblastoma. Proc. Natl. Acad. Sci. USA 68, 820–823

(1971).

Knutsen, T., Gobu, V., Knaus, R., Padilla-Nash, H., Augustus,

M., Strausberg, R. L., Kirsch, I. R., Sirotkin, K., and Ried,

T. The interactive online SKY/M-FISH & CGH database

and the Entrez cancer chromosomes search database:

Linkage of chromosomal aberrations with the genome

sequence. Genes Chromosomes Cancer 44, 52–64 (2005).

Laird, N. M., and Lange, C. Family-based designs in the age of

large-scale gene-association studies. Nat. Rev. Genet. 7,

385–394 (2006).

Lamb, J. A., Moore, J., Bailey, A., and Monaco, A. P. Autism:

Recent molecular genetic advances. Hum. Mol. Genet. 9,

861–868 (2000).

Lintas, C., and Persico, A. M. Autistic phenotypes and genetic

testing: state-of-the-art for the clinical geneticist. J. Med.

Genet. 46, 1–8 (2009).

Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., and

Murray, C. J. Global and regional burden of disease and risk

REFERENCES 887



factors, 2001: Systematic analysis of population health data.

Lancet 367, 1747–1757 (2006).

Lowrance, W. W., and Collins, F. S. Identifiability in genomic

research. Science 317, 600–602 (2007).

Lupski, J. R. Genomic disorders: Structural features of the genome

can lead to DNA rearrangements and human disease traits.

Trends Genet. 14, 417–422 (1998).

Lupski, J. R., and Stankiewicz, P. Genomic disorders: Molecular

mechanisms for rearrangements and conveyed phenotypes.

PLoS Genet. 1, e49 (2005).

Mailman, M. D., et al. The NCBI dbGaP database of genotypes

and phenotypes. Nat. Genet. 39, 1181–1186 (2007).

Mathers, C. D., and Loncar, D. Projections of global mortality and

burden of disease from 2002 to 2030. PLoS Med. 3, e442

(2006).

McCarthy, M. I., Abecasis, G. R., Cardon, L. R., Goldstein, D. B.,

Little, J., Ioannidis, J. P., and Hirschhorn, J. N. Genome-wide

association studies for complex traits: consensus, uncertainty

and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

McKusick, V. A. Mendelian Inheritance in Man and its online ver-

sion, OMIM. Am. J. Hum. Genet. 80, 588–604 (2007).

Miller, M. P., and Kumar, S. Understanding human disease

mutations through the use of interspecific genetic variation.

Hum. Mol. Genet. 10, 2319–2328 (2001).

Miller, M. P., Parker, J. D., Rissing, S. W., and Kumar, S.

Quantifying the intragenic distribution of human disease

mutations. Ann. Hum. Genet. 67, 567–579 (2003).

Murray, C. J. L., and Lopez, A. D. (eds.) The Global Burden of

Disease. Harvard University Press, Cambridge, 1996.

Nan, X., Campoy, F. J., and Bird, A. MeCP2 is a transcriptional

repressor with abundant binding sites in genomic chromatin.

Cell 88, 471–481 (1997).

Nass, S., and Nass, M. M. K. Intramitochondrial fibers with DNA

characteristics. J. Cell Biol. 19, 613–629 (1963).

NCI-NHGRI Working Group on Replication in Association

Studies, et al. Replicating genotype-phenotype associations.

Nature 447, 655–660 (2007).

Ng, H. H., and Bird, A. DNA methylation and chromatin modifi-

cation. Curr. Opin. Genet. Dev. 9, 158–163 (1999).

Nolan, P. M., Hugill, A., and Cox, R. D. ENU mutagenesis in the

mouse: Application to human genetic disease. Briefings

Functional Genomics Proteomics 1, 278–289 (2002).

Olsson, I., Steffenburg, S., and Gillberg, C. Epilepsy in autism and

autisticlike conditions. A population-based study. Arch. Neurol.

45, 666–668 (1988).

Ott, J. Major strengths and weaknesses of the LOD score method.

Adv. Genet. 42, 125–132 (2001).

Patrinos, G. P., and Brookes, A. J. DNA, diseases and

databases: Disastrously deficient. Trends Genet. 21, 333–338

(2005).

Pauling, L., Itano, H. A., Singer, S. J., and Wells, I. C. Sickle cell

anemia, a molecular disease. Science 110, 543–548 (1949).

Peltonen, L., and McKusick, V. A. Genomics and medicine.

Dissecting human disease in the postgenomic era. Science

291, 1224–1229 (2001).

Percy, A. K. Rett syndrome: recent research progress. J. Child

Neurol. 23, 543–549 (2008).

Philippe, A., et al. Genome-wide scan for autism susceptibility

genes. Paris Autism Research International Sibpair Study.

Hum. Mol. Genet. 8, 805–812 (1999).

Purcell, S., et al. PLINK: A tool set for whole-genome association

and population-based linkage analyses. Am. J. Hum. Genet. 81,

559–575 (2007).

Ramocki, M. B., and Zoghbi, H. Y. Failure of neuronal homeosta-

sis results in common neuropsychiatric phenotypes. Nature

455, 912–918 (2008).

Rapin, I., and Tuchman, R. F. What is new in autism? Curr. Opin.

Neurol. 21, 143–149 (2008).

Rat Genome Sequencing Project Consortium. Genome sequence

of the Brown Norway rat yields insights into mammalian evol-

ution. Nature 428, 493–521 (2004).

Razin, A. CpG methylation, chromatin structure and gene silen-

cing: A three-way connection. EMBO J 17, 4905–4908

(1998).

Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., and Bier, E.

A systematic analysis of human disease-associated gene

sequences in Drosophila melanogaster. Genome Res. 11,

1114–1125 (2001).

Rhesus Macaque Genome Sequencing and Analysis Consortium,

et al. Evolutionary and biomedical insights from the rhesus

macaque genome. Science 316, 222–234 (2007).

Rubin, G. M., et al. Comparative genomics of the eukaryotes.

Science 287, 2204–2215 (2000).

Ruiz-Pesini, E., Lott, M. T., Procaccio, V., Poole, J. C., Brandon,

M. C., Mishmar, D., Yi, C., Kreuziger, J., Baldi, P., and

Wallace, D. C. An enhanced MITOMAP with a global

mtDNA mutational phylogeny. Nucleic Acids Res. 35, D823–

D828 (2007).

Safran, M., et al. Human Gene-Centric Databases at the

Weizmann Institute of Science: GeneCards, UDB, CroW 21

and HORDE. Nucleic Acids Res. 31, 142–146 (2003).

Schon, E. A. Mitochondrial genetics and disease. Trends Biochem.

Sci. 25, 555–560 (2000).

Scriver, C. R., and Childs, B. Garrod’s Inborn Factors in Disease.

Oxford University Press, New York, 1989.

Scriver, C. R., Nowacki, P. M., and Lehvaslaiho, H. Guidelines

and recommendations for content, structure, and deployment

of mutation databases. Hum. Mutat. 13, 344–350 (1999).

Scriver, C. R., Nowacki, P. M., and Lehvaslaiho, H. Guidelines

and recommendations for content, structure, and deployment

888 HUMAN DISEASE



of mutation databases: II. Journey in progress. Hum. Mutat. 15,

13–15 (2000).

Scriver, C., Beaudet, A., Sly, W., and Valle, D. (eds.). The Metabolic

and Molecular Basis of Inherited Disease. McGraw-Hill,

New York, 2001.
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Glossary
This glossary is combined from five web-based glossaries and each entry is marked accordingly: (1) the

National Center for Biotechnology Information (NCBI), (2) the Oak Ridge National Laboratory

(ORNL), (3) the talking glossary at the National Human Genome Research Institute (NHGRI), (4)

the SMART database, and (5) the protein folds glossary from the Structural Classification of

Proteins website (SCOP) (these entries are modified). Additional web-based glossaries are listed in a

table at the end of this glossary.

The glossaries are online at:

† Q http://www.ncbi.nlm.nih.gov/
Education/BLASTinfo/glossary2.

html

† Q http://www.ornl.gov/
TechResources/Human_Genome/
glossary/

† Q http://www.genome.gov/glossary.

cfm

† Q http://smart.embl-heidelberg.de/

help/smart_glossary.shtml

† Q http://scop.mrc-lmb.cam.ac.uk/

scop/gloss.html

A

Additive genetic effects

When the combined effects of alleles at different loci are equal to the

sum of their individual effects. (ORNL)

Adenine (A)

A nitrogenous base, one member of the base pair AT (adenine–thy-

mine). See also: base pair. (ORNL)

Algorithm

A fixed procedure embodied in a computer program. (NCBI)

Alignment

(a) The process of lining up two or more sequences to achieve maximal

levels of identity (and conservation, in the case of amino acid

sequences) for the purpose of assessing the degree of similarity and

the possibility of homology. (NCBI) (b) Representation of a prediction

of the amino acids in tertiary structures of homologs that overlay in

three dimensions. Alignments held by SMART are mostly based on

published observations (see domain annotations for details) but are

updated and edited manually. (SMART)

All alpha

A class that has the number of secondary structures in the domain or

common core described as 3-, 4-, 5-, 6-, or multihelical. (SCOP)

All beta

A class that includes two major fold groups: sandwiches and barrels.

The sandwich folds are made of two b sheets which are usually twisted

and packed so their strands are aligned. The barrel folds are made of a

single b sheet that twists and coils upon itself so, in most cases, the first

strand in the b sheet hydrogen bonds to the last strand. The strand

directions in the two opposite sides of a barrel fold are roughly ortho-

gonal. Orthogonal packing of sheets is also seen in a few special cases

of sandwich folds. (SCOP)

Allele

(a) Alternative form of a genetic locus; a single allele for each locus is

inherited from each parent (e.g., at a locus for eye color the allele

might result in blue or brown eyes). (ORNL) (b) One of the variant

forms of a gene at a particular locus, or location, on a chromosome.

Different alleles produce variation in inherited characteristics such as

hair color or blood type. In an individual, one form of the allele (the

dominant one) may be expressed more than another form (the recessive

one). (NHGRI)

Allogeneic

Variation in alleles among members of the same species. (ORNL)

Alternative splicing

Different ways of combining a gene’s exons to make variants of the

complete protein. (ORNL)

Amino acid

Any of a class of 20 molecules that are combined to form proteins in

living things. The sequence of amino acids in a protein and hence

protein function are determined by the genetic code. (ORNL)

Amplification

An increase in the number of copies of a specific DNA fragment; can be

in vivo or in vitro. See also: cloning. (ORNL)

Animal model

See: model organisms. (ORNL)

Annotation

Adding pertinent information such as gene coded for, amino acid

sequence, or other commentary to the database entry of raw sequence

of DNA bases. See also: bioinformatics. (ORNL)

Anticipation

Each generation of offspring has increased severity of a genetic dis-

order; e.g., a grandchild may have earlier onset and more severe symp-

toms than the parent, who had earlier onset than the grandparent. See

also: additive genetic effects, complex trait. (ORNL)

Antisense

Nucleic acid that has a sequence exactly opposite to an mRNA mol-

ecule made by the body; binds to the mRNA molecule to prevent a

protein from being made. See also: transcription. (ORNL)

Apoptosis

Programmed cell death, the body’s normal method of disposing of

damaged, unwanted, or unneeded cells. (ORNL)
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Array (of hairpins)

An assemble of a helices that cannot be described as a bundle or a

folded leaf. (SCOP)

Arrayed library

Individual primary recombinant clones (hosted in phage, cosmid,

YAC, or other vector) that are placed in two-dimensional arrays in

microtiter dishes. Each primary clone can be identified by the identity

of the plate and the clone location (row and column) on that plate.

Arrayed libraries of clones can be used for many applications, including

screening for a specific gene or genomic region of interest. See also:

library, genomic library, gene chip technology. (ORNL)

Assembly

Putting sequenced fragments of DNA into their correct chromosomal

positions. (ORNL)

Autoradiography

A technique that uses x-ray film to visualize radioactively labeled mol-

ecules or fragments of molecules; used in analyzing length and number

of DNA fragments after they are separated by gel electrophoresis.

(ORNL)

Autosomal dominant

A gene on one of the non-sex chromosomes that is always expressed,

even if only one copy is present. The chance of passing the gene to off-

spring is 50% for each pregnancy. See also: autosome, dominant, gene

(ORNL)

Autosome

A chromosome not involved in sex determination. The diploid human

genome consists of a total of 46 chromosomes: 22 pairs of autosomes

and 1 pair of sex chromosomes (the X and Y chromosomes). See

also: sex chromosome. (ORNL)

B

Backcross

A cross between an animal that is heterozygous for alleles obtained

from two parental strains and a second animal from one of those par-

ental strains. Also used to describe the breeding protocol of an outcross

followed by a backcross. See also: model organisms. (ORNL)

Bacterial artificial chromosome (BAC)

(a) A vector used to clone DNA fragments (100 to 300 kb insert size;

average, 150 kb) in Escherichia coli cells. Based on naturally occurring

F-factor plasmid found in the bacterium E. coli. See also: cloning

vector. (ORNL) (b) Large segments of DNA, 100,000 to 200,000

bases, from another species cloned into bacteria. Once the foreign

DNA has been cloned into the host bacteria, many copies of it can

be made. (NHGRI)

Bacteriophage

See: phage. (ORNL)

Barrel

Structures are usually closed by main-chain hydrogen bonds between

the first and last strands of the b sheet; in this case it is defined by

the two integer numbers: the number of strands in the b sheet, n,

and a measure of the extent to which the strands in the sheet are stag-

gered, the shear number S. (SCOP)

Base

One of the molecules that form DNA and RNA molecules. See also:

nucleotide, base pair, base sequence. (ORNL)

Base pair (bp)

Two nitrogenous bases (adenine and thymine or guanine and cytosine)

held together by weak bonds. Two strands of DNA are held together in

the shape of a double helix by the bonds between base pairs. (ORNL)

Base sequence

The order of nucleotide bases in a DNA molecule; determines the

structure of proteins encoded by that DNA. (ORNL)

Base sequence analysis

A method, sometimes automated, for determining the base sequence.

(ORNL)

Behavioral genetics

The study of genes that may influence behavior. (ORNL)

Beta (b) sheet

Can be antiparallel (i.e., the strand direction in any two adjacent

strands are antiparallel), parallel (all strands are parallel to each

other), and mixed (there is one strand at least that is parallel to one

of its two neighbors and antiparallel to the other). (SCOP)

Bioinformatics

(a) The merger of biotechnology and information technology with the

goal of revealing new insights and principles in biology. (NCBI) (b)

The science of managing and analyzing biological data using advanced

computing techniques. Especially important in analyzing genomic

research data. (ORNL)

Bioremediation

The use of biological organisms such as plants or microbes to aid in

removing hazardous substances from an area. (ORNL)

Biotechnology

A set of biological techniques developed through basic research and

now applied to research and product development. In particular, bio-

technology refers to the use by industry of recombinant DNA, cell

fusion, and new bioprocessing techniques. (ORNL)

Birth defect

Any harmful trait, physical or biochemical, present at birth, whether a

result of a genetic mutation or some other nongenetic factor. See also:

congenital, gene, mutation, syndrome. (ORNL)

Bit score

(a) The value S0 is derived from the raw alignment score S in which the

statistical properties of the scoring system used have been taken into

account. Because bit scores have been normalized with respect to the

scoring system, they can be used to compare alignment scores from

different searches. (NCBI) (b) Alignment scores are reported by

HMMer and BLAST as bit scores. The likelihood that the query

sequence is a bona fide homolog of the database sequence is compared

to the likelihood that the sequence was instead generated by a

“random” model. Taking the logarithm (to base 2) of this likelihood

ratio gives the bit score. (SMART)

BLAST

(a) Basic Local Alignment Search Tool. A sequence comparison algor-

ithm optimized for speed used to search sequence databases for opti-

mal local alignments to a query. The initial search is done for a word

892 GLOSSARY



of length W that scores at least T when compared to the query using a

substitution matrix. Word hits are then extended in either direction in

an attempt to generate an alignment with a score exceeding the

threshold of S. The T parameter dictates the speed and sensitivity of

the search. For additional details, see one of the BLAST tutorials

(Query or BLAST) or the narrative guide to BLAST. (NCBI) (b) A

computer program that identifies homologous (similar) genes in differ-

ent organisms, such as human, fruit fly, or nematode. (ORNL)

BLOSUM

Blocks Substitution Matrix. A substitution matrix in which scores for

each position are derived from observations of the frequencies of sub-

stitutions in blocks of local alignments in related proteins. Each matrix

is tailored to a particular evolutionary distance. In the BLOSUM62

matrix, for example, the alignment from which scores were derived

was created using sequences sharing no more than 62% identity.

Sequences more identical than 62% are represented by a single

sequence in the alignment so as to avoid overweighting closely related

family members. (NCBI)

Bundle

An array of a helices each oriented roughly along the same (bundle)

axis. It may have twist, left handed if each helix makes a positive

angle to the bundle axis or right handed if each helix makes a negative

angle to the bundle axis. (SCOP)

C

Cancer

Diseases in which abnormal cells divide and grow unchecked. Cancer

can spread from its original site to other parts of the body and can be

fatal. See also: hereditary cancer, sporadic cancer. (ORNL)

Candidate gene

A gene located in a chromosome region suspected of being involved in a

disease. See also: positional cloning, protein. (ORNL)

Capillary array

Gel-filled silica capillaries used to separate fragments for DNA sequen-

cing. The small diameter of the capillaries permit the application of

higher electric fields, providing high speed, high throughput separ-

ations that are significantly faster than traditional slab gels. (ORNL)

Carcinogen

Something that causes cancer to occur by causing changes in a cell’s

DNA. See also: mutagen. (ORNL)

Carrier

An individual who possesses an unexpressed, recessive trait. (ORNL)

cDNA library

A collection of DNA sequences that code for genes. The sequences are

generated in the laboratory from mRNA sequences. See also: messenger

RNA. (ORNL)

Cell

The basic unit of any living organism that carries on the biochemical

processes of life. See also: genome, nucleus. (ORNL)

Centimorgan (cM)

A unit of measure of recombination frequency. One centimorgan is

equal to a 1% chance that a marker at one genetic locus will be separ-

ated from a marker at a second locus due to crossing over in a single

generation. In human beings, one centimorgan is equivalent, on aver-

age, to one million base pairs. See also: megabase. (ORNL)

Centromere

A specialized chromosome region to which spindle fibers attach during

cell division. (ORNL)

Chimera (plural chimaera)

An organism that contains cells or tissues with a different genotype.

These can be mutated cells of the host organism or cells from a different

organism or species. (ORNL)

Chloroplast chromosome

Circular DNA found in the photosynthesizing organelle (chloroplast)

of plants instead of the cell nucleus, where most genetic material is

located. (ORNL)

Chromosomal deletion

The loss of part of a chromosome’s DNA. (ORNL)

Chromosomal inversion

Chromosome segments that have been turned 1808. The gene

sequence for the segment is reversed with respect to the rest of the

chromosome. (ORNL)

Chromosome

The self-replicating genetic structure of cells containing the cellular

DNA that bears in its nucleotide sequence the linear array of genes.

In prokaryotes, chromosomal DNA is circular and the entire genome

is carried on one chromosome. Eukaryotic genomes consist of a

number of chromosomes whose DNA is associated with different

kinds of proteins. (ORNL)

Chromosome painting

Attachment of certain fluorescent dyes to targeted parts of the chromo-

some. Used as a diagnostic for particular diseases, e.g., types of

leukemia. (ORNL)

Chromosome region p

A designation for the short arm of a chromosome. (ORNL)

Chromosome region q

A designation for the long arm of a chromosome. (ORNL)

Clone

An exact copy made of biological material such as a DNA segment

(e.g., a gene or other region), a whole cell, or a complete organism.

(ORNL)

Clone bank

See: genomic library. (ORNL)

Cloning

Using specialized DNA technology to produce multiple, exact copies

of a single gene or other segment of DNA to obtain enough material

for further study. This process, used by researchers in the Human

Genome Project, is referred to as cloning DNA. The resulting cloned

(copied) collections of DNA molecules are called clone libraries. A

second type of cloning exploits the natural process of cell division to

make many copies of an entire cell. The genetic makeup of these

cloned cells, called a cell line, is identical to the original cell. A third

type of cloning produces complete, genetically identical animals such

as the famous Scottish sheep, Dolly. See also: cloning vector. (ORNL)
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Cloning vector

DNA molecule originating from a virus, a plasmid, or the cell of a

higher organism into which another DNA fragment of appropriate

size can be integrated without loss of the vector’s capacity for self-repli-

cation; vectors introduce foreign DNA into host cells, where the DNA

can be reproduced in large quantities. Examples are plasmids, cosmids,

and yeast artificial chromosomes; vectors are often recombinant mol-

ecules containing DNA sequences from several sources. (ORNL)

Closed, Partly Opened, and Opened

For all-alpha structures, the extent to which the hydrophobic core is

screened by the comprising a helices. Opened means that there is

space for at least one more helix to be easily attached to the core.

(SCOP)

Code

See: genetic code. (ORNL)

Codominance

Situation in which two different alleles for a genetic trait are both

expressed. See also: autosomal dominant, recessive gene. (ORNL)

Codon

See: genetic code. (ORNL)

Coisogenic or congenic

Nearly identical strains of an organism; they vary at only a single locus.

(ORNL)

Comparative genomics

The study of human genetics by comparisons with model organisms

such as mice, the fruitfly, and the bacterium Escherichia coli. (ORNL)

Complementary DNA (cDNA)

DNA that is synthesized in the laboratory from a messenger RNA

template. (ORNL)

Complementary sequence

Nucleic acid–base sequence that can form a double-stranded structure

with another DNA fragment by following base-pairing rules (A pairs

with T and C with G). The complementary sequence to GTAC, for

example, is CATG. (ORNL)

Complex trait

Trait that has a genetic component that does not follow strict

Mendelian inheritance. May involve the interaction of two or more

genes or gene–environment interactions. See also: Mendelian inheri-

tance, additive genetic effects. (ORNL)

Computational biology

See: bioinformatics. (ORNL)

Confidentiality

In genetics, the expectation that genetic material and the information

gained from testing that material will not be available without the

donor’s consent. (ORNL)

Congenital

Any trait present at birth, whether the result of a genetic or nongenetic

factor. See also: birth defect. (ORNL)

Conservation

Changes at a specific position of an amino acid or (less commonly,

DNA) sequence that preserve the physicochemical properties of the

original residue. (NCBI)

Conserved sequence

A base sequence in a DNA molecule (or an amino acid sequence in a

protein) that has remained essentially unchanged throughout evol-

ution. (ORNL)

Contig

Group of cloned (copied) pieces of DNA representing overlapping

regions of a particular chromosome. (ORNL)

Contig map

A map depicting the relative order of a linked library of overlapping

clones representing a complete chromosomal segment. (ORNL)

Cosmid

Artificially constructed cloning vector containing the cos gene of phage

lambda. Cosmids can be packaged in lambda phage particles for infec-

tion into Escherichia coli; this permits cloning of larger DNA fragments

(up to 45 kb) that can be introduced into bacterial hosts in plasmid

vectors. (ORNL)

Crossing over

The breaking during meiosis of one maternal and one paternal

chromosome, the exchange of corresponding sections of DNA, and

the rejoining of the chromosomes. This process can result in an

exchange of alleles between chromosomes. See also: recombination.

(ORNL)

Crossover

Connection that links secondary structures at the opposite ends of the

structural core and goes across the surface of the domain. (SCOP)

Cytogenetics

The study of the physical appearance of chromosomes. See also: karyo-

type. (ORNL)

Cytological band

An area of the chromosome that stains differently from areas around it.

See also: cytological map. (ORNL)

Cytological map

A type of chromosome map whereby genes are located on the basis of

cytological findings obtained with the aid of chromosome mutations.

(ORNL)

Cytoplasmic trait

A genetic characteristic in which the genes are found outside the

nucleus, in chloroplasts or mitochondria. Results in offspring inherit-

ing genetic material from only one parent. (ORNL)

Cytoplasmic (uniparental) inheritance

See: cytoplasmic trait. (ORNL)

Cytosine (C)

A nitrogenous base, one member of the base pair GC (guanine and

cytosine) in DNA. See also: base pair, nucleotide. (ORNL)
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D

Data warehouse

A collection of databases, data tables, and mechanisms to access the

data on a single subject. (ORNL)

Deletion

A loss of part of the DNA from a chromosome; can lead to a disease or

abnormality. See also: chromosome, mutation. (ORNL)

Deletion map

A description of a specific chromosome that uses defined mutations—

specific deleted areas in the genome—as “biochemical signposts,” or

markers for specific areas. (ORNL)

Deoxyribonucleotide

See: nucleotide. (ORNL)

Deoxyribose

A type of sugar that is one component of DNA (deoxyribonucleic

acid). (ORNL)

Diploid

A full set of genetic material consisting of paired chromosomes, one

from each parental set. Most animal cells except the gametes have a

diploid set of chromosomes. The diploid human genome has 46

chromosomes. See also: haploid. (ORNL)

Directed evolution

A laboratory process used on isolated molecules or microbes to cause

mutations and identify subsequent adaptations to novel environments.

(ORNL)

Directed mutagenesis

Alteration of DNA at a specific site and its reinsertion into an organism

to study any effects of the change. (ORNL)

Directed sequencing

Successively sequencing DNA from adjacent stretches of chromosome.

(ORNL)

Disease-associated genes

Alleles carrying particular DNA sequences associated with the pre-

sence of disease. (ORNL)

DNA (deoxyribonucleic acid)

The molecule that encodes genetic information. DNA is a double-

stranded molecule held together by weak bonds between base pairs

of nucleotides. The four nucleotides in DNA contain the bases adenine

(A), guanine (G), cytosine (C), and thymine (T). In nature, base pairs

form only between A and T and between G and C; thus the base

sequence of each single strand can be deduced from that of its partner.

(ORNL)

DNA bank

A service that stores DNA extracted from blood samples or other

human tissue. (ORNL)

DNA probe

See: probe. (ORNL)

DNA repair genes

Genes encoding proteins that correct errors in DNA sequencing.

(ORNL)

DNA replication

The use of existing DNA as a template for the synthesis of new DNA

strands. In humans and other eukaryotes, replication occurs in the

cell nucleus. (ORNL)

DNA sequence

The relative order of base pairs, whether in a DNA fragment, gene,

chromosome, or an entire genome. See also: base sequence analysis.

(ORNL)

Domain

(a) A discrete portion of a protein assumed to fold independently of the

rest of the protein and possessing its own function. (NCBI) (b) A dis-

crete portion of a protein with its own function. The combination of

domains in a single protein determines its overall function. (ORNL)

(c) Conserved structural entities with distinctive secondary structure

content and an hydrophobic core. In small disulfide-rich and Zn2þ-

binding or Ca2þ-binding domains, the hydrophobic core may be pro-

vided by cystines and metal ions, respectively. Homologous domains

with common functions usually show sequence similarities. (SMART)

Domain composition

Proteins with the same domain composition have at least one copy of

each of the domains of the query. (SMART)

Domain organization

Proteins having all the domains as the query in the same order.

(Additional domains are allowed.) (SMART)

Dominant

An allele that is almost always expressed, even if only one copy is pre-

sent. See also: gene, genome. (ORNL)

Double helix

The twisted-ladder shape that two linear strands of DNA assume when

complementary nucleotides on opposing strands bond together.

(ORNL)

Draft sequence

The sequence generated by the Human Genome Project that, while

incomplete, offers a virtual road map to an estimated 95% of all

human genes. Draft sequence data are mostly in the form of 10,000

bp-sized fragments whose approximate chromosomal locations are

known. See also: sequencing, finished DNA sequence, working draft

DNA sequence. (ORNL)

DUST

A program for filtering low-complexity regions from nucleic acid

sequences. (NCBI)

E

E value

(a) Expectation value. The number of different alignments with scores

equivalent to or better than S that are expected to occur in a database

search by chance. The lower the E value, the more significant the score.

(NCBI) (b) This represents the number of sequences with a score

greater than or equal to X expected absolutely by chance. The E

value connects the score (X ) of an alignment between a user-supplied

sequence and a database sequence, generated by any algorithm, with

how many alignments with similar or greater scores that would be

expected from a search of a random-sequence database of equivalent

size. Since version 2.0, E values are calculated using hidden Markov

models, leading to more accurate estimates than before. (SMART)
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Electrophoresis

A method of separating large molecules (such as DNA fragments or

proteins) from a mixture of similar molecules. An electric current is

passed through a medium containing the mixture, and each kind of

molecule travels through the medium at a different rate, depending

on its electrical charge and size. Agarose and acrylamide gels are the

media commonly used for electrophoresis of proteins and nucleic

acids. (ORNL)

Electroporation

A process using high-voltage current to make cell membranes per-

meable to allow the introduction of new DNA; commonly used in

recombinant DNA technology. See also: transfection. (ORNL)

Embryonic stem (ES) cells

An embryonic cell that can replicate indefinitely, transform into other

types of cells, and serve as a continuous source of new cells. (ORNL)

Endonuclease

See: restriction enzyme. (ORNL)

Enzyme

A protein that acts as a catalyst, speeding the rate at which a biochemi-

cal reaction proceeds but not altering the direction or nature of the

reaction. (ORNL)

Epistasis

One gene interferes with or prevents the expression of another gene

located at a different locus. (ORNL)

Escherichia coli

Common bacterium that has been studied intensively by geneticists

because of its small genome size, normal lack of pathogenicity, and

ease of growth in the laboratory. (ORNL)

Eugenics

The study of improving a species by artificial selection; usually refers to

the selective breeding of humans. (ORNL)

Eukaryote

Cell or organism with membrane-bound, structurally discrete nucleus

and other well-developed subcellular compartments. Eukaryotes

include all organisms except viruses, bacteria, and blue-green algae.

See also: prokaryote, chromosome. (ORNL)

Evolutionarily conserved

See: conserved sequence. (ORNL)

Exogenous DNA

DNA originating outside an organism that has been introducted into

the organism. (ORNL)

Exon

The protein-coding DNA sequence of a gene. See also: intron. (ORNL)

Exonuclease

An enzyme that cleaves nucleotides sequentially from free ends of a

linear nucleic acid substrate. (ORNL)

Expressed gene

See: gene expression. (ORNL)

Expressed sequence tag (EST)

A short strand of DNA that is a part of a cDNA molecule and can act as

identifier of a gene. Used in locating and mapping genes. See also:

cDNA, sequence-tagged site. (ORNL)

F

FASTA

(a) The first widely used algorithm for database similarity searching.

The program looks for optimal local alignments by scanning the

sequence for small matches called “words.” Initially, the scores of seg-

ments in which there are multiple word hits are calculated (“init1”).

Later the scores of several segments may be summed to generate an

“initn” score. An optimized alignment that includes gaps is shown in

the output as “opt.” The sensitivity and speed of the search are inver-

sely related and controlled by the “k-tup” variable, which specifies

the size of a word. (NCBI) (b) An output format for nucleic acid or

protein sequences.

Filial generation (F1, F2)

Each generation of offspring in a breeding program, designated F1, F2,

etc. (ORNL)

Filtering

Also known as masking. The process of hiding regions of (nucleic acid

or amino acid) sequence having characteristics that frequently lead to

spurious high scores. See also: SEG and DUST. (NCBI)

Fingerprinting

In genetics, the identification of multiple specific alleles on a person’s

DNA to produce a unique identifier for that person. See also: forensics.

(ORNL)

Finished DNA sequence

High-quality, low-error, gap-free DNA sequence of the human

genome. Achieving this ultimate 2003 Human Genome Project

(HGP) goal requires additional sequencing to close gaps, reduce ambi-

guities, and allow for only a single error every 10,000 bases, the agreed-

upon standard for HGP finished sequence. See also: sequencing, draft

sequence. (ORNL)

Flow cytometry

Analysis of biological material by detection of the light-absorbing or

fluorescing properties of cells or subcellular fractions (i.e., chromo-

somes) passing in a narrow stream through a laser beam. An absor-

bance or fluorescence profile of the sample is produced. Automated

sorting devices, used to fractionate samples, sort successive droplets

of the analyzed stream into different fractions depending on the fluor-

escence emitted by each droplet. (ORNL)

Flow karyotyping

Use of flow cytometry to analyze and separate chromosomes according

to their DNA content. (ORNL)

Fluorescence in situ hybridization (FISH)

A physical mapping approach that uses fluorescein tags to detect

hybridization of probes with metaphase chromosomes and with the

less-condensed somatic interphase chromatin. (ORNL)

Folded leaf

A layer of a helices wrapped around a single hydrophobic core but not

with the simple geometry of a bundle. (SCOP)
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Forensics

The use of DNA for identification. Some examples of DNA use are to

establish paternity in child support cases, establish the presence of a

suspect at a crime scene, and identify accident victims. (ORNL)

Fraternal twin

Siblings born at the same time as the result of fertilization of two ova by

two sperm. They share the same genetic relationship to each other as

any other siblings. See also: identical twin. (ORNL)

Full gene sequence

The complete order of bases in a gene. This order determines which

protein a gene will produce. (ORNL)

Functional genomics

The study of genes, their resulting proteins, and the role played by the

proteins in the body’s biochemical processes. (ORNL)

G

Gamete

Mature male or female reproductive cell (sperm or ovum) with a hap-

loid set of chromosomes (23 for humans). (ORNL)

Gap

(a) A space introduced into an alignment to compensate for insertions

and deletions in one sequence relative to another. To prevent the

accumulation of too many gaps in an alignment, introduction of a

gap causes the deduction of a fixed amount (the gap score) from the

alignment score. Extension of the gap to encompass additional nucleo-

tides or amino acid is also penalized in the scoring of an alignment.

(NCBI) (b) A position in an alignment that represents a deletion

within one sequence relative to another. Gap penalties are require-

ments for alignment algorithms in order to reduce excessively gapped

regions. Gaps in alignments represent insertions that usually occur in

protruding loops or beta-bulges within protein structures. (SMART)

GC-rich area

Many DNA sequences carry long stretches of repeated G and C, which

often indicates a gene-rich region. (ORNL)

Gel electrophoresis

See: electrophoresis. (ORNL)

Gene

The fundamental physical and functional unit of heredity. A gene is an

ordered sequence of nucleotides located in a particular position on a

particular chromosome that encodes a specific functional product

(i.e., a protein or RNA molecule). See also: gene expression. (ORNL)

Gene amplification

Repeated copying of a piece of DNA; a characteristic of tumor cells. See

also: gene, oncogene. (ORNL)

Gene chip technology

Development of cDNA microarrays from a large number of genes.

Used to monitor and measure changes in gene expression for each

gene represented on the chip. (ORNL)

Gene expression

The process by which a gene’s coded information is converted into the

structures present and operating in the cell. Expressed genes include

those that are transcribed into mRNA and then translated into protein

and those that are transcribed into RNA but not translated into protein

(e.g., transfer and ribosomal RNAs). (ORNL)

Gene family

Group of closely related genes that make similar products. (ORNL)

Gene library

See: genomic library (ORNL)

Gene mapping

Determination of the relative positions of genes on a DNA molecule

(chromosome or plasmid) and of the distance, in linkage units or phys-

ical units, between them. (ORNL)

Gene pool

All the variations of genes in a species. See also: allele, gene, polymorph-

ism. (ORNL)

Gene prediction

Predictions of possible genes made by a computer program based on

how well a stretch of DNA sequence matches known gene sequences.

(ORNL)

Gene product

The biochemical material, either RNA or protein, resulting from

expression of a gene. The amount of gene product is used to measure

how active a gene is; abnormal amounts can be correlated with disease-

causing alleles. (ORNL)

Gene testing

See: genetic testing, genetic screening. (ORNL)

Gene therapy

An experimental procedure aimed at replacing, manipulating, or sup-

plementing nonfunctional or misfunctioning genes with healthy

genes. See also: gene, inherit, somatic cell gene therapy, germ line

gene therapy. (ORNL)

Genetic code

The sequence of nucleotides, coded in triplets (codons) along the

mRNA, that determines the sequence of amino acids in protein syn-

thesis. A gene’s DNA sequence can be used to predict the mRNA

sequence, and the genetic code can in turn be used to predict the

amino acid sequence. (ORNL)

Genetic counseling

Provides patients and their families with education and information

about genetic-related conditions and helps them make informed

decisions. (ORNL)

Genetic discrimination

Prejudice against those who have or are likely to develop an inherited

disorder. (ORNL)

Genetic engineering

Altering the genetic material of cells or organisms to enable them to

make new substances or perform new functions. (ORNL)

Genetic engineering technology

See: recombinant DNA technology. (ORNL)

Genetic illness

Sickness, physical disability, or other disorder resulting from the inheri-

tance of one or more deleterious alleles. (ORNL)
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Genetic informatics

See: bioinformatics. (ORNL)

Genetic map

See: linkage map. (ORNL)

Genetic marker

A gene or other identifiable portion of DNA whose inheritance can be

followed. See also: chromosome, DNA, gene, inherit. (ORNL)

Genetic material

See: genome. (ORNL)

Genetic mosaic

An organism in which different cells contain different genetic

sequence. This can be the result of a mutation during development

or fusion of embryos at an early developmental stage. (ORNL)

Genetic polymorphism

Difference in DNA sequence among individuals, groups, or popu-

lations (e.g., genes for blue eyes versus brown eyes). (ORNL)

Genetic predisposition

Susceptibility to a genetic disease. May or may not result in actual

development of the disease. (ORNL)

Genetic screening

Testing a group of people to identify individuals at high risk of having or

passing on a specific genetic disorder. (ORNL)

Genetic testing

Analyzing an individual’s genetic material to determine predisposition

to a particular health condition or to confirm a diagnosis of genetic

disease. (ORNL)

Genetics

The study of inheritance patterns of specific traits. (ORNL)

Gene transfer

Incorporation of new DNA into an organism’s cells, usually by a vector

such as a modified virus. Used in gene therapy. See also: mutation, gene

therapy, vector. (ORNL)

Genome

All the genetic material in the chromosomes of a particular organism;

its size is generally given as its total number of base pairs. (ORNL)

Genome project

Research and technology development effort aimed at mapping and

sequencing the genome of human beings and certain model organisms.

See also: Human Genome Initiative. (ORNL)

Genomic library

A collection of clones made from a set of randomly generated overlap-

ping DNA fragments that represent the entire genome of an organism.

See also: library, arrayed library. (ORNL)

Genomics

The study of genes and their function. (ORNL)

Genomic sequence

See: DNA. (ORNL)

Genotype

The genetic constitution of an organism, as distinguished from its

physical appearance (its phenotype). (ORNL)

Germ cell

Sperm and egg cells and their precursors. Germ cells are haploid and

have only one set of chromosomes (23 in all), while all other cells

have two copies (46 in all). (ORNL)

Germ line

The continuation of a set of genetic information from one generation to

the next. See also: inherit. (ORNL)

Germ line gene therapy

An experimental process of inserting genes into germ cells or fertilized

eggs to cause a genetic change that can be passed on to offspring. May

be used to alleviate effects associated with a genetic disease. See also:

genomics, somatic cell gene therapy. (ORNL)

Germ line genetic mutation

See: mutation. (ORNL)

Global alignment

The alignment of two nucleic acid or protein sequences over their

entire length. (NCBI)

Greek key

A topology for a small number of b-sheet strands in which some inter-

strand connections go across the end of a barrel or, in a sandwich fold,

between b sheets. (SCOP)

Guanine (G)

A nitrogenous base, one member of the base pair GC (guanine and

cytosine) in DNA. See also: base pair, nucleotide. (ORNL)

H

H

The relative entropy of the target and background residue frequencies,

H can be thought of as a measure of the average information (in bits)

available per position that distinguishes an alignment from chance.

At high values of H, short alignments can be distinguished by

chance, whereas at lower H values, a longer alignment may be necess-

ary. (NCBI)

Haploid

A single set of chromosomes (half the full set of genetic material) pre-

sent in the egg and sperm cells of animals and in the egg and pollen cells

of plants. Human beings have 23 chromosomes in their reproductive

cells. See also: diploid. (ORNL)

Haplotype

A way of denoting the collective genotype of a number of closely linked

loci on a chromosome. (ORNL)

Hemizygous

Having only one copy of a particular gene. For example, in humans,

males are hemizygous for genes found on the Y chromosome. (ORNL)

Hereditary cancer

Cancer that occurs due to the inheritance of an altered gene within a

family. See also: sporadic cancer. (ORNL)
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Heterozygosity

The presence of different alleles at one or more loci on homologous

chromosomes. (ORNL)

Heterozygote

See: heterozygosity. (ORNL)

Highly conserved sequence

DNA sequence that is very similar across several different types of

organisms. See also: gene, mutation. (ORNL)

High throughput sequencing

A fast method of determining the order of bases in DNA. See also:

sequencing. (ORNL)

Homeobox

A short stretch of nucleotides whose base sequence is virtually identical

in all the genes that contain it. Homeoboxes have been found in many

organisms from fruitflies to human beings. In the fruitfly, a homeobox

appears to determine when particular groups of genes are expressed

during development. (ORNL)

Homolog

A member of a chromosome pair in diploid organisms or a gene that has

the same origin and functions in two or more species. (ORNL)

Homologous chromosome

A chromosome containing the same linear gene sequences as another,

each derived from one parent. (ORNL)

Homologous recombination

Swapping of DNA fragments between paired chromosomes. (ORNL)

Homology

(a) Similarity attributed to descent from a common ancestor. (NCBI)

(b) Similarity in DNA or protein sequences between individuals of the

same species or among different species. (ORNL) (c) Evolutionary

descent from a common ancestor due to gene duplication. (SMART)

Homozygote

An organism that has two identical alleles of a gene. See also: heterozy-

gote. (ORNL)

Homozygous

See: homozygote. (ORNL)

HSP

High-scoring segment pair. Local alignments with no gaps that achieve

one of the top alignment scores in a given search. (NCBI)

Human gene therapy

See: gene therapy. (ORNL)

Human Genome Initiative

Collective name for several projects begun in 1986 by the U.S.

Department of Energy (DOE) to create an ordered set of DNA

segments from known chromosomal locations, develop new compu-

tational methods for analyzing genetic map and DNA sequence data,

and develop new techniques and instruments for detecting and analyz-

ing DNA. This DOE initiative is now known as the Human Genome

Program. The joint national effort, led by the DOE and National

Institutes of Health, is known as the Human Genome Project. (ORNL)

Human Genome Project (HGP)

Formerly titled Human Genome Initiative. See also: Human Genome

Initiative. (ORNL)

Hybrid

The offspring of genetically different parents. See also: heterozygote.

(ORNL)

Hybridization

The process of joining two complementary strands of DNA or one each

of DNA and RNA to form a double-stranded molecule. (ORNL)

I

Identical twin

Twins produced by the division of a single zygote; both have identical

genotypes. See also: fraternal twin. (ORNL)

Identity

The extent to which two (nucleotide or amino acid) sequences are

invariant. (NCBI)

Immunotherapy

Using the immune system to treat disease, for example, in the develop-

ment of vaccines. May also refer to the therapy of diseases caused by the

immune system. See also: cancer. (ORNL)

Imprinting

A phenomenon in which the disease phenotype depends on which

parent passed on the disease gene. For instance, both Prader–Willi

and Angelman syndromes are inherited when the same part of chromo-

some 15 is missing. When the father’s complement of 15 is missing, the

child has Prader–Willi, but when the mother’s complement of 15 is

missing, the child has Angelman syndrome. (ORNL)

Independent assortment

During meiosis each of the two copies of a gene is distributed to the

germ cells independently of the distribution of other genes. See also:

linkage. (ORNL)

Informatics

See: bioinformatics. (ORNL)

Informed consent

An individual willingly agrees to participate in an activity after first

being advised of the risks and benefits. See also: privacy. (ORNL)

Inherit

In genetics, to receive genetic material from parents through biological

processes. (ORNL)

Inherited

See: inherit. (ORNL)

Insertion

A chromosome abnormality in which a piece of DNA is incorporated

into a gene and thereby disrupts the gene’s normal function. See also:

chromosome, DNA, gene, mutation. (ORNL)

Insertional mutation

See: insertion. (ORNL)
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In situ hybridization

Use of a DNA or RNA probe to detect the presence of the complemen-

tary DNA sequence in cloned bacterial or cultured eukaryotic cells.

(ORNL)

Intellectual property rights

Patents, copyrights, and trademarks. See also: patent. (ORNL)

Interference

One crossover event inhibits the chances of another crossover event.

Also known as positive interference. Negative interference increases

the chance of a second crossover. See also: crossing over. (ORNL)

Interphase

The period in the cell cycle when DNA is replicated in the nucleus; fol-

lowed by mitosis. (ORNL)

Intracellular domains

Domain families that are most prevalent in proteins within the cyto-

plasm. (SMART)

Intron

DNA sequence that interrupts the protein-coding sequence of a gene;

an intron is transcribed into RNA but is cut out of the message before it

is translated into protein. See also: exon. (ORNL)

In vitro

Studies performed outside a living organism, such as in a laboratory.

(ORNL)

In vivo

Studies carried out in living organisms. (ORNL)

Isoenzyme

An enzyme performing the same function as another enzyme but

having a different set of amino acids. The two enzymes may function

at different speeds. (ORNL)

J

Jelly roll

A variant of Greek-key topology with both ends of a sandwich or a

barrel fold being crossed by two interstrand connections. See also:

Greek key. (SCOP)

Junk DNA

Stretches of DNA that do not code for genes; most of the genome

consists of so-called junk DNA which may have regulatory and other

functions. Also called noncoding DNA. (ORNL)

K

K

A statistical parameter used in calculating BLAST scores that can be

thought of as a natural scale for search space size. The value K is

used in converting a raw score (S) to a bit score (S0). (NCBI)

Karyotype

A photomicrograph of an individual’s chromosomes arranged in a stan-

dard format showing the number, size, and shape of each chromosome

type; used in low-resolution physical mapping to correlate gross

chromosomal abnormalities with the characteristics of specific dis-

eases. (ORNL)

Kilobase (kb)

Unit of length for DNA fragments equal to 1000 nucleotides. (ORNL)

Knock-out

Deactivation of specific genes; used in laboratory organisms to study

gene function. See also: gene, locus, model organisms. (ORNL)

L

Lambda

A statistical parameter used in calculating BLAST scores that can be

thought of as a natural scale for a scoring system. The value lambda

is used in converting a raw score (S) to a bit score (S0). (NCBI)

Library

An unordered collection of clones (i.e., cloned DNA from a particular

organism) whose relationship to each other can be established by phys-

ical mapping. See also: genomic library, arrayed library. (ORNL)

Linkage

The proximity of two or more markers (e.g., genes, restriction fragment

length polymorphism markers) on a chromosome; the closer the mar-

kers, the lower the probability that they will be separated during DNA

repair or replication processes (binary fission in prokaryotes, mitosis or

meiosis in eukaryotes), and hence the greater the probability that they

will be inherited together. (ORNL)

Linkage disequilibrium

Where alleles occur together more often than can be accounted for by

chance. Indicates that the two alleles are physically close on the DNA

strand. See also: Mendelian inheritance. (ORNL)

Linkage map

A map of the relative positions of genetic loci on a chromosome, deter-

mined on the basis of how often the loci are inherited together.

Distance is measured in centimorgans (cM). (ORNL)

Local alignment

The alignment of some portion of two nucleic acid or protein

sequences. (NCBI)

Localization

Numbers of domains that are thought from SwissProt annotations to

be present in different cellular compartments (cytoplasm, extracellular

space, nucleus, and membrane associated) are shown in annotation

pages. (SMART)

Localize

Determination of the original position (locus) of a gene or other marker

on a chromosome. (ORNL)

Locus (plural loci)

The position on a chromosome of a gene or other chromosome marker;

also, the DNA at that position. The use of locus is sometimes restricted

to mean expressed DNA regions. See also: gene expression. (ORNL)

Long-range restriction mapping

Restriction enzymes are proteins that cut DNA at precise locations.

Restriction maps depict the chromosomal positions of restriction

enzyme cutting sites. These are used as biochemical “signposts,” or

markers of specific areas along the chromosomes. The map will

detail the positions where the DNA molecule is cut by particular

restriction enzymes. (ORNL)
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Low-complexity region (LCR)

Regions of biased composition including homopolymeric runs, short-

period repeats, and more subtle overrepresentation of one or a few resi-

dues. The SEG program is used to mask or filter LCRs in amino acid

queries. The DUST program is used to mask or filter LCRs in nucleic

acid queries. (NCBI)

M

Macrorestriction map

Map depicting the order of and distance between sites at which restric-

tion enzymes cleave chromosomes. (ORNL)

Mapping

See: gene mapping, linkage map, physical map. (ORNL)

Mapping population

The group of related organisms used in constructing a genetic map.

(ORNL)

Marker

See: genetic marker. (ORNL)

Masking

Also known as filtering. The removal of repeated or low-complexity

regions from a sequence in order to improve the sensitivity of sequence

similarity searches performed with that sequence. (NCBI)

Mass spectrometer

An instrument used to identify chemicals in a substance by their mass

and charge. (ORNL)

Meander

A simple topology of a b sheet where any two consecutive strands are

adjacent and antiparallel. (SCOP)

Megabase (Mb)

Unit of length for DNA fragments equal to 1 million nucleotides and

roughly equal to 1 cM. See also: centimorgan. (ORNL)

Meiosis

The process of two consecutive cell divisions in the diploid progenitors

of sex cells. Meiosis results in four rather than two daughter cells, each

with a haploid set of chromosomes. See also: mitosis. (ORNL)

Mendelian inheritance

One method in which genetic traits are passed from parents to off-

spring. Named for Gregor Mendel, who first studied and recognized

the existence of genes and this method of inheritance. See also: autoso-

mal dominant, recessive gene, sex linked. (ORNL)

Messenger RNA (mRNA)

RNA that serves as a template for protein synthesis. See also: genetic

code. (ORNL)

Metaphase

A stage in mitosis or meiosis during which the chromosomes are

aligned along the equatorial plane of the cell. (ORNL)

Microarray

Sets of miniaturized chemical reaction areas that may also be used to

test DNA fragments, antibodies, or proteins. (ORNL)

Microbial genetics

The study of genes and gene function in bacteria, archaea, and other

microorganisms. Often used in research in the fields of bioremediation,

alternative energy, and disease prevention. See also: model organisms,

biotechnology, bioremediation. (ORNL)

Microinjection

A technique for introducing a solution of DNA into a cell using a fine

microcapillary pipet. (ORNL)

Mitochondrial DNA

The genetic material found in mitochondria, the organelles that gener-

ate energy for the cell. Not inherited in the same fashion as nucleic

DNA. See also: cell, DNA, genome, nucleus. (ORNL)

Mitosis

The process of nuclear division in cells that produces daughter cells

that are genetically identical to each other and to the parent cell. See

also: meiosis. (ORNL)

Modeling

The use of statistical analysis, computer analysis, or model organisms

to predict outcomes of research. (ORNL)

Model organisms

A laboratory animal or other organism useful for research. (ORNL)

Molecular biology

The study of the structure, function, and makeup of biologically

important molecules. (ORNL)

Molecular farming

The development of transgenic animals to produce human proteins for

medical use. (ORNL)

Molecular genetics

The study of macromolecules important in biological inheritance.

(ORNL)

Molecular medicine

The treatment of injury or disease at the molecular level. Examples

include the use of DNA-based diagnostic tests or medicine derived

from DNA sequence information. (ORNL)

Monogenic disorder

A disorder caused by mutation of a single gene. See also: mutation,

polygenic disorder. (ORNL)

Monogenic inheritance

See: monogenic disorder. (ORNL)

Monosomy

Possessing only one copy of a particular chromosome instead of the

normal two copies. See also: cell, chromosome, gene expression,

trisomy. (ORNL)

Morbid map

A diagram showing the chromosomal location of genes associated with

disease. (ORNL)

Motif

(a) A short conserved region in a protein sequence. Motifs are fre-

quently highly conserved parts of domains. (NCBI) (b) Sequence
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motifs are short conserved regions of polypeptides. Sets of sequence

motifs need not necessarily represent homologs. (SMART)

Mouse model

See: model organisms. (ORNL)

Multifactorial or multigenic disorder

See: polygenic disorder. (ORNL)

Multiple sequence alignment

An alignment of three or more sequences with gaps inserted in the

sequences such that residues with common structural positions and/

or ancestral residues are aligned in the same column. ClustalW is one

of the most widely used multiple sequence alignment programs.

(NCBI)

Multiplexing

A laboratory approach that performs multiple sets of reactions in par-

allel (simultaneously); greatly increasing speed and throughput.

(ORNL)

Murine

Organism in the genus Mus. A rat or mouse. (ORNL)

Mutagen

An agent that causes a permanent genetic change in a cell. Does not

include changes occurring during normal genetic recombination.

(ORNL)

Mutagenicity

The capacity of a chemical or physical agent to cause permanent gen-

etic alterations. See also: somatic cell genetic mutation. (ORNL)

Mutation

Any heritable change in DNA sequence. See also: polymorphism.

(ORNL)

N

Nitrogenous base

A nitrogen-containing molecule having the chemical properties of a

base. DNA contains the nitrogenous bases adenine (A), guanine (G),

cytosine (C), and thymine (T). See also: DNA. (ORNL)

Northern blot

A gel-based laboratory procedure that locates mRNA sequences on a

gel that are complementary to a piece of DNA used as a probe. See

also: DNA, library. (ORNL)

Nuclear transfer

A laboratory procedure in which a cell’s nucleus is removed and placed

into an oocyte with its own nucleus removed so the genetic information

from the donor nucleus controls the resulting cell. Such cells can be

induced to form embryos. This process was used to create the cloned

sheep Dolly. See also: cloning. (ORNL)

Nucleic acid

A large molecule composed of nucleotide subunits. See also: DNA.

(ORNL)

Nucleolar organizing region

A part of the chromosome containing rRNA genes. (ORNL)

Nucleotide

A subunit of DNA or RNA consisting of a nitrogenous base (adenine,

guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or

cytosine in RNA), a phosphate molecule, and a sugar molecule (deox-

yribose in DNA and ribose in RNA). Thousands of nucleotides are

linked to form a DNA or RNA molecule. See also: DNA, base pair,

RNA. (ORNL)

Nucleus

The cellular organelle in eukaryotes that contains most of the genetic

material. (ORNL)

O

Oligo

See: oligonucleotide. (ORNL)

Oligogenic

A phenotypic trait produced by two or more genes working together.

See also: polygenic disorder. (ORNL)

Oligonucleotide

A molecule usually composed of 25 or fewer nucleotides; used as a

DNA synthesis primer. See also: nucleotide. (ORNL)

Oncogene

A gene, one or more forms of which are associated with cancer. Many

oncogenes are involved, directly or indirectly, in controlling the rate of

cell growth. (ORNL)

Open reading frame (ORF)

The sequence of DNA or RNA located between the start-code

sequence (initiation codon) and the stop-code sequence (termination

codon). (ORNL)

Operon

A set of genes transcribed under the control of an operator gene.

(ORNL)

Optimal alignment

An alignment of two sequences with the highest possible score. (NCBI)

ORF

See: open reading frame. (SMART)

Orthologous

Homologous sequences in different species that arose from a common

ancestral gene during speciation; may or may not be responsible for a

similar function. (NCBI)

Overlapping clones

See: genomic library. (ORNL)

P

P value

The probability of an alignment occurring with the score in question or

better. The P value is calculated by relating the observed alignment

score, S, to the expected distribution of high scoring segment pair

scores from comparisons of random sequences of the same length

and composition as the query to the database. The most highly signifi-

cant P values will be those close to zero. The P and E values are different

ways of representing the significance of the alignment. (NCBI)
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P1-derived artificial chromosome (PAC)

One type of vector used to clone DNA fragments (insert size 100 to 300

kb; average 150 kb) in Escherichia coli cells. Based on bacteriophage (a

virus) P1 genome. See also: cloning vector. (ORNL)

PAM

Point accepted mutation. A unit used to quantify the amount of evol-

utionary change in a protein sequence. The amount of evolution

which will change, on average, 1% of amino acids in a protein sequence

is 1.0 PAM units. A PAM(x) substitution matrix is a look-up table in

which scores for each amino acid substitution have been calculated

based on the frequency of that substitution in closely related proteins

that have experienced a certain amount (x) of evolutionary divergence.

(NCBI)

Paralogous

Homologous sequences within a single species that arose by gene

duplication. (NCBI)

Partly open barrel

Has the edge strands not properly hydrogen bonded because one of the

strands is in two parts connected with a linker of more than that one resi-

due. These edge strands can be treated as a single but interrupted strand,

allowing classification with the effective strand and shear numbers, n�

and S�. In the few open barrels the b sheets are connected by only a

few side-chain hydrogen bonds between the edge strands. (SCOP)

Patent

In genetics, conferring the right or title to genes, gene variations, or

identifiable portions of sequenced genetic material to an individual

or organization. See also: gene. (ORNL)

Pedigree

A family tree diagram that shows how a particular genetic trait or

disease has been inherited. See also: inherit. (ORNL)

Penetrance

The probability of a gene or genetic trait being expressed. “Complete”

penetrance means the gene or genes for a trait are expressed in the

whole population that has the genes. “Incomplete” penetrance

means the genetic trait is expressed in only part of the population.

The percent penetrance also may change with the age range of the

population. (ORNL)

Peptide

Two or more amino acids joined by a bond called a “peptide bond.” See

also: polypeptide. (ORNL)

Phage

A virus for which the natural host is a bacterial cell. (ORNL)

Pharmacogenomics

The study of the interaction of an individual’s genetic makeup and

response to a drug. (ORNL)

Phenocopy

A trait not caused by inheritance of a gene but that appears to be iden-

tical to a genetic trait. (ORNL)

Phenotype

The physical characteristics of an organism or the presence of a disease

that may or may not be genetic. See also: genotype. (ORNL)

Physical map

A map of the locations of identifiable landmarks on DNA (e.g., restric-

tion enzyme cutting sites, genes), regardless of inheritance. Distance is

measured in base pairs. For the human genome, the lowest resolution

physical map is the banding patterns on the 24 different chromosomes;

the highest resolution map is the complete nucleotide sequence of the

chromosomes. (ORNL)

Plasmid

Autonomously replicating extrachromosomal circular DNA mol-

ecules, distinct from the normal bacterial genome and nonessential

for cell survival under nonselective conditions. Some plasmids are

capable of integrating into the host genome. A number of artificially

constructed plasmids are used as cloning vectors. (ORNL)

Pleiotropy

One gene that causes many different physical traits such as multiple dis-

ease symptoms. (ORNL)

Pluripotency

The potential of a cell to develop into more than one type of mature

cell, depending on environment. (ORNL)

Polygenic disorder

Genetic disorder resulting from the combined action of alleles of more

than one gene (e.g., heart disease, diabetes, and some cancers).

Although such disorders are inherited, they depend on the simul-

taneous presence of several alleles; thus the hereditary patterns usually

are more complex than those of single-gene disorders. See also: single-

gene disorder. (ORNL)

Polymerase chain reaction (PCR)

A method for amplifying a DNA base sequence using a heat-stable

polymerase and two 20-base primers, one complementary to the (þ)

strand at one end of the sequence to be amplified and one complemen-

tary to the (–) strand at the other end. Because the newly synthesized

DNA strands can subsequently serve as additional templates for the

same primer sequences, successive rounds of primer annealing,

strand elongation, and dissociation produce rapid and highly specific

amplification of the desired sequence. PCR also can be used to

detect the existence of the defined sequence in a DNA sample.

(ORNL)

Polymerase, DNA or RNA

Enzyme that catalyzes the synthesis of nucleic acids on preexisting

nucleic acid templates, assembling RNA from ribonucleotides or

DNA from deoxyribonucleotides. (ORNL)

Polymorphism

Difference in DNA sequence among individuals that may underlie

differences in health. Genetic variations occurring in more than 1%

of a population would be considered useful polymorphisms for genetic

linkage analysis. See also: mutation. (ORNL)

Polypeptide

A protein or part of a protein made of a chain of amino acids joined by a

peptide bond. (ORNL)

Population genetics

The study of variation in genes among a group of individuals. (ORNL)

Positional cloning

A technique used to identify genes, usually those that are associated

with diseases, based on their location on a chromosome. (ORNL)
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Primer

Short preexisting polynucleotide chain to which new deoxyribonucleo-

tides can be added by DNA polymerase. (ORNL)

Privacy

In genetics, the right of people to restrict access to their genetic infor-

mation. (ORNL)

Probe

Single-stranded DNA or RNA molecules of specific base sequence,

labeled either radioactively or immunologically, that are used to

detect the complementary base sequence by hybridization. (ORNL)

Profile

(a) A table that lists the frequencies of each amino acid in each position

of protein sequence. Frequencies are calculated from multiple align-

ments of sequences containing a domain of interest. See also: PSSM.

(NCBI) (b) A table of position-specific scores and gap penalties, repre-

senting an homologous family, that may be used to search sequence

databases. In ClustalW-derived profiles those sequences that are

more distantly related are assigned higher weights. (SMART)

Prokaryote

Cell or organism lacking a membrane-bound, structurally discrete

nucleus and other subcellular compartments. Bacteria are examples

of prokaryotes. See also: chromosome, eukaryote. (ORNL)

Promoter

A DNA site to which RNA polymerase will bind and initiate transcrip-

tion. (ORNL)

Pronucleus

The nucleus of a sperm or egg prior to fertilization. See also: nucleus,

transgenic. (ORNL)

Protein

A large molecule composed of one or more chains of amino acids in a

specific order; the order is determined by the base sequence of nucleo-

tides in the gene that codes for the protein. Proteins are required for the

structure, function, and regulation of the body’s cells, tissues, and

organs; each protein has unique functions. Examples are hormones,

enzymes, and antibodies. (ORNL)

Proteome

Proteins expressed by a cell or organ at a particular time and under

specific conditions. (ORNL)

Proteomics

Systematic analysis of protein expression of normal and diseased tis-

sues that involves the separation, identification, and characterization

of all of the proteins in an organism. (NCBI)

Pseudogene

A sequence of DNA similar to a gene but nonfunctional; probably the

remnant of a once functional gene that accumulated mutations.

(ORNL)

PSI-BLAST

Position-Specific Iterative BLAST. An iterative search using the

BLAST algorithm. A profile is built after the initial search, which is

then used in subsequent searches. The process may be repeated, if

desired, with new sequences found in each cycle used to refine the

profile. (NCBI)

PSSM

Position-specific scoring matrix. The PSSM gives the log-odds score

for finding a particular matching amino acid in a target sequence. See

also: profile. (NCBI)

Purine

A nitrogen-containing, double-ring, basic compound that occurs in

nucleic acids. The purines in DNA and RNA are adenine and guanine.

See also: base pair. (ORNL)

Pyrimidine

A nitrogen-containing, single-ring, basic compound that occurs in

nucleic acids. The pyrimidines in DNA are cytosine and thymine; in

RNA, cytosine and uracil. See also: base pair. (ORNL)

Q

Query

The input sequence (or other type of search term) with which all of the

entries in a database are to be compared. (NCBI)

R

Radiation hybrid

A hybrid cell containing small fragments of irradiated human chromo-

somes. Maps of irradiation sites on chromosomes for the human, rat,

mouse, and other genomes provide important markers, allowing the

construction of very precise sequence-tagged site maps indispensable

to studying multifactorial diseases. See also: sequence-tagged site.

(ORNL)

Rare-cutter enzyme

See: restriction enzyme cutting site. (ORNL)

Raw score

The score of an alignment, S, calculated as the sum of substitution and

gap scores. Substitution scores are given by a look-up table. Gap scores

are typically calculated as the sum of G, the gap opening penalty, and L,

the gap extension penalty. For a gap of length n, the gap cost would be

G þ Ln. The choice of gap costs G and L is empirical, but it is custom-

ary to choose a high value for G (10 to 15) and a low value for L (1 to 2).

See also: PAM, BLOSUM. (NCBI)

Recessive gene

A gene that will be expressed only if there are two identical copies or, for

a male, if one copy is present on the X chromosome. (ORNL)

Reciprocal translocation

When a pair of chromosomes exchange exactly the same length and

area of DNA. Results in a shuffling of genes. (ORNL)

Recombinant clone

Clone containing recombinant DNA molecules. See also: recombinant

DNA technology. (ORNL)

Recombinant DNA molecules

A combination of DNA molecules of different origin that are joined

using recombinant DNA technologies. (ORNL)

Recombinant DNA technology

Procedure used to join together DNA segments in a cell-free system (an

environment outside a cell or organism). Under appropriate con-

ditions, a recombinant DNA molecule can enter a cell and replicate
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there, either autonomously or after it has become integrated into a

cellular chromosome. (ORNL)

Recombination

The process by which progeny derives a combination of genes different

from that of either parent. In higher organisms, this can occur by cross-

ing over. See also: crossing over, mutation. (ORNL)

Regulatory region or sequence

A DNA base sequence that controls gene expression. (ORNL)

Repetitive DNA

Sequences of varying lengths that occur in multiple copies in the

genome; it represents much of the human genome. (ORNL)

Reporter gene

See: marker. (ORNL)

Resolution

Degree of molecular detail on a physical map of DNA, ranging from

low to high. (ORNL)

Restriction enzyme cutting site

A specific nucleotide sequence of DNA at which a particular restriction

enzyme cuts the DNA. Some sites occur frequently in DNA (e.g., every

several hundred base pairs); others much less frequently (rare cutter;

e.g., every 10,000 bp). (ORNL)

Restriction enzyme, endonuclease

A protein that recognizes specific, short nucleotide sequences and cuts

DNA at those sites. Bacteria contain over 400 such enzymes that recog-

nize and cut more than 100 different DNA sequences. See also: restric-

tion enzyme cutting site. (ORNL)

Restriction fragment length polymorphism (RFLP)

Variation between individuals in DNA fragment sizes cut by specific

restriction enzymes; polymorphic sequences that result in RFLPs are

used as markers on both physical maps and genetic linkage maps.

RFLPs usually are caused by mutation at a cutting site. See also:

marker, polymorphism. (ORNL)

Retroviral infection

The presence of retroviral vectors, such as some viruses, which use their

recombinant DNA to insert their genetic material into the chromo-

somes of the host’s cells. The virus is then propagated by the host

cell. (ORNL)

Reverse transcriptase

An enzyme used by retroviruses to form a complementary DNA

sequence (cDNA) from their RNA. The resulting DNA is then

inserted into the chromosome of the host cell. (ORNL)

Ribonucleotide

See: nucleotide. (ORNL)

Ribose

The five-carbon sugar that serves as a component of RNA. See also:

ribonucleic acid, deoxyribose. (ORNL)

Ribosomal RNA (rRNA)

A class of RNA found in the ribosomes of cells. (ORNL)

Ribosomes

Small cellular components composed of specialized ribosomal RNA

and protein; site of protein synthesis. See also: RNA. (ORNL)

Risk communication

In genetics, a process in which a genetic counselor or other medical

professional interprets genetic test results and advises patients of the

consequences for them and their offspring. (ORNL)

RNA (ribonucleic acid)

A chemical found in the nucleus and cytoplasm of cells; it plays an

important role in protein synthesis and other chemical activities of

the cell. The structure of RNA is similar to that of DNA. There are sev-

eral classes of RNA molecules, including messenger RNA, transfer

RNA, ribosomal RNA, and other small RNAs, each serving a different

purpose. (ORNL)

S

Sanger sequencing

A widely used method of determining the order of bases in DNA. See

also: sequencing, shotgun sequencing. (ORNL)

Satellite

A chromosomal segment that branches off from the rest of the chromo-

some but is still connected by a thin filament or stalk. (ORNL)

Scaffold

In genomic mapping, a series of contigs that are in the right order but

not necessarily connected in one continuous stretch of sequence.

(ORNL)

Seed alignment

Alignment that contains only one of each pair of homologs that are rep-

resented in a ClustalW-derived phylogenetic tree linked by a branch of

length less than a distance of 0.2. (SMART)

SEG

A program for filtering low-complexity regions in amino acid

sequences. Residues that have been masked are represented as “X” in

an alignment. SEG filtering is performed by default in the blastp sub-

routine of BLAST 2.0. (NCBI)

Segregation

The normal biological process whereby the two pieces of a chromo-

some pair are separated during meiosis and randomly distributed to

the germ cells. (ORNL)

Sequence

See: base sequence. (ORNL)

Sequence assembly

A process whereby the order of multiple sequenced DNA fragments is

determined. (ORNL)

Sequence-tagged site (STS)

Short (200 to 500 bp) DNA sequence that has a single occurrence in

the human genome and whose location and base sequence are

known. Detectable by polymerase chain reaction, STSs are useful for

localizing and orienting the mapping and sequence data reported

from many different laboratories and serve as landmarks on the devel-

oping physical map of the human genome. Expressed sequence tags

(ESTs) are STSs derived from cDNAs. (ORNL)
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Sequencing

Determination of the order of nucleotides (base sequences) in a DNA

or RNA molecule or the order of amino acids in a protein. (ORNL)

Sequencing technology

The instrumentation and procedures used to determine the order of

nucleotides in DNA. (ORNL)

Sex chromosome

The X or Y chromosome in human beings that determines the sex of an

individual. Females have two X chromosomes in diploid cells; males

have an X and a Y chromosome. The sex chromosomes comprise the

23rd chromosome pair in a karyotype. See also: autosome. (ORNL)

Sex linked

Traits or diseases associated with the X or Y chromosome; generally

seen in males. See also: gene, mutation, sex chromosome. (ORNL)

Shotgun method

Sequencing method that involves randomly sequenced cloned pieces of

the genome, with no foreknowledge of where the piece originally came

from. This can be contrasted with “directed” strategies, in which pieces

of DNA from known chromosomal locations are sequenced. Because

there are advantages to both strategies, researchers use both random

(or shotgun) and directed strategies in combination to sequence the

human genome. See also: library, genomic library. (ORNL)

Similarity

The extent to which nucleotide or protein sequences are related. The

extent of similarity between two sequences can be based on percent

sequence identity and/or conservation. In BLAST similarity refers to

a positive matrix score. (NCBI)

Single-gene disorder

Hereditary disorder caused by a mutant allele of a single gene (e.g.,

Duchenne muscular dystrophy, retinoblastoma, sickle cell disease).

See also: polygenic disorders. (ORNL)

Single-nucleotide polymorphism (SNP)

DNA sequence variations that occur when a single nucleotide (A, T, C,

or G) in the genome sequence is altered. See also: mutation, poly-

morphism, single-gene disorder. (ORNL)

Somatic cell

Any cell in the body except gametes and their precursors. See also:

gamete. (ORNL)

Somatic cell gene therapy

Incorporating new genetic material into cells for therapeutic purposes.

The new genetic material cannot be passed to offspring. See also: gene

therapy. (ORNL)

Somatic cell genetic mutation

A change in the genetic structure that is neither inherited nor passed to

offspring. Also called acquired mutations. See also: germ line genetic

mutation. (ORNL)

Southern blotting

Transfer by absorption of DNA fragments separated in electrophoretic

gels to membrane filters for detection of specific base sequences by

radiolabeled complementary probes. (ORNL)

Spectral karyotype (SKY)

A graphic of all an organism’s chromosomes, each labeled with a differ-

ent color. Useful for identifying chromosomal abnormalities. See also:

chromosome. (ORNL)

Splice site

Location in the DNA sequence where RNA removes the noncoding

areas to form a continuous gene transcript for translation into a protein.

(ORNL)

Sporadic cancer

Cancer that occurs randomly and is not inherited from parents. Caused

by DNA changes in one cell that grows and divides, spreading through-

out the body. See also: hereditary cancer. (ORNL)

Stem cell

Undifferentiated, primitive cells in the bone marrow that have the

ability both to multiply and to differentiate into specific blood cells.

(ORNL)

Structural genomics

The effort to determine the three-dimensional structures of large num-

bers of proteins using both experimental techniques and computer

simulation. (ORNL)

Substitution

(a) The presence of a nonidentical amino acid at a given position in an

alignment. If the aligned residues have similar physicochemical proper-

ties, the substitution is said to be “conservative.” (NCBI) (b) In gen-

etics, a type of mutation due to replacement of one nucleotide in a

DNA sequence by another nucleotide or replacement of one amino

acid in a protein by another amino acid. See also: mutation. (ORNL)

Substitution matrix

A substitution matrix containing values proportional to the probability

that amino acid i mutates into amino acid j for all pairs of amino acids.

Such matrices are constructed by assembling a large and diverse

sample of verified pairwise alignments of amino acids. If the sample

is large enough to be statistically significant, the resulting matrices

should reflect the true probabilities of mutations occurring through a

period of evolution. (NCBI)

Suppressor gene

A gene that can suppress the action of another gene. (ORNL)

Syndrome

The group or recognizable pattern of symptoms or abnormalities that

indicate a particular trait or disease. (ORNL)

Syngeneic

Genetically identical members of the same species. (ORNL)

Synteny

Genes occurring in the same order on chromosomes of different

species. See also: linkage, conserved sequence. (ORNL)

T

Tandem repeat sequences

Multiple copies of the same base sequence on a chromosome; used as

markers in physical mapping. See also: physical map. (ORNL)
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Targeted mutagenesis

Deliberate change in the genetic structure directed at a specific site on

the chromosome. Used in research to determine the targeted region’s

function. See also: mutation, polymorphism. (ORNL)

Technology transfer

The process of transferring scientific findings from research labora-

tories to the commercial sector. (ORNL)

Telomerase

The enzyme that directs the replication of telomeres. (ORNL)

Telomere

The end of a chromosome. This specialized structure is involved in the

replication and stability of linear DNA molecules. See also: DNA repli-

cation. (ORNL)

Teratogenic

Substances such as chemicals or radiation that cause abnormal devel-

opment of an embryo. See also: mutagen. (ORNL)

Thymine (T)

A nitrogenous base, one member of the base pair AT (adenine–thy-

mine). See also: base pair, nucleotide. (ORNL)

Toxicogenomics

The study of how genomes respond to environmental stressors or tox-

icants. Combines genomewide mRNA expression profiling with

protein expression patterns using bioinformatics to understand the

role of gene–environment interactions in disease and dysfunction.

(ORNL)

Transcription

The synthesis of an RNA copy from a sequence of DNA (a gene); the

first step in gene expression. See also: translation. (ORNL)

Transcription factor

A protein that binds to regulatory regions and helps control gene

expression. (ORNL)

Transcriptome

The full complement of activated genes, mRNAs, or transcripts in a

particular tissue at a particular time. (ORNL)

Transfection

The introduction of foreign DNA into a host cell. See also: cloning

vector, gene therapy. (ORNL)

Transfer RNA (tRNA)

A class of RNA having structures with triplet nucleotide sequences that

are complementary to the triplet nucleotide coding sequences of

mRNA. The role of tRNAs in protein synthesis is to bond with

amino acids and transfer them to the ribosomes, where proteins are

assembled according to the genetic code carried by mRNA. (ORNL)

Transformation

A process by which the genetic material carried by an individual cell is

altered by incorporation of exogenous DNA into its genome. (ORNL)

Transgenic

An experimentally produced organism in which DNA has been artifi-

cially introduced and incorporated into the organism’s germ line. See

also: cell, DNA, gene, nucleus, germ line. (ORNL)

Translation

The process in which the genetic code carried by mRNA directs

the synthesis of proteins from amino acids. See also: transcription.

(ORNL)

Translocation

A mutation in which a large segment of one chromosome breaks off and

attaches to another chromosome. See also: mutation. (ORNL)

Transposable element

A class of DNA sequences that can move from one chromosomal site to

another. (ORNL)

Trisomy

Possessing three copies of a particular chromosome instead of the

normal two copies. See also: cell, gene, gene expression, chromosome.

(ORNL)

U

Unitary matrix

Also known as identity matrix. A scoring system in which only identical

characters receive a positive score. (NCBI)

Up and down

The simplest topology for a helical bundle or folded leaf, in which con-

secutive helices are adjacent and antiparallel; it is approximately equiv-

alent to the meander topology of a b sheet. (SCOP)

Uracil

A nitrogenous base normally found in RNA but not DNA; it is capable

of forming a base pair with adenine. See also: base pair, nucleotide.

(ORNL)

V

Vector

See: cloning vector. (ORNL)

Virus

A noncellular biological entity that can reproduce only within a

host cell. Viruses consist of nucleic acid covered by protein; some

animal viruses are also surrounded by membrane. Inside the

infected cell, the virus uses the synthetic capability of the host to

produce progeny virus. See also: cloning vector. (ORNL)

W

Western blot

A technique used to identify and locate proteins based on their ability

to bind to specific antibodies. See also: DNA, Northern blot, protein,

RNA, Southern blotting. (ORNL)

Wild type

The form of an organism that occurs most frequently in nature.

(ORNL)
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Working draft DNA sequence

See: Draft DNA sequence. (ORNL)

X

X chromosome

One of the two sex chromosomes, X and Y. See also: Y chromosome, sex

chromosome. (ORNL)

Xenograft

Tissue or organs from an individual of one species transplanted into

or grafted onto an organism of another species, genus, or family. A

common example is the use of pig heart valves in humans. (ORNL)

Y

Y chromosome

One of the two sex chromosomes, X and Y. See also: X chromosome,

sex chromosome. (ORNL)

Yeast artificial chromosome (YAC)

Constructed from yeast DNA, it is a vector used to clone large DNA

fragments. See also: cloning vector, cosmid. (ORNL)

Z

Zinc-finger protein

A secondary feature of some proteins containing a zinc atom; a DNA-

binding protein. (ORNL)

TABLE 1 Glossaries Available on Internet
Source URL

Genomics Glossary from Cambridge Healthtech
Institute (requires sign-in)

Q http://www.genomicglossaries.com/

Glossary from CancerPage.com Q http://www.cancerpage.com/
glossary/

Bioremediation Glossary from U.S.
Department of Energy

Q http://www.lbl.gov/ERSP/
generalinfo/glossary.html

Joint Genome Institute Q http://www.jgi.doe.gov/education/
links.html

The Dictionary of Cell and Molecular Biology Q http://www.mblab.gla.ac.uk/
dictionary/
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Answers to Self-Test Quizzes
[2-1] b [4-9] b [8-3] c

[2-2] c [4-10] c [8-4] c

[2-3] a [8-5] d

[2-4] a [5-1] b [8-6] c

[2-5] a [5-2] b [8-7] c

[2-6] c [5-3] b [8-8] a

[2-7] d [5-4] a [8-9] b

[2-8] c [5-5] a [8-10] c

[2-9] c [5-6] b

[5-7] a [9-1] c

[3-1] asparagine N [5-8] d [9-2] c

glutamine Q [5-9] b [9-3] a

tryptophan W [9-4] b

tyrosine Y [6-1] b [9-5] d

phenylalanine F [6-2] b [9-6] d

[3-2] a [6-3] c [9-7] a

[3-3] d [6-4] d [9-8] d

[3-4] c [6-5] d [9-9] a

[3-5] d [6-6] a

[3-6] a [6-7] a [10-1] a

[3-7] c [6-8] a [10-2] c

[3-8] false [6-9] a [10-3] b

[3-9] c [6-10] c [10-4] c

[3-10] d [10-5] c

[7-1] d [10-6] b

[4-1] d [7-2] b [10-7] d

[4-2] c [7-3] c [10-8] b

[4-3] a [7-4] a

[4-4] blastp d [7-5] b [11-1] a

blastn a [7-6] a [11-2] c

blastx c [7-7] b [11-3] d

tblastn b [7-8] a [11-4] c

tblastx e [7-9] a [11-5] d

[4-5] c [7-10] c [11-6] c

[4-6] a [11-7] a

[4-7] a [8-1] a [11-8] b

[4-8] b [8-2] d [11-9] d
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[15-1] c [18-1] a

[12-1] d [15-2] c [18-2] d

[12-2] a [15-3] a [18-3] a

[12-3] b [15-4] c [18-4] d

[12-4] c [15-5] d [18-5] a

[12-5] a [15-6] a [18-6] b

[12-6] e [15-7] c [18-7] a

[12-7] d [15-8] a [18-8] c

[12-8] a [18-9] c

[12-9] c [16-1] c

[16-2] c [19-1] c

[13-1] c [16-3] b [19-2] c

[13-2] a [16-4] c [19-3] a

[13-3] d [16-5] d [19-4] a

[13-4] d [16-6] d [19-5] a

[13-5] b [16-7] a [19-6] b

[13-6] d [16-8] d [19-7] b

[13-7] d [16-9] a [19-8] d

[13-8] c [16-10] c [19-9] d

[13-9] c [19-10] c

[17-1] c

[14-1] c [17-2] c [20-1] a

[14-2] a [17-3] c [20-2] a

[14-3] d [17-4] b [20-3] b

[14-4] a [17-5] a [20-4] c

[14-5] d [17-6] a [20-5] a

[14-6] b [17-7] c [20-6] c

[14-7] d [17-8] b [20-7] b

[14-8] d [17-9] a [20-8] c

[20-9] a
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Ancient conserved untranslated DNA

sequences (ACUTS), 670

Ancient DNA, 538

Ancient genomics projects, 545

Anemia, 877

Aneuploid/aneuploidy, 320, 473, 676,

847, 852–853, 855

Angelman syndrome, 853, 856

Angiogenesis, 583

Angiosperm Phylogeny, 751

Angstrom, unit of measure,

422, 430

Animalcules, 596
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Annotation(s):

advanced database searches,

170–171

cDNA expression, 309

eukaryotic genomes, 763

functional, 559, 622–625,

466, 476

human genome, 794, 826, 828

implications of, 26, 33, 35

microarray analysis, 368–369

multiple sequence alignments, 203

noncoding RNAs, 294

transcription, 322

yeast databases, 709, 722

AnoBase, 764

Anopheles gambiae, 57, 536, 676, 718,

762, 764–765

Anophelines, 764

ANOVA. See Analysis of variance

(ANOVA)

Anthrax, 601, 611

Antibiotics:

characteristics of, 407, 610

resistance to, 8

Antibodies, 407, 588–589

Anticodons, 285

Antigens, 731

Antisense Igf2r RNA (AIR), 282

Antisera, 402, 543

Antiviral drug therapies, 490, 572

Antonospora locustae, 717

Aphids, 605

Aphrodisin, 8

Apicomplexa, 21, 738–742, 745

Apicoplast, 740

Apis mellifera, 762, 765–766

Apolipoprotein D, 8, 49, 125–126,

146, 150–151

Apoptosis, 582, 873

Applied Biosystems, 387

APSSP, 429

Aquifex spp.:

aeolicus, 533, 608

completed genomes, 522, 600

Aquificae, 600

Arabidopsis, 755, 870
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Arabidopsis Information Resource

(TAIR), 403, 753

Arabidopsis spp.:

functional genomics, 499

Genome Initiative, 752

suecica, 675

thaliana:

characteristics of, 17, 20, 105, 171,

289, 305, 403, 470, 528, 530,

534–535, 556, 652, 658, 661,

666, 675, 729, 751–753, 792,

814

Database, 753

Project, 753

Arachaea, 25, 556

Arachaeon, 169

Arachnida, 761

ARB project, 291

Archaea:

characteristics of, 5, 7, 16, 25, 56,

107, 291, 381, 518, 598, 617,

629–630

classification of:

based on genome size and

geometry, 602–607

based on human disease relevance,

610–611

based on lifestyle, 607–610

based on molecular sequences,

612–615

based on ribosomal RNA

sequences, 611–612

by morphological criteria,

599–602

completed genomes:

overview of, 521, 525, 532, 548,

556, 559

viruses, 567–568, 571, 573, 591

eukaryotic genomes, fungi, 602, 704

functional genomics, 465

Archaeoglobus fulgidus, 532, 601, 608

Architecture:

CATH database, 443–445

domain, 198, 816

genome, 609

Arginine, 54, 61, 221

Aristotle, 520

Armadillo, 817

Array comparative genomic

hybridization (aCGH), 682–684,

829–830, 868–869

ArrayExpress, 25–26, 334

Arthopoda, 21. See also Arthropods

Arthritis, 876

Arthropods, 758, 761

Ascaris spp.:

megalocephala, 678

suum, 661, 678

Ascomycetes, 715–716

Ashbya gossypii, 712–713

Asian flu, 574

Asparagine, 54, 58, 61–63, 70, 77,

398, 428

Aspartate, 394

Aspartic acid, 54, 61–63, 77,

398, 428

Aspergillus spp.:

characteristics of, 715–718

fumigatis, 715–716, 718

oryzae, 716

nidulans, 716, 718

Assembler, 551

Association of Biomolecular Resource

Facilities (ABRF), 388, 401

Association of Research Libraries

(ARL), 40–41

Association studies, 867–868

Asterids, 751

Asthma:

characteristics of, 851, 876

Gene Database, 863

AT (adenine and thymine) content,

738–740, 757

Ataxia telangiectasia, 874

Atelier Bio Informatique de

Marseille, 412

Atherosclerosis, 872, 876

Atlas of Genetics and Cytogenetics in

Ontology and Haematology, 883

Atlas of Protein Sequence and

Structure, 58

ATP-binding cassette (ABC)

transporters, 680, 758

ATPase, 720, 858

AUGUSTUS program, 666

Australepithecus, 523

Autism, 851–852, 861

Autofinish, 551

Autoimmune disease, 878

Automated genomic sequencing, 551

Autopolyploidy, 675

Autozygosity, 827

Avena sativa, 752

Average linkage clustering, 358,

360–361

Avh genes, 747

Avian influenza virus, 574, 576

Avian retroviral oncogene, 128

Babesia vocia, 739, 741

Bacillus spp.:

anthracis, 601, 611, 627

halodurans, 534

subtilis, 532, 600, 606, 608

Back substitutions, 240–241

Bacteria, see Bacterial genomes

BLAST search, 107, 130

characteristics of, 5, 7, 16, 25, 56,

598, 617, 629–630, 800

classification of:

based on genome size and

geometry, 602–607

based on human disease relevance,

610–611

based on lifestyle, 607–610

based on molecular sequences,

612–615

based on ribosomal RNA

sequences, 611–612

by morphological criteria,

599–602

completed genomes:

characteristics of, 518, 521,

524–525, 532, 548, 556, 559

viruses, 567–568, 571, 573, 591

eukaryotic genomes, fungi, 704

functional genomics, 465–466, 487

genomes, pitfalls of, 630

microarray analysis, 314

parasitic, 719

human diseases, 855

phylogenetic relationships, 613–614

protein analysis, 381

RNA composition, 288–290

Bacterial artificial chromosomes

(BAC):

array comparative genome hybridiz-

ation (aCGH), 683–684

changes in, 682

characteristics of, 20, 22, 548–552,

662

eukaryotic chromosomes, 660

eukaryotic genomes, 767, 776

human diseases, 868

human genome, 802

Bacterial DNA, 559

Bacterial genomes, 527, 535, 537, 539,

556

Bacterial globin, profile HMMs, 160

Bacterial homodimeric hemoglobins, 7

Bacterial lipocalins, 8

Bacterial peptoglycans, 227

Bacterial phylogeny, 611–613
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Bacterial proteins, 132, 154, 159

Bacterial Structural Genomics

Initiative, 432

Bacteriodetes, 600

Bacteriology, 596

Bacteriome, 466. See also Bacteria;

Bacterial genomes

Bacteriophage:

genome, 527

microarray analysis, 330

fX174, 330, 527–528, 548, 572

viral genomes, 568

BAGE gene, 824

Bait proteins, 498–499

BaliBASE, 182–183, 195

Bardet–Biedl syndrome, 877–878

Bartter syndrome, 854, 875

Base pair/base pairing, 15, 35, 162,

165, 171, 173, 204, 230,

282–283, 288, 294, 320, 549,

569, 653, 708, 745, 751, 796, 826

Basidiomycetes, 720

Basidiomycetes, genome projects, 717,

720

Batch queries, Netblast searches, 117

Batrachochytrium dendrobatidis, 717

Bayes’s theorem, 265

Bayesian inference, 254, 264–268

Bayesian statistics, 246

Baylor College of Medicine:

Human Genome Sequencing

Center, 548

as information resource, 93, 246, 803

B-cell lymphocytes, 362

Bcl-2, 579

Bdellovibrio bacteriovorus, 602

Beijing Genomics Institute, 16, 548,

753–754

Beijing Human Genome Center, 803

Benchmarking:

genomic alignment performance

assessment, 162

microarray data analysis, 370

multiple sequence alignment,

182–184

phylogenetic trees, 268–269

protein networks, 502

Berkeley Drosophila Genome Project

(BDGP), 534–535, 761

Berkeley Genome Pipeline, 674

Bermuda Principles, 17

BestFit, 92

b-actin, 303, 305

b-adrenergic receptor, 127–128

Beta globins:

accession numbers, 26, 33

advanced database searches, 142,

153, 161–162, 164, 166, 174

BLAST search, 103, 105, 114

defined, 15

eukaryotic chromosome, 667, 671

functional genomics, 475–480

gene discovery and, 170

gene expression, 304

gene symbol, 36

genomic DNA databases, 20

human genome, 794–795,

797, 830

human disease, 847, 859

molecular evolution, 218, 229

molecular phylogeny, 239–240

multiple sequence alignment,

187–189

pairwise alignment, 52–53, 55–56,

60, 70, 87–90

phylogenetic analysis, 221, 245–246,

253, 267

profile HMMs, 159, 161

protein(s):

alignment, 49

identification, 383–384

related to, 103

sequences, 6, 23, 399, 422

structure, 424, 439

RefSeq identifiers, 29

repetitive DNA, 653, 655–656

search example, 35

three-dimensional structure, 141

b-lactoglobulin, 89, 94

Beta proteins, 443

b-Tubulin, 698, 729–730

Between-subject design, 349–350

Bifidobacterium longum, 610

Bifurcating phylogenetic trees, 233,

235, 259

big-PI Predictor, 413

Bigelowiella natans, 745

Bilaterians, 758, 767

Billion years ago (BYA), 48, 56,

521–522, 697, 748–749

Binary distance, 357

Binomial coefficients, 263

BioArray Software Environment

(BASE), 334

Biochemistry:

analysis techniques, 397, 433, 500

functions of, 8

molecular evolution and, 217

biocLite, 341

BioConductor project, 334, 340–341,

346

BioDiscovery, 334

BioGRID database, 502, 504

bioinfobook website, 244, 391, 396,

401, 519, 660, 778, 780

Bioinformatics, generally:

defined, 3

nature of, 5, 42

websites, information resources,

10–11

Biological confirmation, 320

Biological databases, see specific

databases

access to information, 26–39

accession numbers, 26–27

access sequence data example,

36–39

biomedical literature, 39–42

using Boolean operators,

40–41, 129

contents of, 14

cross-references, 39

genome browsers, 14, 35–36

overview of, 13–14

protein databases, 25, 33–35

search pitfalls, 42

truncation, 40

two-dimensional protein gel

databases, 34

Biological issues, 541

Biological Pathway Exchange

(BioPAX), 506

Biomaterials, contaminating, 298

Biomedical literature, 39–42

Biomolecular Object Network

Databank (BIND), 502

Biomphalaria glabrata, 85–87

Biopsy, 350

Biotinylated oligo(dT) primers, 310

Bipolar disorder, 867–868

Bird flu, 577. See also Avian influenza

virus

Birth-and-death evolution,

679–680

Bit score, BLAST searches, 113, 121,

125, 127

Blast 2 sequences, 302, 626

BLAST (Basic Local Alignment

Search Tool):

algorithms, 104, 115–122,

144–145

alternatives to, see Netblast
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applications, generally, 84, 731

bacterial and archaeal genome

searches, 618, 627

characteristics of, 23, 25, 35, 37, 40,

48, 50–51, 55, 65, 67, 69,

84–85, 102, 185

database selection, 106

duplications, 710

DUST program, 63

Ensembl, 142

E value, 387

eukaryotic chromosomes, 665

eukaryotic genomes, 740

evolution of, 135

formatting parameters, selection of,

112–114

free-living organisms, 531

functional annotations, 622

gene discovery, 169–174

genome sequencing, 550

HIV, 587

HIV-1 pol example, 123, 129–134,

153, 170

human genome, 796–797, 826

index, 115

matches, generally, 128–129

measles virus, 590

multiple sequence alignment, 195

nucleotide sequence searches, 107

optimal search parameters selection,

106–112

organism-specific sites, 143–144

output, 112–113, 170, 172

pairwise sequence alignment, 101,

135

phylogenetic analysis, 244

pitfalls of, 135

prediction software, 688

principles of searches, 124–129

program selection, 104–106

protein(s):

families, 392–393

identification, 382

sequence searches, 106, 422

structure, 435, 449, 451

PSI-BLAST, see PSI-BLAST

query sequences, 48, 50–51, 55, 65,

67, 69, 100, 111–120, 135, 143,

145–147

repetitive DNA, 661–662

RNA expression, 309

scoring, 72, 121, 129

searches:

algorithms, 84–85, 104

components, 102–103

strategies for, 123–134

SEG program, 653

sequence of interest, 103–104

specialized sites, 142–145

statistics applications, 118–122

summary statistics, 122–123

TIGR, 144

viral genome, 580, 585

web resources, 102, 135

BLAST 2 Sequences, 51–52, 85–87,

93–94, 122, 185, 422

blastn:

algorithms, 115

characteristics of, 50, 103–106, 110,

116, 162–163, 165, 308

coding sequence (CDS), 114

filtering options, 111

gene duplications, 709

molecular phylogeny, 242

mRNA sequences, 301–302

scoring system, 110

blastp:

advanced searches, 146–150

algorithms, 115

characteristics of, 33, 52, 73–74,

103–108, 118, 122–123, 154,

173–174

filtering options, 111

gene duplications, 709

human proteome, 814

measles virus, 590

molecular phylogeny, 242

(nr) search, 127, 131, 590–591

output, 112–113

pairwise alignments, 109

protein complexes, 501

sample searches, 131–133

search with HIV-1 pol, 132–133

blastx, 103–106, 171–173, 438–439

BLASTZ, 162–166, 204

BLAT (BLAST-like Tool), 162,

167–168, 308

BLink, 795

BLOCKS database, 72, 201–202

Blood/blood-forming organs diseases,

845

Bloom syndrome, 874

BLOSUM matrices:

advanced database searches,

147–148, 151, 156

BLOSUM80, 74, 110

BLOSUM50, 50, 73

BLOSUM45, 86, 110

BLOSUM90, 50, 73

BLOSUM60, 73

BLOSUM62, 50, 53, 70, 72–73,

81–82, 86, 110, 115–116,

147–148

implications of, 57, 70,

72–74, 147–148, 156,

194, 879

protein sequence analysis, 105

results guidelines, 129

Bombyx mori, 305, 762, 765

Bonferroni correction, 90, 122, 307,

351

Boolean operators, 40–41, 129

Bootstrapping, 172, 249, 266–268,

720

Bordetella pertussis, 611, 616

Borrelia spp.:

burgdorferi, 532, 599–601, 608

characteristics of, 603

Bos taurus, 17, 20, 51, 57, 554

“Bottom up” clustering, 355

Bovine serum albumin (BSA),

388, 401

Bovine spongiform encephalopathy

(BSE), 454, 568

Boxplots, 341–342

Branch-and-bound search,

phylogenetic trees, 235, 237

Branches:

guide tree, 187

phylogenetic trees, 231–234, 239,

248, 258–260

swapping, phylogenetic trees,

237–238

Branchiostoma floridae, 305

Brassicaccease, 752

BRB ArrayTools, 367

BRCA1/BRCA2 gene, 848

Breast cancer, 847–848, 877

Bridge amplification, 547

Broad Institute, 16, 548, 767, 803

Bronchitis, 626

Brugia malayi, 759, 761

Bryophytes, 756

Buchnera

Buchnera spp.:

aphidicola, 604–606, 609

APS, 534

characteristics of, 608

Caenorhabditis spp.:

brenneri, 761

briggsae, 759–761
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Caenorhabditis spp. (Continued)

elegans, 57, 105, 107, 109, 224,

293–294, 394, 403, 470–471,

490, 499, 503–504, 530,

532–533, 556, 652, 749,

758–761, 763, 800, 814, 818,

870

remanei, 761

Calcineurin, 397, 707

Calcitonin, 223

Caliorhinchus milli, 770

Callithrix jacchus, 554

Calmodulin, 224

Cambrian explosion, 522–523, 748

Campylobacter jejuni, 534

Canberra distance, 357–359

Cancer, 320–321, 335, 538, 847, 851,

853, 863, 868–870, 874,

876–878, 883–884

Cancer Chromosome Aberration

Project, 883

Cancer Gene Anatomy Project

(CGAP), 404, 883

Cancer Gene Census, 869

Cancer Genome Project, 869, 883

CancerNet, 884

CancerWEB, 884

Candida spp.:

albicans, 530, 715–716, 718–719

glabrata, 712–714

CandidaDB, 719

Candidatus Pelagibacter ubique, 622

Canis spp.:

familiaris, 51, 289, 554

lupus, 17, 23, 57, 229

Cap analysis gene expression (CAGE),

322

Capillary electrophoresis, 545

Capsid proteins, 39, 567, 573

Carbonic anhydrase C, 223

Carboxyl groups, 422–425

Cardaminopsis aerenosa, 675

Cardiomyopathy, 872, 875

Cardiovascular disease/disorders, 847,

872, 875

Carpediemonas membranifera, 664

Carrier proteins, 127, 147, 442–443,

501, 702

Carsonella ruddii, 604–606

Casein(s):

characteristics of, 56–57, 59, 67

kinase, 398

Castleman’s disease, 579

CASTp database, 447

Catabolism, 875

Cataracts, 872

CATH database, 435, 441, 443–446

Caulobacter crescentus, 384, 536

Caviidae, 219–220

Cavia porcellus, 554

CCAAT box, 663

CDKAL1, 867

CE database, 447

Celera Genomics, 534–535, 761, 765,

776, 802, 826, 876

Cell(s):

biological analyses, 402

cycle, 384, 546

development, 5

molecular sequence, 5

surface proteins, 443

Cellular pathways, 5

Cellulose, 699, 721, 758

CENP-A, 660

Centers for Disease Control (CDC),

583, 611, 733–734, 739, 741,

762, 855

Centipedes, 761

Central Dogma, 492–493

Central nervous system disorders, 847

Centroid(s):

clustering, 359

linkage, 360, 363

Centrometric repeats, 660–661

Cephalochordates, 758

Cercopithecus lhoesti, 583

Cereals, plant genomes, 753

Cerecocebus stys, 583

Cesium chloride, 806

cGMP, 398

Chagas disease, 736

Chaining, 359–360

Chandonia, John-Marc, 441

Channeltron electron multiplier, 385

Chaperones, 702

Charcot–Marie–Tooth (MCTIA),

840, 854

Charge train, 384

CHARLIE4A, 656

Chediak–Higashi syndrome, 874

Chelicerata, 761

Chemical mutagenesis, 776

Chemoreceptors, 680, 759, 767

Chi-square analysis, 227–228

Chicken(s):

genome, 541, 771–772

influenza virus, 574

Children’s Cancer Web, 884

Chime, 437

Chimpanzee Sequencing and Analysis

Consortium, 778–779

Chlamydia spp.:

characteristics of, 600, 626

muridarum, 534

pneumoniae, 534, 626, 628

trachomatis, 533–534, 600–601,

609, 626–628

Chlamydomonas spp.:

characteristics of, 750, 756

reinhardtii, 530, 748–750

Chlamydophila pneumoniae, 533, 609,

625

Chlorarachniophytes, 745

Chlorobi, 600

Chlorobium tepidum, 600

ChloroP, 414

Chlorophyta, 21

Chloroplast genomes, 528–529, 739,

745, 748–749

Cholesterol, 8

Chordata, 21

Chou–Fasman algorithm, 428

Chromatin:

diminution, 677–678, 742

functions of, 648, 793, 849

human, 800

immunoprecipitation (ChIP),

671

Chromosomal abnormalities, 463,

847, 868–869

Chromosomal alterations, 853

Chromosomal disorders, 843, 853,

855, 859

Chromosomal DNA, variation in,

674–682

Chromosomal evolution, 673

Chromosomal rearrangement, 743

Chromosome(s):

aberrations, 683, 863

advanced database searches, 164

bacterial, 603

circular, 535

eukaryotic, 529–530

functions of, 6

fruit fly, 534–535

functional genomics, 473

genome browsers, 35–36

human, 21, 533–535

micronuclear, 742

multiple sequence alignments, 204

plant, 534–535

rRNA sequences, 289–291
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Chromosome X/XI/XII,

Saccharomyces cerevisiae, 705–707,

709, 718

Chromosome 21, 710

Chromowheel, 744

Chronic obstructive pulmonary

disease, 844

Churchill, Gary, 156

CIBEX, 334

Ciliphora, 742–745

Cinara cedri, 605

Ciona spp.:

intestinalis, 767–768

savignyi, 766–768

intestinalis, 17, 758, 766–768

Circos software, 744

Circular binary segmentation (CBS),

683, 716

Circular genomes, 528, 531, 567

Circular Genome Viewer

(CGViewer), 744

Circulatory disease, 845

Cirrhosis, 844

Cis-regulatory models (CRMs), 669,

671

Citrullinemia, 875

C-kit, 251

Class, CATH database, 443

Classical structural biology, 433

Cleavage, 219, 294, 310, 382, 394

Clones/cloning, 20, 169–170, 173,

297–299, 302, 307–309, 312,

362, 495, 545, 549–550, 662,

701, 776, 800, 802, 804, 880

Clontech Laboratories, 317–318

Clostridium spp.:

acetobuytlicum, 608

botulinum, 601

perfringens, 600

tetani, 611

ClustalW, 184–190, 192, 195, 202,

205, 207, 244

ClustalX, 185, 196, 202

Clusters/clustering:

cDNA sequences, 309

gene expression, 303–304

hierarchical, 355–363

implications of, 361–363

microarray data analysis, 314, 332

phylogenetic analysis, 247, 257–259

in protein structure, 446

ribosomal, 660–661

tree, in descriptive statistics, 355

UniGene, 312

Clusters of Orthologous Groups

(COGs) database, 56, 256,

410–411, 466, 531, 579, 607,

613, 622–625, 704

Clusters of Related Viral Proteins, 580

Cn3D, 25, 49, 422, 424, 427,

437–438, 440

CNA1 gene, 707

Cnidaria, 21, 767

CnidBase, 767

Coat proteins, 567

Coccidoides immitis, 716

Cockayne syndrome, 874

Coding sequence (CDS), 114, 811,

813

Codons, functions of, 48, 63–64, 110,

204–205, 558, 617–618, 620,

662–664, 706, 757

Coiled-coil domain, 397, 400

COILS, 412

Co-immunoprecipitation, 494

Cold Spring Harbor Laboratory, Lita

Annenberg Hazen Genome

Center, 803

Collaborative Cross, 473

Collagen, 378, 413, 543, 817

Colony collapse disorder, 573

Color blindness, 848, 853, 856

Color key, BLAST searches, 112–113

Colour Interactive Editor for Multiple

Alignments (CINEMA), 201

Column score (CS), multiple sequence

alignment algorithms, 183

Combiner algorithm, 668

Community acquired pneumonia, 611

Community Cyberinfrastructure for

Advanced Marine Microbial

Ecology Research and Analysis

(CAMERA), 543

Compaction, 750

Comparative analyses, 650

Comparative genome hybridization

(CGH), 682

Comparative genomics:

bacteria and archaea, 606

characteristics of, 5, 519, 525,

552–554, 730, 740, 782

eukaryotic research, 672, 688

fungi, 698

human genome, 801

Comparative modeling, 447–450

Complementary DNA (cDNA):

characteristics of, 18–20, 32,

302–309, 322–323, 538, 544

databases, 19–20

double-stranded, 302

eukaryotic genomes, 763, 776

full-length projects, 308–310

functional genomics, 494–495

in genome sequencing, 551

genome annotations, 558

human genome, 801

libraries, gene expression analysis,

302–307

messenger RNA (mRNA)

sequences, 298–299

microarry analysis, 312–313, 315,

317–319, 323, 332

microRNA and, 293

multiple sequence alignment,

180–181

protein analysis, 400

structural genomics, 433

transcription, 322

Complete androgen insensitivity

syndrome, 877

Complete Arabidopsis Transcriptome

Micro Array (CATMA) database,

753

Completed genomes:

characteristics of, 517–518, 559

DNA sequencing techniques,

544–547

genome analysis projects, 537–544

genome annotation, 555–559

genome-sequencing projects,

525–537

genomic sequencing process,

547–554

historical perspectives, 535–537

pitfalls of, 559

systematics, 520

tree of life, 516, 521–524

viruses, 567–592

Complete linkage clustering,

359–361

Complex disease/disorders, 843, 847,

851–853, 859, 876

Composition-based statistics,

110–111, 146

Comprehensive Microbial Resource

(CMR), 525, 599, 615–616, 622

Comprehensive R Archive Network

(CRAN), 341

Comprehensive Yeast Genome

Database (CYGD), 498, 502

Computational biology, 802

Compute pI/Mw, 412
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Computer program algorithms, 55. See

also Algorithms; specific types of

alogrithms

Concerted evolution, 679

Confounding effects, 60

Congenital anomalies, 845, 847

Connective tissue disease, 845

Consed, 551

Consensus Coding Sequencing

(CCDS) Project, 29, 870

Consensus sequences, 309, 617

Consensus tree, 263, 268

Conservation, 56, 59, 102, 141, 161,

164–165, 168, 178, 181, 184,

186, 188, 204, 289, 322, 476, 609,

615, 668, 672–673, 678, 680,

715, 747, 775, 782, 799, 822, 825

Conservative substitutions, 51, 64, 94

Conserved Domain Database (CDD),

112, 130, 153, 199–200,

400, 439

Contiguous transcripts (contigs),

548–550, 701, 797, 804

Convention on Biological Diversity,

525

Convergent substitutions, 240–241

Coprinopsis cinerea, 717

Copy number variants (CNVs), 683,

856

Core proteome, 687, 763, 781

Coronary artery disease, 867–868,

877. See also Cardiovascular

disease

Coronavirus, 570

Correlation coefficients, 321, 333,

335–336

Correlation matrix, 366

Corruption, PSI-BLAST search,

152–153, 174

Corynebacterium diphtheriae, 601, 611

Cosmid clones, 802

Covariance matrix, 366

Covariance models, 287

Cow genome, 773–774

COX1 gene, 529

CpG islands, 665, 668–670, 765, 776,

780, 807

C proteins, 590

Crenarchaeota, 601

Creutzfeld–Jakob disease, 568

Cri-du-chat syndrome, 853

Critical Assessment of Techniques for

Protein Structure Prediction

(CASP), 451–454

Crohn disease, 867–868, 877

Cross-linking, 496, 542

Crossovers, 681–682, 711

Cross-validation, 368

Crustaceans, 761

Cryptococcus neoformans, 706, 715,

717, 719

Cryptomondas, 535, 745

Cryptosporidium spp:

hominis, 739, 741

parvum, 739

Cucumis melo, 530

Culex spp.:

pipiens, 764

quinquefasciatus, 764

tarsalis, 764

Cumulative distribution function, 119

Curse of dimensionality, 354

Cutoff:

threshold, 346

values, 556. See also E value

Cuvier, Baron Georges, 790

C value:

characteristics of, 539–540

paradox, 668–669

Cyanobacteria, 540, 600, 602, 747

Cycle reversible termination

(CRT), 547

Cyclic reversible termination. See

Solexa system

Cyclin, D-type, 579

Cyclin-dependent kinase (CDK), 874

CYP26A1, 673

Cysteine, 54, 58, 61, 63, 68, 70, 102,

178, 181, 220, 391, 220, 428

Cystic fibrosis, 454, 840, 847, 850, 857,

875, 877

Cystic fibrosis transmembrane

regulator (CFTR), 453, 878

Cystinuria, 875

Cytochrome(s):

b5, 223

c, 59, 178, 221–223, 432, 758, 858

P450, 817

Cytogenetics, 674, 853, 860

Cytoglobin, 85–87, 234

Cytosine, 64, 110, 242, 250, 281, 286,

302, 556, 615

Cytosol, 389, 402, 406

Dali:

DaliLite server, 422

Domain Dictionary, 422, 435,

441, 446

Dana Farber Cancer Institute,

Computational Biology and

Functional Genomics Lab, 144

Danio rerio, 17, 20, 305, 403, 471, 554,

770

Darier–White disease, 874

Darwinian evolution, 621

DAS server, 414

Database for Annotation, Visualization

and Integrated Discovery

(DAVID), 368

DatabasE of Chromosomal Imbalance

and Phenotype in Humans using

Ensembl Resources

(DECIPHER), 853

Database of Disordered Proteins, 453

Database of Genomic Variants, 830

Database of Interacting Proteins

(DIP), 502

Database Referencing of Array Genes

Online (DRAGON), 368

Databases, defined, 5. See specific types

of databases

Datamonkey, 230

Data points, see Point

hierarchical clustering, 355–356,

360

principal components analysis

(PCA), 366

Dayhoff ’s Atlas, 524

dbEST, protein identification, 386

dbGaP, 868

Deacetylases, 39

Deafness, 872, 875

Debaryomyces hansenii, 712, 719

Decay:

constant, BLAST statistics, 118–120

mechanisms, 301

Decision tree, 666

Deep Green plant project, 234

DeepView, ExPASy, 422, 425–428,

434

Defensins, 680

Degenerative disorders, 866

Degrees of freedom, 253

Deinoccoccus radiodurans, 533, 600,

607–608

Deinococcus-Thermus, 600

Delete state, hidden Markov model,

157–158

Deletions:

bacteria and archaea, 613–614, 616

eukaryotic chromosomes, 673, 676,

680–683, 685–687
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eukaryotic genomes, 708, 710–712,

730, 737

functional genomics, 471, 474, 478,

482–483

human disease, 830, 840, 853,

855–856, 858, 864, 866, 878

human genome, 795

implications of, 6, 50, 55, 110,

161–162, 181–182, 190, 205,

207, 547

phylogenetic anlaysis, 223, 231, 246

RNA analysis, 320

Delta, 352

Delta globins:

BLAST search, 114

DNA, repetitive, 657

eukaryotic chromosome, 671

pairwise alignment, 60

Dementia, 851

Denaturation, 544

Dendograms, 355, 359, 363, 582

Dengue, 764

De novo sequencing, 538

1-Deoxy-D-xylulose 5-phosphate

(DOXP), 741

Deoxyribonucleic acid (DNA). See

DNA

Depression, 851–852

Deprotection, 547

Descriptions, BLAST search, 113

Descriptive statistics:

applications, generally, 332,

354–355

hierarchical clusters, 355–363

k-means clustering, 361, 363

principal components analysis, 361,

364–367

self-organizing maps, 361, 363–364

supervised data analysis for

classifications, 367–368

Deuterostomes, 758

Deuterostomia, 758

Development, birth-and-death

evolution, 680

D genes, 145

Diabetes:

diabetes mellitus, 844

implications of, 851, 867–868, 872,

875, 876

Type 1, 867–868

Type 2, 867–868, 877

Diagnostic markers, 333

DIALIGN, 195, 202

Diarrheal disease, 611

Diatoms, 746–747

Dicer protein, 294, 489

DictyBase, 403

DictyOGlyc 1.1 Prediction Server, 413

Dictyosteliida, 21

Dictyostelium discoideum, 413, 556, 602,

739, 756–757, 874

Didelphis virginiana, 173

Dideoxynucleotides (dNTPs), 527,

544–546, 803–804, 826

Dideoxythymidine triphosphate

(ddTTP), 544

Difference gel electrophoresis (DIGE),

384

DiGeorge syndrome, 856

Digestive diseases, 845

Digital differential display (DDD), 306

Dihydrofolate reductase, 579

Dinoflagellates, 745

Dinosaur genome, 771–772

Dinucleotides, 665, 669, 765–766,

780

Diphtheria, 611

Diploid-based synthetic lethality by

microarray analysis (dSLAM), 483

Diploid organisms, 539, 602, 645, 736,

753, 780, 826

Diplomonoadida, 734

Directed acyclic graph, 405

Disability-adjusted life years (DALY),

844

Discontiguous MegaBLAST, 165–167

Disease:

defined, 840

resistance, 680

Disomy, uniparental, 687

Disorder, defined, 840

DisProt, 453

Dissimilarity matrices, phylogenetic

analysis, 258

Distance matrices, applications of:

multiple sequence alignment, 185,

188–189, 195

phylogenetic analysis, 247, 257–258

protein analysis, 446

Distance metrics, 33, 358, 362

Distant Aligned Protein Sequences

(DAPS), 152

Distributed annotation system (DAS),

486, 754

Disulfides, phylogenetic analysis,

219–220

Divergence:

eukaryotic genomes, 774, 780

evolutionary, 246–248

sequence, 736

Divergent evolution, 246–248,

678–679

Diversity, viral, 571–573

Divisive hierarchical clustering,

355–357

DNA:

ancient, 538

ancient projects, 542–543

ancient viruses, 571

-based trees, 240–243

composition of, 281

databases, types of, 42

double helix structure, 279–280,

538, 566

double-stranded, 570, 579,

579–580, 651

euchromatic, 769

fragmentation, 26, 115, 298, 542,

545, 619, 651, 802

genomes, viral, 571

hybridization, 304, 317, 330

kinetoplast, 736

lateral gene transfer, 620–621

methylation, 313, 369, 392, 393,

538, 849

microarray analysis:

characteristics of, 5, 317,

322–323, 369, 494

nucleic acids, 330

mitochondrial, 825

molecular evolution, 226

noncoding, 162, 528

polymerases, 36, 130, 224, 394, 545,

547, 745

rearrangement, 677

relationship with RNA, 320–321

repetitive, 650–651, 681, 688,

733, 776, 781, 802, 805,

808–809

replication, 648

sequences/sequencing:

accession numbers, 26

analysis of, 6, 26, 145

automated, 831

BLAST search, 102–103, 105

cyclic reversible termination,

Solexa system, 547

error rates, 26

in human diseases, 882

human genome, 793, 801

inversions, 678

molecular evolution, 227–230
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next-generation technology,

15–16

noncoding, 650–652

pyrosequencing, 545–547

repetitive, 111

Sanger sequencing, 544–545

significance of, 3

simple sequence repeats,

657–658

technological advances in, 7, 525,

544, 803

viral, 591

single-stranded, 544, 546, 568, 570,

579, 651

transcription, 281, 330

transposons, 475, 486, 652

DNA Database of Japan (DDBJ):

CIBEX, 334

contents of, 5, 10, 13–14, 18,

23, 27, 42, 106–107,

646, 841

nucleotide sequence data, 18,

106–107

website, 14

DNAML, 264

DNase I, 477, 672, 793

Dog genome, 773–775

Domain architecture, 198, 816

Domains, protein

families, 389–393

DOMO, 203

Dotlet, 86

Dot plots, 85–87

Down syndrome, 321, 338, 347, 353,

357, 363, 462, 465, 535, 645, 765,

847, 852–853

Down Syndrome cell adhesion

molecule (DSCAM), 300

DOWNTAG, 480

Draft genome sequence, 549,

688, 734, 753–754,

781, 805

drawhca, 412

“Driver” mutations, 869–870

Dropoff values, 50

Drosophila spp.:

ananassae, 552, 762

characteristics of, 471, 490–491,

498–499, 503–504, 675, 679,

719, 752, 818

erecta, 762–763

genes, 872–873

grimshawi, 762–763

melanogaster, 17, 57, 105, 162, 289,

300, 403, 530, 534, 549, 665,

678–679, 758, 761–765, 800,

814

mojavensis, 552, 762

persimilis, 762–763

protein, 870–871

pseudoobscura, 762–763

sechellia, 762

simulans, 552, 678–679, 762

virilis, 658, 762

willistoni, 762

yakuba, 762–763

Drosophila Down syndrome cell

adhesion molecule (DSCAM),

765

Drug(s), see Pharmacological

interventions

discovery process, 432

resistance, 591–592

DSSP software, 429–430

Duchenne dystrophy, 840

DUP240 genes, 680

Duplication(s):

bacteria and archaea, 609,

628, 675–676, 679–682,

698

eukaryotic chromosomes, 675–676,

679–682

eukaryotic genomes, 698, 708–711,

730, 732, 737, 743, 752,

770–771, 781

functional genomics, 471, 481

human disease, 866

human genome, 793, 805, 816, 830,

840

implications of, 6, 49, 161,

205

molecular phylogeny, 218,

226–227, 230, 238

segmental, 658–660, 682, 688,

793, 809

whole genome, 744–745

DUST program, 111

Dyes, applications of:

FISH, 682

fluorescent, 684

functional genomics, 480

microarray analysis, 314, 316, 318,

332, 337, 343

protein identification, 384

Dynamic programming, 78, 80–81,

164, 169, 184

Dynein, 224, 756

Earth:

history of, 521–523

time scale of life, 56

EasyGene, 617

Ecdysozoa, 758

Echinodermata, 21, 758

EcoCyc database, 466, 615,

623, 754

EcoGene database, 615

Ecology, 216

Ectopic expression, 486

Edman degradation, 381–382

Edwards syndrome, 824,

852–853

EGASP (ENCODE Genome

Annotation Assessment PRoject),

162, 666–668, 816–817

Ehrlichia chaffeensis, 609

Eigenvalues, 366

Elastin, 378

Electron density map, 430

Electronic databases, 298

Electronic Northern blot, 306

Electrospray, 386

Elephant shark, 768

Elongation factor 1-b (EF-1 b), 698,

729–730

EMBOSS (European Molecular

Biology Open Software Suite), 81,

93, 185, 615

Embryophyta, 107

Emission probability function,

157–158, 194

Encephalitozoan spp.:

characteristics of, 732

cuniculi, 536, 569, 602, 715, 717,

719

ENCODE (Encyclopedia of DNA

Elements) Project, 295,

321–323, 465, 476, 491–492,

647–650, 663, 671, 793, 830,

865–866

ENCODE Project Consortium,

656

Endocrine disease, 872

Endocrine Pancreas Consortium,

754

Endocytosis, 389, 406

Endoplasmic reticulum, 398, 406

Endorphins, 223

Endosymbiosis, 745–746, 761

Enhanced biological phosphorus

removal (EBPR) sludge

project, 544
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Ensembl:

annotations, 666

BLAST:

advanced searches, 142–143

ContigView, 142–143

output, 143

characteristics of, 14, 36, 42

ContigView, 652, 797–799

distributed annotation system

(DAS), 754

eukaryotic chromosome analysis,

646, 666

eukaryotic genomes, 754, 764–765

functional genome, 486

genome browser, 806–808

genome-sequencing projects, 526

human disease research, 841, 862

human genome, 791–792,

794–798, 806

MapView, 799

mouse genomes, 762

protein analysis, 380

RNA analysis, 289

Trace Server, 16, 553–554

Entrez:

applications, generally, 103

contents of, 24, 525–526

Gene, 29–33, 35, 49, 113, 127, 394,

402–403, 647, 652, 794–795,

859

Genome, 37, 529, 531, 571, 584,

589, 704, 747, 751

Nucleotide, 23, 32, 35, 37, 244,

794–795

PopSet, 181

Protein, 31–33, 35, 37, 40, 184, 244,

402, 794

Query, limitations of, 107

repeated sequences, 660

Structure, 439

TaxPlot, 626–628

tips for using, 40

viruses, 571, 579, 591

env (environmental) databases,

nucleotide sequences, 106–107

Environmental diseases, 843, 847,

855–857

Enzymatic analyses, 397. See also

specific enzymes

Enzyme Commission (EC), 411

Enzymes, protein analysis, 409

Enzyme Structures Database, 447

Eosinophilic RNases, 680

EPConDB, 754

Epicellular bacteria, 607–608

Epidemics, 574

Epidermal growth factor, 59, 223

Epifagus virginiana, 748

Epigenetics, 471, 538

Epitopes, 230, 407

Equilibrium dialysis, 496

Equus spp.:

asinus, 675

burchellii, 51

caballus, 51, 57, 554, 675

Erythrocytes, 738

Escherichia coli (E. coli), 81, 105, 279,

282, 289, 388, 424–425, 432,

466, 493, 500, 532, 535–536,

541, 600–601, 604, 606–608,

611, 615–617, 619, 623, 625,

628–629

est2genome, 93

Euarchontoglires, 772

Euchromatics, 658, 818

Euchromatin, human genome, 824

Euclidean distance, 358–359, 363

Eudicots, 751

Euglenophytes, 745

Euglenozoa, 735

Eukaryota, 107

Eukaryote(s), see Eukaryotic chromo-

somes; Eukaryotic genomes

advanced database searches, 170

chromosomes, see Eukaryotic

chromosomes

DNA analysis, 673–674

evolution of, 664

functional genomics, 465–466

gene annotations, 558

genomic analysis, 5, 7–8, 16, 25–26,

36, 518, 520–521, 525, 532,

535

genomic DNA sequences,

557–559

genomic sequencing projects, 530,

532, 539–540, 548, 556

prokaryotes, distinguished from,

641–642

protein(s):

analysis, 402

networks, 503

sequences, 381, 414

RNA:

composition, 288, 290–291

processing, 300

siRNA, 294

viruses/viral genome, 571, 579

Eukaryote Gene Orthologs (EGOs),

309

Eukaryotic chromosomes:

analysis by ENCODE project,

647–650, 663

analysis using Genome Browser,

645–647, 670

characteristics of, 640–641, 687

gene content of, 662–663

measurement techniques, 682–687

organization of genomes into,

644–650

pitfalls of, 687–688

regulatory regions, 669–673

repetitive DNA content:

interspersed repeats, 652–653

noncoding and repetitive

sequences, 650–651

processed pseudogenes, 653–657

segmental duplications, 658–660

simple sequence repeats, 657–658

tandemly repeated sequences,

blocks of, 660–661

size of genome, 643–644

web-based databases, 646, 688

Eukaryotic genomes:

bacteria and archaea, 598

characteristics of, 729–731

Chromalveolates:

Apicomplexans, 738–742

Ciliphora, 742–745

Nucleomorphs, 745–746

Plasmodium falciparum, 729,

738–742, 754

Stramenopila, 729, 746–747

chromosomal DNA variations,

674–682

EGASP competition and JIGSAW,

666–668

finding genes in, 663–666

fungi:

Aspergillus, 715–718

Candida albicans, 718–719

characteristics of, 697–698,

721–722

Cryptococcus neoformans, 719

description of, 698–699

Encephalitozoon cuniculi, 719

hemiascomycetes, 712–715

Neurospora crassa, 719–720

Phanerochaete chrysosporium,

720–721

Saccharomyces cerevisiae, 700–711,

721
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Schizosaccharomyces pombe, 721

taxonomy, 699

gene identification, 663–666

metazoans:

Anopheles gambiae, 764–765

Caenorhabditis elegans, 759–761,

763

characteristics of, 758–759,

781–782

chicken, 771–772

Ciona intestinalis, 767–768

dinosaurs, 771–772

Drosophila melanogaster, 758,

761–764

fish, 731, 768–771

honeybee, 765–766

mammalian radiation, dog to cow,

773–774

opposum, 772–773

primates, 778–781

rodents, mouse and

rat, 774–778

sea urchin, 766–767

silkworm, 765

multiple sequence alignment,

203–204, 530

nonconserved, 673

plant genomes:

Arabopsis thaliana, 729, 751–753

grapevine, 755–756

green algae, 748–751

moss, 756

poplar, 755

rice, 729, 753–755

protein-coding genes, 668–669

protozoans:

Giardia lamblia, 729, 731,

733–735

Trichomonas, 732–733

slime and mold genomes,

Dictyostelium discoideum,

756–757

ultraconserved elements, 672–673

unicellular pathogens:

Leishmania, 736–736

Trypanosomes, 731, 735–736

web resources, 782

Eukaryotic Promoter Database (EPD),

670

Eumycota, 697

Euplotes spp.:

aediculatus, 661

crassus, 661

European Bioinformatics Institute

(EBI):

ArrayExpress, 334

DaliLite server, 445–446

EMBL, see European Molecular

Biology Laboratory (EMBL)

eukaryotic genomes, 768, 776

format, 85

functions of, 10, 14

Gene Expression Omnibus (GEO),

320, 339, 341

genome projects, 525–526

Genome Reviews, 526

Genomes Server, 526

IntAct database, 499

Integr8, 526, 703, 814

MAFFT, see MAFFT (Multiple

Alignment using Fast Fourier

Transform)

molecular evolution, 267

Nucleotide Sequence Database,

14, 18

protein(s):

analysis software, 412

structure, 33, 403, 435

proteomics analysis, 701, 814

QuickGO, 404

sequence analysis, 14, 16, 18, 25–26,

33–34, 42, 85, 144, 185, 245

Short Read Archive, 16

UniProt, see UniProt

website, 14, 25

European Conditional Mouse

Mutagenesis Program

(EUCOMM), 472, 479

European Drosophila Genome Project

(EDGP), 761

European Leishmania major Friedlin

Genome Sequencing Consortium,

737

European Molecular Biology

Laboratory (EMBL)

BLAST search, 106–107, 121

eukaryotic chromosomes, 646

protein analysis, 412

RNA analysis, 293

sequence analysis, 5, 10, 14, 23,

27, 42

European Ribosomal RNA Database,

524

Euryarchaeota, 601

E values:

advanced database searches, 143,

146, 149, 154–155, 171

BLAST search:

characteristics of, 90, 105, 107,

109, 113, 118–120, 125, 129

p values, relationship with,

121–122

raw scores with bit scores, 121

eukaryotic genomes, 740, 763, 782

profile HMMs, 160

protein analysis, 387

PSI-BLAST search, 146–147, 149,

152

Evofold, 294–296

Evolution, see History of life on earth

change mechanisms, 215–216

history, overview of, 541

perspectives of, 7, 840

reconstruction, 731

relationships, 622

Evolutionary and sequence pattern

extraction through reduced

representation (ESPERR)

software, 669–670

Evolutionary conservation, 823

Evolutionary distance, 68, 74–75,

146, 187, 248–249, 257.

See also Phylogenetic trees,

distance-based

Exocytosis, 469

Exons, functions of, 20, 22, 27, 127,

161, 167, 169, 190, 204,

301–302, 322, 538, 542, 558,

659, 663–664, 667, 796, 814–815

Exosomes, protein complexes, 500

ExPASy (Expert Protein Analysis

System), 34–35, 39, 42, 93,

383–384, 394–395, 399, 412,

422–423, 427, 503

Expect level, PSI–BLAST searches,

152

Expect value, see E value

BLAST search, 107, 124, 129

cutoff, 174

pairwise alignment, 50, 53

profile HMMs, 160

Exploratory statistics. See Descriptive

statistics

Expressed sequence tags (ESTs):

advanced database searches,

171–172

BLAST searches, 102, 105–107,

131, 134, 171

characteristics of, 19–20, 26, 32–33,

302, 306, 323

in comparative analyses, 714
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eukaryotic chromosomes, 665, 668

eukaryotic genomes, 740, 760, 763,

767, 782

genome annotations, 557

human genome, 795

microarray analysis, 314

rRNA sequences, 299

Expression data, advanced database

searches, 142

Expression Profiler (EP), GO Browser,

404

Expression ratios, 346–347

Expresso, 184

Extend, BLASTalgorithms, 115–118

External RNA Controls Consortium,

299, 335

Extracellular bacteria, 607–608

Extracellular matrix, 543

Extreme value distribution, BLAST

search, 100, 118–121, 160

Extremophilic microbes, 609

Factorial design, 350

False discovery rate (FDR) analysis,

351, 353

False positive rate (FPR), 351–352

Familial diseases, 867–868

FANTOM database, 322, 876

Farnesylation, 398

FASTA algorithm, PSI-BLAST

search, 152

FASTA format, applications of, 31–33,

50, 52, 81, 84–85, 103–104, 111,

122, 144–145, 184–186, 243,

549, 552–553, 556, 653

FATCAT database, 447

Fatty acid-binding proteins (FABPs),

443

Fatty acids, 407, 718, 733, 741

FBSN (familial bilateral striatal

necrosis), 858

Feneid, 666

Ferredoxin, 734

FgeneSH, 666

Fibrillarin, 293

Fibrinogen, 378

Fibrinopeptides, 222–223

Fibronectin, 392–394

File transfer protocol (FTP) files, 160

Filtering options, 50, 103, 109,

111–112

Find-a-gene project, 170–172

FindModel, 252

Finished sequence, 549, 559

Finishing process, genomic

sequencing, 551

Finite state machine, 156

Firmicutes, 600

Fish genomes, 731, 768–771. See also

specific types of fish

Fisher’s exact test, 307

Fission:

whole genome duplication, 676

yeast, 666

Fixed effects, microarray data analysis,

354

Fixed-order Markov chain, 618

Flatworms, 758

Flavohemoglobins, 7, 466

FLIGHT, 491

Fluorescence:

eukaryotic chromosome analysis,

645

functional genomics, 471

microarray analysis, 314, 316–319,

330, 332, 337

mRNA sequences, 299

protein analysis, 407

Sanger sequencing, 545

Fluorescence in situ hybridization

(FISH), 682, 868

Fluorescent resonance energy transfer

(FRET), 496

FlyBase, 402–403, 471, 491, 707, 754,

762

Fly genome, 534–535

Fold(s):

protein families, 389–390

recognition, 450

Fold classification of structure–

structure alignment of proteins

(FSSP), 152, 435, 447

Footprinting:

functional genomics, 487

phylogenetic, 552

Formicidae, 661

Forward genetics, 491–492, 508

Forward proteomics, 494–495

Fossils, 56, 219, 222, 225, 543, 748,

778

Fourier transformation, 430

f parameter, BLAST searches, 115, 117

Fractionation, 397

Fragile sites, 677

Fragile X syndrome, 840, 848, 852

Fragment, defined, 549. See also DNA,

fragmentation; Fragmentation

Fragmentation, SAGE database, 311

FrameD, 617

Free-living eukaryotes, 750. See also

Free-living organisms

Free-living organisms, 530–531, 567,

607

French-Italian Public Consortium for

Grapevine Genome

Characterization, 755

Frequency distribution, 70, 252

F statistic, 354

FTO, 877

FUGUE, 450

Fugu rubripes, 554, 672, 768, 770

Functional annotation, 368–369

Functional Annotation of the Mouse

(FANTOM), 308–309

Functional genomics:

Central Dogma and, 492–493

defined, 4–5

eight model organisms, 465–473

eukaryotic genomes, 697

forward genetics, 491–492

human genomes, 801

microarray analysis, 5, 313

overview of, 322, 461–465, 508

pitfalls of, 508

protein analysis, 380

proteomics approach, 493–508

reverse genetics, 473–492

Function alleles, 707. See also Alleles

Functional proteins, 736

Functional RNA, 704

Fungal globins, 153, 160

Fungi:

BLAST search, 107

budding yeast, see Saccharomyces

cerevisiae

characteristics of, 7, 16, 403, 518,

697–698, 721–722

classification, 699

description of, 698–700

genome analysis:

Aspergillus, 715–718

Candida albicans, 715, 718–719

Cryptococcus neoforms, 715, 717,

719

Encephalitozoon cuniculi, 715, 719

Neurospora crassa, 715, 719–720

Phanerochaete chrysosporium, 715,

717, 720–721

pitfalls of, 722

process of, 530, 540

Schizosaccharomyces pombe,

715–716, 719–721, 738
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Fungi (Continued)

microarray analysis, 314

phylogenetic trees, 242

phylogeny, 700

single-celled, 874

taxonomy, 699

Fusion:

ancient evolutionary, 535

chromosomal, 737

eukaryotic genomes, 750

human diseases and, 864

proteins, 496

whole genome duplication, 675–676

Fusobacteria, 600

Fusobacterium nucleatum, 600

Gadph gene, 652

Gain-of-function, 478

GAL1/GAL4/GAL10 genes, 496, 715

Gallus gallus, 17, 51, 57, 130, 554, 771

Gametocytes, 740

Gamma, 305

Gamma distribution, 251–252, 254

Gamma substitution model,

phylogenetic analysis, 251

Gap(s), BLAST search:

advanced searches, 148–149, 156

algorithms, 116, 144

implications of, 55, 93, 115, 164

multiple sequence alignment, 192

penalties, 50, 55, 58, 82–83, 92,

110, 115, 117, 123, 165, 190,

206–207, 244, 391

profile HMMs, 158–159

Gap-opening penalty, 110

Gapped alignments, 144, 146

gap score, 110

Gastrin, 223

Gastrointestinal disease, 872

Gaucher disease, 854

Gaussian distribution, 88–89, 100,

118, 344

GBrowse (Generic Genome Browser),

468, 707, 753

GC (guanosine cytosine) content:

eukaryotic chromosomes, 646

eukaryotic genomes, 771–772, 776

human genome, 796, 806–807, 814,

816, 822

plant genomes, 755

prokaryotic genomes, 615–617

GCRMA algorithms, microarray data

analysis, 345–346, 370

GEECEE program, 615

Gel electrophoresis, 293, 382–385,

400, 411, 547

GenBank:

amount of sequence data, 15–16

cDNA databases, 19–20

characteristics of, 5, 10, 13–15, 26,

37, 42, 464, 646, 734, 841

codes, 17–18

eukaryotic genomes, 767, 776

expressed sequence tags (ESTs),

19–20, 32, 106–107, 131, 134,

302, 305, 309

functional genomics, 464

Genome Survey Sequences (GSSs),

22–23, 106–107, 129

genomic DNA databases, 19

genome-sequencing projects, 549

growth of, 15, 58

High-Throughput Genomic

Sequences (HTGSs), 23,

106–107, 129, 549–551

human genome, 795

human diseases, 862

identifiers, 37

microarray analysis guidelines, 313

mRNA sequences, 298

organisms, 16–18, 21–22

protein databases, 23, 106

repetitive DNA, 656, 660

RNA analysis, 291, 298

rRNA sequences, 289, 291

sequence-tagged sites (STSs),

20, 22

UniGene, see UniGene

viruses, 134

website, 14

GenBank Identification (GI), 104

GENCODE annotations, 666

Gene(s), generally:

acquisitions, 609

annotation, 630

conversion, 679

defined, 662–663

disruption, 478

duplication, see Duplications

expression of, see Gene expression

families, creation models, 678–679

functions of, 5

gene-finding software, 666–668

identifiers (GIs), 103. See also GI

numbers

prediction:

algorithm, 762

software, 558

/protein trees, 238–240

relatedness, distance-based, 256

silencing, 294, 486, 489–491, 678

targeting, 472

trapping, 472, 483–485, 704

GeneCards, 34, 861–862, 883

GeneClinics, 883

GeneDB, 403, 754

GeneDirector, 334

GeneDis, 864

Gene expression:

BLAST searches, 130

developmental timing of, 49

high-throughput, 314

human diseases, 842

implications of, 5

messenger RNA (mRNA), 297

microarray-based, 312–313,

331–370

profiling, 301, 361, 538, 704

tissue-specific, 7, 14

Gene Expression Database (GXD),

402–403, 472, 778

Gene Expression Omnibus (GEO), 26,

320, 339, 341

Gene Finder, 666

GENEID, 668

Gene Index Project, 309

GeneMark, 556–558, 666

GeneMarkP, 617

GeneMarkS, 617

Gene model combiner (GLEAN), 665

Gene Ontology (GO):

database, 30

project, 368, 404–405, 472, 502

Gene Ontology (GO) Consortium,

388–389, 402–403, 410, 738, 814

Generic Model Organism Project

(GMOD), 754

GeneScan, 556–558

Gene Set Enrichment Analysis

(GSEA), 368–369

GeneSifter, 335

GeneSight, 349

GENESTREAM, 93

GENE3D, 201, 390

Genetic Alliance, 883

Genetic code, 64–65, 251, 280

Genetic Computer Group (GCG), 93

Genetic diversification, 611

Genetic Information Research Institute

(GIRI), Censor Server, 653–654

Genetic interaction maps, 469

Genetic linkage maps, 794
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Genetic manipulation, 468

GeneTraffic, 349

Genie, 666

Genitourinary disease, 845

GenLang, 666

GenMAPP, 368

Geno3D, 450

Genome(s), see specific types of genomes

analysis:

ancient DNA projects, 542–543

cost of, 540–541

metagenomics projects, 543–544

overview of projects, 537–538

relevance of, 541

resequencing projects, 542

size of genome, 539–540

annotation, 630

browsers, functions of, 35–36

defined, 13

sequencing:

bacterial genomes, 527

chloroplast genomes, 528–529

eukaryotic chromosome, 529–530

eukaryotic genomes, 532

eukaryotic organeller genomes,

527–528

expanded genome projects,

536–537

fly genome, 534–535

free-living organisms, 530–531

goals of, 537

historical perspectives, 526–537

human chromosomes, 533–535

human genome, 53

influenza strains, 577

multicellular organism genomes,

532–533

plant genomes, 534–535

process, see Genome sequencing

process

resequencing, 542

selection criteria for projects,

538–539, 541

summary of genomes, 527

techniques, 538

viral genomes, 527

web resources, 525–526

Genome Consortium, 665

Genome sequencing process:

assembling genomes, strategies for,

548–549

genome-sequencing centers,

547–548

strategies for, 548–549

Genome Survey Sequences (GSSs),

22–23, 106–107, 129

Genome Therapeutics Corporation,

803

GenomeRNAi database, 490

Genomic alignment tools, 162–164

Genomic alignments, 204

Genomic disorders, 852–856

Genomic DNA:

alignments of, 181

annotations, 555–559, 663

BLAST search, 102

databases, 19, 669–672

ENCODE project, 491–492

eukaryotic chromosomes, 648

eukaryotic genomes, 741, 763–764

features of, 617

functional genomics, 462, 480

human genome, 797, 807

human disease, 844

MegaBLAST queries, 165–167

multiple sequence alignment, 180

protein analysis, 400, 407

protein structure, 433

rapid database searches, 161–169

RefSeq identifiers, 28

sequencing process, 548, 551–552,

869–870

transcription, 300, 321

viral, 573

Genomic imprinting, 678, 808

Genomic rearrangements, 682,

734, 763

Genomic regions, 538

Genomics, see Functional genomics

comparative, 519, 525, 552–554

five perspectives on, 519–520

growth in, 537

overview of, 517–518

technological advances, 7, 525,

537–538, 544

Genomics SuiteTM, 334

Genomic sequencing process, see

Genome(s), sequencing

genomic DNA, 548, 551–552,

869–870

metagenomics projects, 543

Genomics Unified Schema (GUS), 754

Genomic tiling, 321

Genomic tRNA Database, 287

Genoscope, 548, 803

Genotype, in functional genomics,

463–465

GenPept, 27, 106

GENSCAN, 665–666, 668, 762, 796

Geological history, 524

Germ cells, 464, 675

Germline mutations, 850

Gesellschaft fur Biotechnolôgische

Forshung mbH, 803

Getn1, 653

GFF files, 705

Ghost database, 767

GI numbers, 26

Giardia spp.:

duodenalis, 661

lamblia, 661, 664, 729, 731,

733–735

Gigabase pair (Gb) genome, 697

Gitelman syndrome, 875

Glaucoma, 872, 878

GLIMMER, 556–558, 617–619, 665

GlimmerHMM, 668

GlimmerM, 666

Global alignment algorithm:

characteristics of 75–81

listing of, 93

multiple sequence alignments,

185, 196

statistical significance of, 88–90

Global Biodiversity Information

Facility, 525

Global Burden of Disease report, 844

Global maps:

LAGAN applications, 168–169

multiple sequence alignment, 205

Global normalization, 343–344, 355

Global Ocean Sampling Expedition

Metagenome project, 543,

544, 573

Global Ocean Sampling (GOS)

project, 380

Global pairwise alignment:

algorithm, 93

defined, 51

Globin(s), see specific types of globins

functional genomics, 474

historical perspectives, 218

human disease and, 840

molecular evolution, 226, 230

phylogenetic analysis, 221, 248–249,

252, 257, 264, 266–267

phylogenetic trees, 242

proteins, structure of, 420

sequences, molecular evolution, 217

Globulin, 218

Glucagon, 223

Glucose, 169, 219
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Glucose-6-phosphate dehydrogenase

(G6PD):

characteristics of, 878

deficiency, 848, 875

Glud2, 653

Glutamate:

dehydrogenase, 59, 223

implications of, 70

Glutamic acid, 54, 61–63

Glutamine:

features of, 54, 61, 63, 428

synthetase, 398

Glutathione-S-transferase (GST),

388, 495

Glutathione transferases, 48, 388, 495

Gluten, 12

Glyceraldehyde-3-phosphate dehydro-

genase (GAPDH), 56–57, 65, 74,

305, 343

Glycine, 54, 60–61, 63, 94, 378, 425,

427–428

Glycine max, 17, 20, 751–752

Glycine-X-tryptophan (GXW),

126–127, 148, 153–154, 422, 443

Glycocoll, 378

Glycogen, 873

Glycolysis, 321

Glycophorin C, 780

Glycoproteins, viral, 567

Glycosylation, 390, 398–399, 413

GMOD (Generic Model Organism

Database) project, 705, 707

GO classification, 201–202

Golden-brown algae, 746

Golden path length, 796

Golgi apparatus, 469

Gondwana, 523–524, 737

Gonococcus, 601

GOR4, 429

Gorilla gorilla, 778

G protein:

-coupled receptors (GPCR),

579–580, 767, 817

functions of, 397

GRAIL (Gene Recognition and

Assembly Internet Link), 558

GRAILEXP, 665–666

GrainGenes, 752

Gram-negative bacteria, 535, 599,

601–602

Gram-positive bacteria, 599,

601–602

Gramene, 403

Gramineae, 753

Grapevine, 755–756

Graphical interface, 291

Graphical user interface (GUI), 117

Graphics:

BLAST searches, 112, 133

BLASTZ applications, 166

Ensembl BLAST searches, 142–143

Grasses, plant genomes, 753

Green algae, 739, 748–751

Green fluorescent protein (GFP),

471, 478

GroEL, 388

Growth hormone, 223

Growth media, 298

GTPase, 702

Guanine, 64, 110, 242, 250, 281, 286,

556, 615

Guanosine, 669

Guanosine triphosphate (GTP)-

binding proteins, 224, 392, 406

Guide trees, multiple sequence

alignment, 186–188, 191

Guillardia theta, 530, 536, 661,

745–746

Guinea pig studies, phylogenetic

analysis, 219–220

Gumbel distribution, 119

Gymnosperms, 751

Haematosine, 218

Haemophilus influenzae, 13, 525,

530–531, 535, 598, 606, 608, 611

Halobacterium spp., 534, 600

Hamming distance, 246–248, 250

Hantavirus, 570

Haploid genomes, 539, 709

Haplotypes, 764, 767, 777, 793, 826

HapMap, 686

HapMap Consortium, 793, 827, 829

Haptophytes, 745

HARTV, 158

HBA1/HBA2 genes, 302–303, 680

HBB gene, 857

HBBP1, 657

HbVar database, 863–864

HBZ gene, 660

Heart disease, 844, 851. See also

Cardiovascular disease

HEAT, 817

Heat shock proteins, 305, 679, 702

HeLa cells, 490

Helical Wheel, 412

Helicobacter pylori, 532–533, 600–601,

608, 611, 625

Helitrons, 652

Hemagglutinins (HAs), 575,

590–591

Hematological disease, 873

Heme biosynthesis, 761

Hemiascomycetes, comparative

analyses:

functional elements, identification

of, 714–715

whole genome duplication analysis,

712–714

Hemichordata, 758

Hemoglobins:

alpha chain, 59

characteristics of, 6–8, 218, 378

molecular evolution, 223

pairwise alignment, 94

protein networks, 501

protein structure, 423, 432,

435–436, 446

Hemoglobinopathies, 61, 864

Hemophilia/Hemophilia A, 823, 840,

848, 854, 856

Hepatitis virus:

features of, 573

Hepatitis A virus, 571

Hepatitis B virus, 570–571

Hepatitis C virus (HCV), 230,

244, 252

Hereditary nonpolyposis colorectal

cancer (HNPCC), 874

Heredity, 215

Herpesvirus, 570, 573–574,

578–583

Heterkonts, 745

Heterochromatin, 651

Heterodisomy, uniparental, 687

Heterokonta, 746–747

Heterozygosity, 755, 766–768

Heuristic algorithm, 55

Heuristic searches, phylogenetic

analysis, 261–262

H5N1 influenza, 574

HHV-8, 579

Hidden Markov model (HMM),

applications:

advanced database searches, 152,

156–161, 174

bacteria and archaea, 617–618

BLAST search, 126

eukaryotic chromosomes, 617–618,

666, 672

multiple sequence alignment, 194

protein analysis, 390, 402
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protein structure, 451

RNAmmer, 291

RNA analysis, 287

Hierarchical clustering, 364, 582

Hierarchical shotgun sequencing, 548,

550, 802–805

High-density microarrays, 542

High performance liquid

chromatography (HPLC), 381

High-scoring segment pairs (HSPs),

116–118, 120–121, 169

High-throughput analysis:

functional genomics, 493–494

proteins, 297, 463

High-throughput gene expression, 314

High-Throughput Genomic Sequences

(HTGSs), 23, 106–107, 129

High throughput screening, 876

High throughput sequencing, 793, 869

High throughput technologies, 297,

463, 541, 793, 869, 876

H-Invitational Database, 309

Hirschsprung Disease, 850, 877

Histidines, 54, 61, 161, 187–188,

191, 428

Histograms, 86, 304, 341–342, 806

Histone(s):

birth-and-death evolution, 680

eukaryotic chromosomes, 648, 669

functional genomics, 493

human disease, 849

human genome, 813

molecular evolution, 223, 251

phylogenetic analysis, 251

proteins, 39, 59, 378

repetitive DNA, 660

Histone Sequence Database, 39

History of life on earth, 521–523

HLA-B gene, 823

hmmbuild program, 159

HMMer program, 126, 159–160,

174, 587

HMMTOP, 414

HOGENOM database, 612

Homeobox genes, 680

Homeostasis, 605

Homicides, 844

Hominids, 543, 792

Homo sapiens, 17, 20, 22–23, 30, 36,

51, 57, 105, 130, 203, 224, 289,

391, 473, 523, 530, 534, 536, 554,

658, 661, 778–779, 817–818. See

also Human disease; Human

genome

Homogeneity, 358

Homogentisate 1, 2-dioxygenase

(HGD), 842–843

HomoloGene, 33, 57, 184, 243

Homologous genes, 47, 49, 50

Homologous proteins, 54

Homologous recombination, 486

Homologous superfamily, CATH

database, 443, 445

Homologs:

advanced database searches,

172–173

BLAST search, 128–130

eukaryotic genomes, 763

genome sequencing, 550

HIV-1 pol protein, 133

human disease, 856

human genome, 819

implications of, 32–33, 50, 181

molecular evolution, 224

multiple sequence alignment, 196

proteins, 389, 504

viral genome, 574, 582

Homology:

advanced database searches,

142, 163

BLAST search, 111, 124–128,

135, 146

eukaryotic chromosomes, 665

modeling, 447–450

multiple sequence alignment, 180

phylogenetic analysis, 244

phylogenetic trees, 242

prokaryotic genomes, 618

protein(s):

analysis, 408–409

families, 394

networks, 503

sequence, 422

RNA expression, 309

viral genome, 573, 591

Homophila, 870

Homoplasy, 857

Homopolymer effects, 547

Homozygosity, 777, 827, 856

HOMSTRAD (homologous structure

alignment) database, 183

Honeybee genomes:

characteristics of, 765–766

viruses, 573

Honeybee Genome Sequencing

Consortium, 765

Hong Kong flu, 574–575

Hordeum vulgare, 752

Horizontal gene transfer. See Lateral

gene transfer

Hornworts, 756

Horses, phylogenetic tree analysis,

239–240. See also Equus

Horseshoe crabs, 761

Housekeeping genes, 343,

669, 740

HSSP database, 447

HUGE database, 309

Human and Vertebrate Analysis

aNd Annotation (HAVANA),

666

Human beta globin (HBB),

403, 860

Human Cancer Gene, 874

Human Chromosome

Launchpad, 646

Human disease:

biochemical pathways, 882

bioinformatic perspective on,

841–842

categories of:

complex disorders, 851–852

environmentally caused disease,

855–857

genomic disorders, 852–855

miscellaneous, 857–858

monogenic disorders, 847–851

classification of:

NIH, MeSH terms, 845–846

overview of, 843–845

databases:

locus-specific mutation databases,

841–842, 862–865

OMIM, 841–842, 859–862

PhenCode project, 865–866

disease-associated genes, identifi-

cation techniques:

chromosomal abnormalities,

868–869

genome-wide association studies,

867–868

genomic DNA sequencing,

869–870

linkage analysis, 866–867

disease genes:

functional classification of,

880–882

substitution rates, 878–880

etiology, 14, 541

Garrod’s view of, 842–843

genetic, 839–841

genomic relevance, 519
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Human disease (Continued)

model organisms, human orthologs:

genes and substitution rates,

878–880

nonvertebrate species, 870,

874–875

in primates, 878

in rodents, 876–878

web resources, 882–884

Human Distal Gut Biome project, 544

Human Gene Expression (HuGE)

Index database, 343

Human Gene Mutation Database

(HGMD), 861–864, 877, 882

Human genome:

access gateways, 794–800

draft sequences of, 535

ENCODE project, 793

future research directions, 831

historical perspectives, 791, 831

overview of, 535, 791–792, 831

project, see Human Genome Project

protein analysis, 391

public consortium analysis, 122

reannotation, 816

research pitfalls, 831

segmental duplication, 793

24 human chromosomes:

Group A (chromosomes 1, 2, 3),

818–822

Group B (chromosomes 4, 5), 820,

822–823

Group C (chromosomes 6–12, X),

820, 823

Group D (chromosomes 13–15),

821, 823

Group E (chromosomes 16–18),

821, 824

Group F (chromosomes 19, 20),

821, 824

Group G (chromosomes 21, 22,

Y), 821, 824–825

mitochondrial genome, 825

overview of, 816–818

variation:

sequencing individual genomes,

825–826

SNPs to copy number variants,

827–831

Human Genome Organization

(HUGO):

Gene Nomenclature Committee

(HGNC) 18, 403

functions of, 293

locus-specific mutation database,

863, 882

Mutation Database Initiative, 864

Human Genome Project:

background of, 800, 802

benefits of, 539, 541, 548

conclusions of, 792–793

Ethical, Legal, and Social Issues

(ELSI), 800–801

genome sequence features, 805

genomic landscape:

CpG islands, 807

distance, genetic vs. physical,

807–808

GC content, long-range variation

in, 806–807

goal of, 800–802

hierarchical shotgun sequencing,

802–805

human genome, gene content of:

comparative proteome analysis,

814

complexity of human proteome,

814–816

impact of, 811–812

noncoding genes, 813

noncoding RNAs, 812

protein-coding genes, 812–814

repeat content:

implications of, 808–809

segmental duplications, 811

simple sequence, 811

transposon-derived, 809–810

Human Genome Sequencing

Consortium, 535, 803

Human Genome Structural Variation

Working Group, 853

Human Genome Variation Society

(HGVS), 863

Human Gut Microbiome Initiative

(HGMI), 543

Human herpesvirus 8 (HHV-8),

579–583

Human immunodeficiency

virus (HIV):

characteristics of, 244, 490, 571,

583–588, 844

HIV Drug Resistance Database,

587–588

HIV-1:

bioinformatic approaches to,

585–588

gag-pol, 394–395

implications of, 542, 574

pol protein, 36–37, 102, 123,

129–134, 153, 170, 568

rapid mutation rate of, 572

HIV Sequence Database, 244

HIV-2, 542, 583, 858

Human leukocyte antigen (HLA), 230

Human Microbiome Project, 792

Human parainfluenza, 591

Human poliovirus I, 570

Human Protein Reference Database

(HPRD), 401, 502, 504, 507

Human Proteome Organization

(HUPO), 381, 499

Human T-cell lymphotropic virus

type 1 (HTLV), 586

Hunter syndrome, 854

Huntington-associated protein

(HAP01), 497

Huntington chorea, 847

Huntington Disease, 497, 658, 840,

861, 866

Hybridization:

analysis, 102

DNA microarray analysis, 299, 313,

315–319, 330, 332

eukaryotic genomes, 760

functional genomics, 480

microRNA, 293

mRNA, 298

oligonucleotides, 542

RNA, 330

significance of, 280

Hydrogen bonds, 425, 427

Hydrogenosome, 732

Hydrolases, 409

Hydrolysis, 392

Hylobates lar, 779

Hymenoptera, 661

Hyperammonemia, 877

Hyperinsulinism, 875

Hypermorphs, 492

Hypertension, 844, 851, 856,

867–868, 872, 876

Hypertensive renal disease, 844

Hyperthermophile, 522

Hyphomonas neptunium, 611

Hypomorphs, 492

Hypothesis testing, 347–350

Ichthulin, 378

ICTVdb, 568–569, 591–592

Identity:

homologous sequences, 48–49

matrix, 77
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percent, 53, 74, 81, 90–92, 165, 615

protein sequences, 48–49, 53, 58,

68, 70, 72, 74, 77, 90–91, 125,

127, 130, 134, 151–152, 172,

180–182, 206, 381–382, 393,

442–423, 432, 434, 442, 737

Ideogram Album, 646

Ideograms, 35, 142, 647–648, 797,

799, 868

IgBLAST, 145

Ignicoccus, 606

Illumina, 332, 686–687

Image acquisition, microarray analysis,

314, 317–318, 337

ImaGene, 334

Immune system, 680, 781

Immunocytochemistry, 402

Immunofluorescent microscopy, 407

Immunoglobulin (Ig), 59, 145, 223,

392, 394, 680, 796

Immunohistochemistry, 543

Immunological disease, 873

Immunological testing, 214

Immunoprecipitation, 793

Inbreeding, 491

Inclusion threshold, advanced database

searches, 146

Indels, 246

Infections, 294, 490, 843

Infectious disease, 776, 845,

847, 876

Infectious salmon anemia virus, 575

Inference:

Bayesian, 264–268

phylogenetic, 262–264

Inferential statistics:

ANOVA, 353–354

characteristics of, 332

expression ratios, 346–347

hypothesis testing, 347–350

significance analysis of microarrays

(SAM), 351–353

t-test, 353–354

Inferring Phylogenetics

(Felsenstein), 255

Infertility, 856

Influenza Genome Sequencing

Project, 576

Influenza viruses, 260, 570–572,

574–577

Influenze, 844

Information theory, 92

Informax, 93

Inositol, 398

Insect(s):

genomes, 524, 761, 765, 792

phylogenetic tree analysis, 239–240

Insecticyanins, 147

INSERM, 864

Insert state, hidden Markov model,

157–158

Insertion(s):

bacteria and archaea, 613–614,

616, 628

eukaryotic genomes, 701, 737

functional genomics, 478, 488–489

genome analysis, 547, 795

human diseases, 840, 858, 864

phylogenetic analysis, 246

sequence analysis, 50, 55, 110, 162,

181–182, 190

Insertional mutagenesis, functional

genomics, 483–485, 492

Insightful Corp., 334

Institut Pasteur, 93, 144

Institute for Genomic Research (IGR):

Gene Indices, 309

genomic projects, 616, 618, 738

Institute for Molecular Biotechnology,

803

Institute for Molecular Virology, 592

Institute of Medical Genetics

University of Wales College of

Medicine, 864, 883

Insulin:

historical perspectives, 59, 219

molecular evolution, 223

phylogenetic analysis, 219–221, 251

protein analysis, 397

resistance, 877

IntAct database, 499, 502

Integrated Molecular Analysis of

Genomes and Their Expression

(IMAGE), 309

Integr8 project, 526, 703, 814

Integrin, 817

Interferon regulatory factors, 579

Interleukin-8 (IL-8) receptors,

579–580

Internal branches, phylogenetic

trees, 232

International Chicken Genome

Sequencing Consortium, 771

International Committee on Taxonomy

of Viruses (ICTV), 568–570

International Gene Trap Consortium

(IGTC), 485

International HapMap Project, 827

International Human Genome

Sequencing Consortium

(IHGSC):

Bermuda Principles, 17

human genome, 791, 807, 814

integrated gene index (IGI), 814

integrated protein index (IPI), 814

projects, 550, 823

International Nucleotide Sequence

Database Collaboration

(INSDC), 14

International Protein Index (IPI),

380, 662

International Rice Genome

Sequencing Project (IRGSP),

754–755

International Statistical Classification

of Diseases and Related Health

Problems (ICD), 845

International Union of Pure and

Applied Chemistry (IUPAC), 242

Interpolated Markov models (IMMs),

618

InterPro:

Consortium, 390

database, 34, 39, 197, 201, 201, 206,

244, 391, 394, 397, 814, 871

InterProScan, 412

Interspersed repeats, repetitive DNA,

652–653

Intestinal parasites. See Giardia lamblia

Intracellular bacteria, 607–609

Introns, functions of, 20, 161, 167,

169, 294, 296, 300–301, 551,

557–559, 617, 667, 701, 706,

734, 745, 769, 814–815

Inversion, 840

Inversions:

bacterial and archaea, 609

eukaryotic chromosomes, 678,

680–682

eukaryotic genomes, 780

functional genomics, 471

sequence analysis, 161, 205

Invertebrates, 7, 35

iProClass, 201

IRMBASE, 183

Isavirus, 575

Islet cells, 219

Isobaric tags for relative and absolute

quantitation (iTRAQ), 495

Isochores, 806

Isodisomy, uniparental, 827

Isoelectric focusing, 397, 399–400
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Isoelectric point (IP), 397, 399

Isoleucine, 54, 61, 63, 428

Isomerases, 409

Isoprenylation, 397

Israeli acute paralysis virus, 573

IterAlign, 184, 190

Iterative algorithms, 197

Jackson Laboratory, 876

JalView, Clustal W, 186–187, 198

Japan Biological Information Research

Center (JBIRC), 309

Java applets, 198–199, 437

JC virus, 570

J. Craig Venter Institute, 403, 525

JenaLib database, 447

J genes, 145

JIGSAW, 450, 666–668

Journals:

free access to, 40–41

online, 23

Jpred, 429

Jukes–Cantor correction, 250

Junk DNA, 651

Ka/Ks, 33

Kalign, 184, 190

Kaposi’s sarcoma, 579

Kappa casein, 56–57, 59, 67, 223

Karolinska Institute, 744, 883

KaryotypeDB, 646

Karotypes/karotyping, 682, 685,

744, 770

K constant, BLAST statistics, 119–120

Keio University, 803

Kelp, 746

Keratin, 378, 817

KIAA gene, 309

Kilodalton proteins, 49

Kimura models:

distance matrices, 191

two-parameter model, 250, 254

Kinetochore, 660–661

Klinefelter syndrome, 853

Kluyveromyces lactis, 57, 712–713, 716

k-means clustering, 361, 363

k-nearest neighbor, 398, 406

Knock-out/knock-in technologies, 776

Knockout mice, functional genomics,

475–480

Knockout Mouse Project (kOMP),

472, 478–479

Knockout mutations, 707

KRAB box, 817

Krebs cycle, 409, 503

KSS (Kearns-Sayre syndrome), 858

Kyoto Encyclopedia of Genes and

Genomes (KEGG) database, 368,

502, 504–508

Labeling:

with accession numbers, 26

microarray analysis, 317, 337

Laboratory of Statistical Genetics,

Rockefeller University, 866

Lactalbumin, 223

Lactate dehydrogenase, 223

Lactoglobulins, 378

lacZ, 487, 497

LAGAN (Limited Area Global

Alignment of Nucleotides),

167–169, 205

Laj software, 166

LALIGN, 93

Lambda phage, 544

Lamin B, 397

Lamprey globin, 239, 258

Large-insert clones, 802

Large-insert libraries, 548

Large-scale sequencing, 297

Lasers, applications of, 545

Lassa fever virus, 570

Lateral gene transfer (LGT), 8,

620–622, 628, 708, 732

Laurasia, 523–524

LCN genes, 658–659

Lead poisoning, 847

Lecanu, Louis-René, 218

Legionella pneumophila, 608

Legionnaire’s pneumonia, 876

Leishmania spp.:

braziliensis, 737

characteristics of, 736–737

donovani, 736

infantum, 737

major Friedlin Genome Project,

735–737, 754

mexicana, 736

Leishomaniasis, 737

Lentinula edodes, 717

Lentiviruses, 584

Leprosy, 535, 601

Leucine, 54, 61, 63, 94, 105, 428, 817

Leukemia, 350

Leukencephaly, 877

Levinthal’s paradox, 430

LHON (Leber hereditary optic

neuropathy), 858

LIBRA 1, 450

Ligands, 310, 409, 423

Ligases, 409

Lignins, 721

Likelihood mapping, 263–264

Likelihood ratio statistic, 683

Lineage, see Ancestors/ancestry

molecular evolution, 218, 227–228

phylogenetic trees, 233

viral evolution, 571

-specific interspersed repeats, 164

Linear algebra, 77

Linear discriminant analysis, 368

Linear extrachromosomal

elements, 603

Linear genome, 567

LINE1/LINE2, 652–653

Linkage analysis, 866–867

Linkage disequilibrium (LD), 828

Linkage maps, 807

Linker histones, 39

Linus, 341

Lion Biosciences, 34

Lipids, 406, 409, 567, 873

Lipocalin superfamily, 8, 48–49,

125–127, 146–148, 150–155,

169, 197, 234, 422–423,

442–443, 658–659, 777

Liquid chromatography with mass

spectrometry (LC-MS), 401

Liquid chromatography with tandem

mass spectrometry (LC-MS/MS),

386–387

List, BLASTalgorithms, 115

Listeria monocytogenes, 608

Liver disease, 844

Liverworts, 756

Local alignment, defined, 51. See also

Local alignment algorithm

Local alignment algorithm:

characteristics of 75–76, 81–84

listing of, 93

statistical significance of, 90

Local normalization, 343–344, 355

Local sequence alignment,

Smith–Waterman algorithm,

81–85

Locus-specific mutation databases,

841–842, 862–865

LOD score, 866–867

Log-odds matrices, 146

Logarithms, see specific types of

logarithms

Log likelihood ratio, 252–253
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Long-chain acyl-CoA dehydrogenase

deficiency, 877

Long interspersed nuclear elements

(LINEs), 203, 652–654, 656, 792,

809–810

Long QT syndrome, 877

Long-terminal-repeat (LTR):

retransposons, 792

transposons, 652–654, 809–810

Longitudinal studies, 230

Lookup tables, 111

Loop Hausdorff Metric, 441

Lophotrochozoa, 758

Los Alamos National Laboratory

(LANL):

HIV databases, 586–587

Protease Mutations-by-Drug Map,

588

viral genome, 591

website, 587–588

Loss-of-function, 478

Lou Gehrig’s disease, 506–507

Low-complexity:

regions, 109

sequences, 103, 111

Low-copy repeats (LCRs), 681–682

Low-density lipoprotein-receptor,

817

Low entropy, 152

Lowe’s oculocerebrorenal

syndrome, 875

Loxodonta africana, 164, 554

Luciferase, 546

Luciferin, 545

Lucy, 523

Lutropin beta chain, 223

Lyases, 409

Lycopersicon esculentum, 751–752

Lyme diseae, 601, 611

Lymphatic filariasis, 761, 764

Lymphocytes, 361–362

Lymphomas, 579, 877

Lysines, 54, 61, 63, 158, 413, 428

Lysosomes, 406, 874–875

Lysozymes 223, 227, 779

Macaca mulatta, 17, 22, 51, 164, 166,

554, 661, 778, 780

MacMunn, Charles, 218

MacOS/X platform, 159, 166, 341

Macronuclear genomes, 742, 745

Mad cow disease. See Bovine spongi-

form encephalopathy (BSE)

MADS-box, 680

MAFFT (Multiple Alignment using

Fast Fourier Transform), 184,

190–192, 195, 207, 245, 267, 612

MAGE, 437–438

Magnetococcus sp., 600

MaizeGDB, 752

Major histocompatibility complex

(MHC), 679–680

Makelogo, 161

Malaria, 110, 530, 536, 541, 738–739,

764, 876. See also Plasmodium

falciparum

Malignancy, 873. See also Cancer

Malnutrition, 847, 855–856

Mammalia, 107

Mammalian Gene Collection

(MGC), 309

Mammalian Gene Mutation Database

(MGMD), 864

Mammalian systems:

mammalian cells, 128

mammals, divergence from

human, 774

siRNA, 294

Mammuthus primigenius, 164

Mandibulata, 761

Manhattan distance, 357

Mann–Whitney test, 349

Mantle cell lymphoma, 877

MA plot, 339–340

Mapping/mapping studies:

functional genomics, 475

genomic databases, 32

protein networks, 506

sequence-tagged sites (STSs), 22

Marchantia polymorpha, 528, 530

MARCKS, 397

Marine phytoplankton, 750

Markov chain, 156

MARS, 334

MAS 5.0 software, 334, 345–346

MASCOTw, 387

Masking, 111–112

Mass spectrometry:

features of, 543

functional genomics, 493–495,

499–500

microarray data analysis and, 321

protein analysis, 385–388, 411

tandem, see Tandem mass

spectrometry

Mass Spectrometry Database

(MSDB), 386

Mass-to-charge ratio, 385

Match-Box Web, 202

Matches, advanced database searches,

174

Match state, hidden Markov model,

157–159

MATLABw software, 67, 74, 235,

334, 367

Matrices, see BLOSUM matrices;

Pam matrices

evolutionary distances, 68, 74–75

Kimura distance, 191, 250

multiplication, 67

Matrix proteins, 39

Matrix Science, 387

Matrix-assisted laser desorption

ionization (MALDI) spectroscopy,

385

Matrix-assisted laser desorption

ionization-time of flight

(MALDI-TOF) spectroscopy,

385–388, 401, 499

MAVID, 204–206

Max Planck Institute for Molecular

Genetics, 803

Maximum a posteriori probability

estimate, 268

Maximum likelihood, 172, 246,

253–256, 268, 584, 866

Maximum parsimony, 60, 172, 218,

246, 254, 256, 260–262, 268,

613, 764

Maximum unique matches (MUMs),

628

McCune-Albright syndrome, 875

M-Coffee, 195

Measles virus, 570–571, 573,

587–591

MEDEA genes, 231

Medicago spp.:

sativa, 753

truncatula, 751–752, 756

Medical Research Control, 41

MEDLINE (Medical Analysis, and

Retrieval System Online), 23,

39–40, 42, 846

MEGA software programs:

applications, 221

MEGA3, 172

MEGA4, 247, 254–257, 261,

266–267

MegaBLAST searches, 109–110, 116,

163, 165–167

Meiosis, 661, 742, 793, 866

Melanotropin beta, 223
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MELAS (mitochondrial encepthalo-

myopathy, lactic acidosis, and

stroke–like episodes), 858

Meld, 549

Membrane proteins, 443

Mendelian disorders, 847

Mendelian genetics, 859

Mendelian Inheritance in Man (MIM),

859. See also OMIM (Online

Mendelian Inheritance in Man)

Meningitis, 611

Menkes syndrome, 875

Mental disorders, 845

Mental retardation, 465, 823, 845, 850,

852–853, 856, 875

MER80, 656

Merlin (Multipoint Engine for Rapid

Likelihood INference), 866–867

Merostomata, 761

Merozites, 470, 738

MERRF (myoclonic epilepsy with

ragged-red fibers), 858

Mesothelioma, 877

Messenger RNA (mRNA):

analysis interpretation, 320–321

bacterial and archael genomes, 620

characteristics of, 4–5, 18, 28, 278,

280–281, 294, 296–299, 304,

310

eukaryotic chromosomes, 662

functional genomics, 474

gene expression studies, 300–302,

323

human genome, 793

image analysis, 317–318

microarray analysis, 312–320,

322–323, 332–333, 369–370

translation of, 281

transcripts, 321–322, 333

Metabolic disease, 875

Metabolic rate, 225

Meta-Coffee. See M-Coffee

MetaCyc database, 466, 505–506

MetaFam, 201

Metagenome, marine, 23

Metagenomics projects, 537–538,

543–545, 568, 610

Metazoa/metazoans:

homolog sequences, 879

Anopheles gambiae, 764–765

Caenorhabditis elegans, 759–761, 763

characteristics of, 16, 107, 522, 530,

664, 670, 698–699, 721, 756,

758–759, 814

characteristics of, 758–759,

781–782

chicken, 771–772

Ciona intestinalis, 767–768

dinosaurs, 771–772

Drosophila melanogaster, 758,

761–764

fish, 731, 768–771

honeybee, 765–766

mammalian radiation, dog to cow,

773–774

opposum, 772–773

primates, 778–781

rodents, mouse and rat, 774–778

sea urchin, 766–767

silkworm, 765

Methanobacterium thermoautotrophicum,

532, 601

Methanobrevibacter smithii, 610

Methanococcus jannaschii, 289, 532,

601, 609

Methanopyrus handleri, 601

Methionine, 32, 54, 61, 63, 94, 204,

302, 428

Methogens, 607

Methyl–CpG-binding domain (MBD)

proteins, 392, 394

Methyl-CpG-binding protein 2

(MeCP2) gene, 392–394, 464,

807, 849–851, 857

Methylation, 292, 398, 538, 851

Metridium senile, 530

MET15, 468

MFS-1, 817

MICE Java applet, 437

Microarray analysis:

advantages of, 313

biological confirmation, 320

data analysis, see Microarray data

analysis

experimental design, 314–316

large-cale, 313

limitations of, 313–314

resequencing, 542

Microarray data analysis:

applications, 5, 90, 102, 122,

318–319, 332, 369–370

development of, 369

descriptive statistics, 354–368

experimental errors, 370

functional annotation of data,

368–369

inferential statistics, 346–354

labeling, 337

logarithms, 338–339

matrices, 332

overview, 333, 369

preprocessing, 332, 337–346

reproducibility of experiments,

335–337

software and data sets, 334–337

statistical applications, 332,

346–368

Microarray databases, 320

Microarray Gene Expression Data

(MGED) Society, 332

Microarray gene expression markup

language (MAGE-ML), 332

Microarray Literature-based

Annotation (MILANO), 368

MicroArray Quality Consortium

(MAQC) project, 336

Microbe(s):

defined, 518

functions of, 598

Microchromosomes, 745

Microdeletion syndromes, 463,

847, 853

Microduplication syndromes, 847, 853

Microinversion, 678

Microliquid chromatography with

nanospray ionization (mLC-NSI),

388

Microorganism, defined, 518, 598

Micro RNA (miRNA), 293–295, 322

Microsatellites, 657–658, 809, 811

Microscopy, applications:

benefits of, 435

electron microscopy, 435, 568

immunofluorescent, 407

Microsoft:

Excel applications, 251, 334, 339,

351–352

Windows platform, 341

Microsporidia, 698, 732

Midasin, 707

Million base pair (Mb) genome, 697

Million years ago (MYA), 48–49, 56,

221, 522–524, 535, 673, 676,

748, 751–752, 758, 765,

767–768, 771–781, 799,

810, 823

MILS (maternally inherited Leigh

syndrome), 858

Mimicking microbe. See Mimivirus

Mimivirus, 567, 569

Minichromosomes, 735

Minimum free energy, 288
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Minimum Information About a

Microarray Experiment

(MIAME), 319, 332

Minimum Information about a

Phylogenetic Analysis (MIAPA),

268–269

Minimum information about a

proteomics experiment

(MIAPE), 381

Minisatellites, 809

Minkowski distance, 357

MiRanda, 293

miRBASE, 282, 293

Misalignment, 184

Mismatches:

advanced database searches, 163

BLAST searches, 110

implications of, 711

MegaBLAST searches, 165, 167

penalties, 82

pyrosequencing, 545

robust multiarray analysis, 345

Mispairings, 681

Mitaku Group, 429

Mitelman Database of Chromosome

Aberrations in Cancer, 863, 884

Mites, 761

Mitochondria:

microarray data analysis, 368

molecular evolution, 227

phylogenetic analysis, 251

protein analysis, 406

RNA composition, 282

Mitochondrial DNA, 736, 858

Mitochondrial genomes, 528–530,

543, 719, 746, 825, 857

MITOMAP, 858, 863

MITOPROT, 414

Mitosis, 661

Model Organism Genetics, 465

MODELLER, 450

ModelTest, 252–254

Modifier genes, 850

Modules, protein families, 389

Mold genomes, 756–757

Molecular barcodes, 480

Molecular Basis of Evolution,

The (Anfinsen), 46

Molecular biology:

databases, 40

defined, 4

techniques:

electrophoresis, 293, 382–386,

400, 411, 493, 545, 547, 738

fluorescence in situ hybridization

(FISH), 682, 868

microscopy, 407, 435, 568

polymerase chain reaction, 22,

310, 321, 477, 480, 486–487,

543, 672

staining, 296, 306, 310, 477

Molecular clock theory, 221–227, 240

Molecular evolution, see Molecular

phylogeny

fossil-based studies, 219, 222, 225,

543

historical perspectives, 53, 217–221

molecular clock hypothesis,

221–227, 240

neutral theory of, 230–231

overview of, 215–216

selection, positive and negative, 227,

229–230

Molecular Evolution and Phylogenetics

(Nei/Kumar), 255

Molecular Evolutionary Genetics

Analysis (MEGA) software,

227–228, 230, 242, 244,

247–248, 252–253, 254, 260

Molecular Interactions (MINT)

Database, 502

Molecular Modelling Database

(MMDB), 25, 27, 438, 440–441

Molecular pathology, 495

Molecular phylogeny:

alogorithms, 184

bacteria and archaea, 611–612

goals of, 216–217, 268

sequence analysis, 32, 207, 559, 731

trees, see Phylogenetic trees

Molecular sequence(s):

analysis, 7

data, 5

implications of, 523–524

Molecular weight, significance of, 39,

397, 399, 486, 498

Mollicutes, 602

Mollusks, 758

Monera, 520, 697

Monoclonal antibodies, 407

Monocots, 751

Monodelephis domestica, 130, 554,

772–773

Monogenic disorders, 847–851

Monosomy, 847

Monte Carlo Markov chain (MCMC)

analysis, 265–267

Monte Carlo simulations, 683

Morbidity map, 857–858

Morbillivirus, 589

MORGAN, 666

Morpholino Database (MODB), 491

Morphology, 599–602

Mosaic disease, 566

Mosaic genes, 736

Mosquitoes, 738, 764

Mosses, 756

Motifs:

advanced database searches, 154

functions of, 126–127, 152, 181

protein, 389–391, 396, 413,

423–424

Mouse genome:

advanced database searches, 164

analysis, components of, 762,

774–778

characteristics of, 792

compared with human, 775–776

euchromatic, 776

genomic DNA analysis, 651

repetitive DNA, 652

retroposition, 653

Mouse Genome Database (MGD),

473, 778

Mouse Genome Informatics (MGI)

Database, 404, 472, 478–480,

754, 778

Mouse Genome Sequencing

Consortium, 659, 876

Mouse Genome Sequencing (MGS)

project, 778

Mouse Tumor Biology (MTB)

database, 472, 778

MPact, 498

MPAlign, 587

Mpsearch, 144

MrBayes software, 172, 254–255,

265, 267

MS2 genome, 527

MSD, 25

MtDB, 752

Mucins, 378, 413, 736

Mucopolysaccharidosis, 877

MultAlign, 202

Multi-LAGAN (MLAGAN), 204–206

Multicellular organism genomes,

532–533

Multidimensional scaling, 332, 364,

367

Multidomain proteins, 394–395, 443

Multifun, 466

Multifurcating phylogenetic trees, 233
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Multigene families, 680, 747

Multigenic disorders, 847

MultiLAGAN, 167

Multimegabase Sequencing Center,

Institute for Systems

Biology, 803

MultiPipMaker, 674

Multiple sequence alignment:

accuracy of, 183, 206

advanced database searches,

146–148, 154, 172

bacterial and archael genomes, 615

benchmarking, 182–184,

196–197

consistency-based approaches,

192–195

database curation, 202–203

in databases, 197–203

defined, 180–181, 205

evaluation of, 182–183

exact approaches to, 184

generation of, 180

of genomic regions, 203–205

human disease, 879

iterative approaches, 190–192

overview of, 179–180

phylogenetic analysis, 220, 244–246,

256, 264, 268

pitfalls of, 206–207

progressive sequence alignment,

185–190

profile HMMs, 158–160, 197

profile searches, 156–157

protein analysis, 396, 449

structure-based methods, 195–196

uses/applications of, 14, 32–33,

57, 60, 69, 126, 181–182,

185, 202, 731

web resources, 207

MULTIZ, 204

MUMmer, 628–629, 740, 753

Mumps, 571, 589, 591

Munc18–1. See Syntaxin binding

protein 1 (stxb1)

Munich Information Center for Protein

Sequences (MIPS):

characteristics of, 753, 862

Comprehensive Yeast Genome

Database, 704–705, 707

databases, types of, 498,

502, 645, 719

GMOD browser, 705

MOsDB, 755

plant genomes, 753

Murine studies, RNA, 282. See also

Mouse genome; Mus spp.; Rodent

studies

Musca, 202

MUSCLE, 184–185, 190–192,

195, 207

Muscular dystrophy, 877, 882

Musculoskeletal diseases, 845

Museum of Paleontology, 698

Mus spp.:

musculus, 17, 20, 22–23, 30, 51, 57,

105, 229, 289, 305, 403,

472–473, 530, 554, 556, 676,

765, 775, 800

poschiavinus, 676

Mutagenesis, 484–485, 487, 776

Mutagenic Insertion and Chromosome

Engineering Resource (MICER),

485–486

Mutation probability matrix M, 63, 65,

67–69

Mutation(s):

bacterial and archaeal genomes, 622

disease-causing, 866

eukaryotic genomes, 763–764, 776,

780–781

functional genomics, 468, 471,

474–475, 481–482, 491

HIV-1, 58u8

human disease and, 840, 848, 850,

857, 859, 862–863, 869, 877

human genome, 793, 807, 831

implications of, 14, 33, 55, 216, 231,

301, 538, 707, 710–711, 720,

839–840

in molecular evolution, 224

mRNA sequences, 293, 302

nonsynonymous, 870

phylogenetic analysis, 247

phylogenetic trees, 241, 243

protein families, 392

protein networks, 507

protein sequences, 423

protein structure and, 454

synonymous, 870

viral, 571, 577

Myasthenia gravis, 462

Mycetozoa, 756

Mycobacterium spp.:

avium, 616

leprae, 197–198, 289, 535–536,

601, 611

tuberculosis, 81–82, 432, 533, 600,

607–609, 611, 616, 625, 780

Mycology, 697

Mycoplasma spp.:

genitalium, 531, 540, 567, 569, 600,

604–605, 608

pneumoniae, 532, 601, 604, 606, 609

pulmonis, 535–536, 609

Mycosis, 697

Myelins, 223, 303, 305

Myoglobins:

accession numbers, 27

advanced database searches, 172,

174

characteristics of, 6, 27, 33, 59

historical perspectives, 218

HMM match, 160

molecular evolution, 218, 223, 230

multiple sequence alignment,

187–188, 197

pairwise alignment, 51, 53, 55–56,

60, 75–76, 87–90, 94

phylogenetic analysis, 245–246, 248,

253, 267

protein alignments, 48–49, 51

protein networks, 501

protein sequence, 422

protein structures, 423, 425–427,

442, 446

three-dimensional structure, 141

Myosin, 152, 378

Myotonic dystrophy, 875

Myriapoda, 761

Myristoylation, 397–398

Myxobacteria, 601–602

Myxococcus xanthus, 602–604, 607,

756–757

NACHT, 767

Nanoarchaeum equitans, 567, 604, 606

Nanochromosomes, 745

NARP (neuropathy ataxia, retinitis

pigmentosa), 858

National Academy Press, 800

National Biomedical Research

Foundation, 33

National Cancer Institute (NCI),

Cancer Microarray Project, 335

National Center for Biotechnology

Information (NCBI):

access to data,13, 23–25, 29–33,

37–38

Annotation Process, 804

bacteria, classification of, 599

BLAST, see BLAST (Basic Local

Alignment Search Tool)
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BLAST 2 Sequences, 51–52,

85–86, 94

books, 25

chicken genome resources, 771

Clusters of Orthologous Groups of

Proteins (COG) database,

622–625, 704

Comprehensive Microbial Resource

(CMR), 525, 599, 615–616,

620

Contig Assembly, 804

dbEST, 386

discontiguous MegaBLAST,

166–167

Ensembl, see Ensembl

Entrez, see Entrez

Fisher’s exact test, 307

Gene Expression Omnibus (GEO),

320, 334

Genes and Disease, 883

genome browser, 806–808

Genomes page, 525, 543, 571–572,

581, 603, 649, 767

GLIMMER, see GLIMMER

help section, 120

HMMer searches, 160

home page, 23, 37, 289, 586

HomoloGene, 184, 243

human genome, 791, 794, 825

Links page, 739

malaria genetics, 740

Map Viewer, 35, 142, 646–647, 704,

794–795, 860

metagenomics projects, 543

Netblast, 117

OMIM, 25, 27, 30, 32, 34, 38, 403,

454, 464, 507, 658

Open Mass Spectrometry Search

Algorithm (OMSSA) software,

387

PDBeast, 25

PubMed, 23–24, 30, 39

RefSeq, see RefSeq

RefSNPs, 793

SAGE database, 309–312

Short Read Archive, 552

single nucleotide polymorphisms

(SNPs), 685

SKY/M–FISH & CGH database,

868

structure, 25, 438

Taxonomy Browser, 25, 37, 65, 107,

129, 289, 543, 585, 761

Tax Plot, 626–628, 704, 718

Trace Archive, 16, 145, 552–553,

651

UniGene, see UniGene

VCOG page, 580

website, 24, 65

WGS sequences, 15, 172–173, 651

yeast genome browser, 707, 715

National Center for Health Statistics,

844

National Human Genome Research

Institute (NHGRI):

budget, 541

eukaryotic genomes, 647, 742, 773,

775, 779

finishing process, 552

Functional Analysis Program, 465

Genome Technology Program, 540

human diseases, 883

Human Genome Project, 800,

825–826

plant genomes, 757

projects, overview of, 280, 465, 539

National Institute for Health

Intramural Sequencing Center

(NISC), 673

National Institute of Genetics in

Mishima, 14

National Institutes of Health (NIH):

Cancer Gene Anatomy Project

(CGAP), 404

Center for Information Technology,

246

functional genomics, 465

Image software, 319

Knockout Mouse Project (KOMP),

472, 478–479

MeSH terms, 845–846

National Cancer Institute (NCI),

869

National Human Genome Research

Institute, see National Human

Genome Research Institute

(NHGRI)

National Institute of Allergy and

Infectious Disease (NIAID),

569

Office of Rare Diseases, 845

projects, 13, 41, 330

proposals/white papers, 539

National Library of Medicine (NLM):

functions of, 15, 23, 39–41,

849

Genotype database, 868

Phenotype database, 868

National Microbial Pathogen Resource

(NMPRDR), 611

National Organization for Rare

Disorders (NORD), 863, 883

National Research Council, 800

Native proteins, 499

Natural killer cell receptors, 680

Natural selection, 58, 63, 230–231,

842

Nature, 15–16

NCKU Bioinformatics Center, 654

NDB, 447

Neanderthal genome, 537, 543, 547

Needleman–Wunsch:

algorithm, 76–79, 81–82, 84, 93,

101, 159, 169, 195

dynamic programming, 194

method, 237

Needleman–Wunsch–Sellers

algorithm, 76

Negative selection, 224, 227–230, 478

Neighbor-joining (NJ) algorithm:

eukaryotic genomes, 764

phylogenetic analysis, 252–253

phylogenetic trees, 255–256,

258–260

sequence analysis, 51–52, 172

Neighbor-joining trees, 255–256,

258–260, 749, 779

Neisseria meningitidis, 534–535,

600–601, 608, 611, 625

Nematoda, 21

Nematodes, 518, 661, 678, 749,

758–761, 767, 792

NEN:

Life Sciences, 315

Perkin–Elmer, 319

neo genes, 477

Neomorphs, 492

Neoplasms, 844–845

Nephritis, 844

Nephrosis, 844

Nephrotic syndrome, 844

Nerve growth factor, 59, 223, 397

Nervous system diseases, 845

Netblast, 115, 117

NetGlycate, 413

N-ethyl-N-nitrosurea (ENU),

491, 876

NetOGlyc, 413

NetPhos 2.0 Prediction Server, 399,

401, 413

Neural cell adhesion molecule L1

(L1CAM), 878
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Neural cells, 397

Neural networks, 368, 401, 413, 429

Neuraminidase (NA), 575

Neurodegenerative disorders,

506–507

Neurofibromatosis, 847, 854

Neuroglobins, multiple sequence

alignment, 188, 196

Neurological diseases, 872, 875

Neuromuscular disease, 872

Neurophysin 2, 223

Neuropsychiatric diseases, 130, 872

Neurospora spp.:

characteristics of, 279

crassa, 715, 719–720

Neurotransmitters, 400, 504, 768

Neurotrophic metallothionein, 311

Newick format, 187

Next-generation sequencing

technology, 15–16

N50 sequence, 755, 850

Nicotiana tabacum, 17, 23, 528, 530

Night blindness, 872

NNPREDICT, 429

Nodes, phylogenetic trees, 231–233,

238–239, 269

Noise, hypothesis testing, 348

Non-Hodgkin’s lymphoma, 877

Nonallelic homologous recombination

(NAHR), 681

Noncoding DNA, 528, 650–652

Noncoding genes, in human genome,

813

Noncoding regions, 535

Noncoding RNA, 251, 282–283, 287,

292, 294–295, 320, 322–323,

663, 688, 763, 781

Noncoding sequences, plant genomes,

757

Noncommunicable disease, 844

Nonconserved coding, 673–674

Nondisjunction, 676

Nonhierarchical clustering.

See k-means clustering

Nonparametric bootstrapping, 266

Nonparametric tests, 344, 349

Nonredundant (nr) database, 103,

106–107, 127, 171–172

Nonsense mutations, 301

Nonvertebrates, disease in, 870,

874–875. See also Invertebrates

Nop56, 293

Normal distribution, 88, 100,

118–119, 344, 349

Normalization, microarray data

analysis, 343–344, 355

North American Conditional Mouse

Mutagenesis Project

(NorCOMM), 472, 479

Northern blot, 293, 306, 310

Nostac sp., 600

NPRES, 441

N-sec1. See Syntaxin binding protein 1

(stxb1)

Nuclear cap-binding complexes, 500

Nuclear dimorphism, 742

Nuclear genome, 528

Nuclear magnetic resonance

spectroscopy (NMR), 430–431,

433, 435, 448

Nuclear proteins, 413

Nuclear spliceosomal RNAs, 292

Nucleases, 542

Nucleic acid(s):

metagenomics, 573

microarray analysis, 313, 331

molecular evolution, 221–222

molecular structure, 280

phylogenetic analysis, 219, 244

protein structure, 435

sequence analysis, 102, 544

viral genome, 568, 570, 577, 591

Nucleins, 544

Nucleomorph genomes, 535–536,

745–746

Nucleotidase, 397

Nucleotide(s):

eukaryotic DNA, 674

eukaryotic genomes, 737

human genome, 805, 811

molecular evolution, 225–226, 229

multiple sequence alignment of, 205

phylogenetic analysis, 252, 263, 265

polymorphisms, 309

in prokaryotic genomes, 615–620

pyrosequencing, 545

ribonucleic acid composition, 281

sequences:

accession numbers, 26–27

advanced database searches, 144,

162–163

analysis, 48, 109, 114, 600

BLASTZ applications, 166

database, 105

GenBank database, 14–15

phylogenetic analysis, 250–251

phylogenetic trees, 242

transcription, 297

Nucleotide Sequence Database

Library, 33

NUCmer, 629

Nuisance variables, 350

Null hypothesis, 88, 122, 227,

347–348, 350–351, 683

Null mutants, 711

Obesity, 851, 876

OCA, 447

Odds ratio, 59, 62, 69

Odontella sinensis, 745

Odorant-binding proteins (OBP), 49,

90, 125, 150–152, 196, 409,

501, 777

Oikopleura dioica, 767–768

Olfactory receptors, 680

Oligo(dT), 310

Oligonucleotides:

DNA sequencing technologies, 544,

552

eukaryotic chromosomes, 687

messenger RNA (mRNA), 297, 299

microarray analysis, 312–314, 317,

333, 336–337

resequencing, 542

robust multiarray analysis, 345

Olkopleura dioica, 766

Oncogenes, 128

“Once a gap, always a gap” rule, 189

OncoLink, 884

One-sample t-test, 353

1000 Genome Project, 15–16

One-way ANOVA, 353

Online Mendelian Inheritance in

Man (OMIM):

contents of, 25, 27, 30, 32, 34

eukaryotic chromosomes, 658

eukaryotic genome, 796

functional genomics, 464, 507

human disease, 870, 877,

882–883

human genome, 841–842,

859–863

protein analysis, 403, 454

Online Mendelian Inheritance in

Animals (OMIA), 863

O-notation, 84

On the Origin of the Species by Means of

Natural Selection (Darwin), 215

Ontogenesis, 216

Open Mass Spectrometry Search

Algorithm (OMSSA)

software, 387
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Open reading frames (ORFs), 292,

474, 480–482, 487–489, 494,

528, 556–558, 569, 581–582,

617, 619–620, 630, 662, 701,

703–704, 706–707, 709, 714, 719

Open REGulatory ANNOtation

database (OregAnno), 669–670

Operational taxonomic unit (OTU):

hierarchical clustering, 358–359

phylogenetic trees, 231–235, 238,

258–260

OperonDB, 620

Operons, 620, 737

Ophthalmological disease, 872

Opposum genome, 772–773

Optimal alignment, 80–81

Order and orientation (ONO), 549

ORF Finder, 558

Organellar genomes, 5, 527–528

Origin of Species, The (Darwin), 50

Ornithorhynchus anatinus, 203, 554

Orphan sequences, 196

Orthologs:

bacterial and archaeal genomes, 622

eukaryotic genomes, 707, 747, 763,

765, 775–776, 778, 780

functional genomics, 508

human disease, 870, 874–875

lateral gene transfer, 620

molecular evolution, 217, 251, 267

multiple sequence alignments, 189,

204

protein analysis, 410

sequence analysis, 7, 49–51, 102,

108, 130

Orthology, 678

Orthomyxoviridae, influenza viruses,

575

Oryctolagus cuniculus, 57

Oryza spp.:

rufipogon, 754

sativa, 17, 20, 57, 403, 530, 556,

652, 675, 751–755

Oryzias latipes, 471, 768, 770

Osteoporosis, 851, 876

Ostreococcus spp.:

characteristics of, 750

tauri, 750, 756

Oswald Cruz Institute, 736

Ovalbumin, 378

Overlapping genes, 486, 549

Ovis aries, 51, 57

OxBench, 184

Oxidoreductases, 409

Oxytocin, 221

Oxytricha spp.:

nova, 661

trifallax, 745

Pair hidden Markov model

(Pair-HMM), 158

Paircoil, 412

Paired box 6 (PAX6), 878

Paired t-test, 353

Pairwise alignment(s), see Pairwise

sequence alignment

bacterial and archaeal genomes, 626

BLAST searches, 109

genomic DNA sequences, 168

human disease, 864

mRNA sequences, 301

multiple, see Multiple pairwise

alignment

profile HMMs, 159

progressive, 188

protein structure, 442, 445

RNA expression, 309

sequence, see Pairwise sequence

alignment

Pairwise sequence alignment:

advanced database searches, 141,

143, 145, 149, 162

algorithms, 55, 75–85, 92–94

BLAST search:

advanced, 149–150

characteristics of, 93, 113–114

BLASTZ applications, 164

characteristics of, 46, 92

detection limits, 74–75

with dot plots, 86–87

errors in, 92

evolution and, 55–57

gaps, 50, 55, 58, 91–92

historical perspectives, 46

homology, 47, 50, 53, 55–56

molecular evolution, 217

Needleman–Wunsch method, 237

protein alignment, 47–54

protein structure, 422

purpose of, 53

scoring matrices, 57–75, 92

significance of, 92

similarity, 51

software packages, 55, 92, 95

statistical significance of, 87–92

types of, 51

websites, as information

resources, 95

Paleontology, 221

Palmitoylation, 397

PAM matrices:

advanced searches, 147–148,

151, 156

alternatives to, see BLOSUM

matrices

BLOSUM matrices, relationship

with, 73

conversion to log-odds/

relatedness-odds matrix, 69

derivation of, 67

function of, 69, 92, 129–130,

147–148, 156, 194, 879

globin phylogeny, 218, 222

historical perspectives, 524

intervals, 65

pairwise alignment applications, 70

PAM40, 73, 110

PAM1, 58–59, 63, 65–69, 72, 91

PAM1 to PAM20, 72

PAM100, 67

PAM70, 50, 69, 110

PAM10, 70–71, 92, 146

PAM30, 50, 69, 73, 110

PAM250, 50, 67–70, 73, 75, 81,

91–92, 110, 146, 422, 879

PAM2000, 68

protein sequence analysis, 105

relative entropy, 91

Select PAM250, 50

Pan spp.:

paniscus, 227, 779

troglodytes, 17, 22, 51, 57, 70, 130,

229, 289, 530, 554, 778

Pancreatitis, 877

Pancrustacea, 761

Pandemics, 575, 577

Pangaea, 523–524

PANTHER, 201, 390

Parabasala, 733

Parallel substitutions, 241

Paralogs, 8, 49–50, 52, 102, 238,

658, 712, 737, 819

ParameciumDB genome browser, 743

Paramecium spp.:

characteristics of, 661, 752

genome, 462

tetraurelia, 675, 742

Parametric bootstrapping, 266

Parametric tests, 344, 349

Parascaris univalens, 678

Parasites/parasitic disease, 610, 845

Parathryin, 223
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Parkinson disease, 844, 861, 877

Parsimonious trees, 237

Parsimony analysis, 217, 261. See also

Maximum parsimony

Parsing, 167, 701

Partekw:

applications, 334, 363, 367

Genomics Suite, 334

Partek Pro, 349

Partitioning, 354

Parvalbumin, 223

Parvovirus, 570

PASC, 572

“Passenger” mutations, 869

Pastuerella multocida, 535–536, 608

Patau syndrome, 852–853

PathGuide, 504

Pathogens, unicellular, 735–736

Pathology, defined, 846

Pattern-hit initiated BLAST.

See PHI-BLAST (pattern-hit

initiated BLAST)

PatternHunter, 162–164

Patterns, protein, 390

PAUP (Phylogenetic Analysis Using

Parsimony) software:

applications, generally, 60, 255

phylogenetic tree analysis, 172, 235,

237, 239, 244, 248, 252,

254–256, 262, 264

PB1/PB2 gene, 576–577

PBIL (Pôle Bio Informatique-

Lyonnais), 412, 429–430

Pcoord (Principal Coordinate

Analysis), 587

PDB90, 446

PDBD40-J database, 142

PDBSum database, 447

Pdha2 gene, 653

p-distance, 247–249

PDZBase, 502

PDZ domain, 397

Pearson correlation coefficient r, 335,

357, 361

Penetrance, complex disorders, 852

PEO (progressive external

ophthalmoplegia), 858

Pepsin, 427

PeptideMass, 412

Peptides:

chloroplast transit (cTP), 414

mass fingerprinting, 387

phylogenetic analysis, 219–221

protein analysis, 407

protein complexes, 500

in protein identification, 382,

385–386

protein structure, 426

Peptoglycans, 227

Percent identity:

implications of, 74, 81, 615

pairwise alignment, 90–92

threshold, 165

Percent similarity, 53

Perlegen, 777

Permutation test, 350, 353

Peromyscus maniculatatus, 202

Peroxidases, 680

Peroxisomes, 406, 409, 734

Pertussis, 611

Pfam:

characteristics of, 14, 34, 39, 56, 129,

174, 179, 197–199, 201, 206

JalView tool, 217

measles virus, 590

microarray data analysis, 368, 390

multidomain proteins, 394

phylogenetic analysis, 244

phylogenetic tree construction, 234

protein analysis, 390

protein networks, 507

protein patterns, 396

Pfam-A sequence family, 451

Pfam5000, 432

Phage lambda, 701

Phanerochaete chrysosporium, 715, 717,

720–721

Pharmacological interventions, 731,

737, 761

PharmGKB, 863

PHD program, 429

PhenCode project, 865–866

Phenotypes, in functional genomics,

463–465, 486

Phenylalanine:

characteristics of, 54, 61, 188, 428,

453, 866

hydroxylase (PAH), 878

Phenylketonuria (PKU), 847–848,

866

Phenylthiohydantoin (PTH), 382

phi (N), 426–427

PHI-BLAST (pattern-hit initiated

BLAST), 111–112, 145,

153–156, 174

Phobius, 414

Phosphates, 281

Phospholipase A2, 223

Phosphopeptides, 401

Phosphorimaging, 318, 337

Phosphorylation, 391, 397–399,

413, 825

Phosphotransferase system, 398

Photolithography, 317

Photosynthesis, 739, 746–749

PHRAP software, 551, 805

PHYLIP (PHYLogeny Inference

Package), 172, 248, 254–255

Phylogenesis, 216

Phylogenetic analysis:

historical perspectives, 214,

217–218

lateral gene transfer, 620–621

plants, 749

protein alignment, 60

stages of:

multiple sequence alignment,

244–246

sequence acquisition, 243–244

substitution models, DNA and

amino acids, 246–254

systematics and, 520

tree-building methods, 254–255

web resources, 269

Phylogenetic fingerprinting, 553–554

Phylogenetic inference:

implications of, 184

maximum likelihood, 262–264

maximum parsimony, 260–262

Phylogenetic reconstruction, 678

Phylogenetic shadowing, 553–554

Phylogenetic trees:

building/construction methods, 229,

254–255

distance-based, 254–263, 268

eukaryotic, 729–730

evaluation methods, 266–268

gene families, 678

HIV, 573

inference, 264–266

mammalian genomes, 772

model-based phylogenetic inference,

262–264

pitfalls of, 268–269

properties of, 51, 55, 59–60, 172,

198, 231–238, 268

true tree, 216

types of, 216, 238–243

viral genome, 585

visual impact of, 268

Phylogeny:

algorithms, 182
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defined, 7, 216

longitudinal studies, 230

Phylogram, 233

Phylum, 216

PHYRE, 450

Physcomitrella patens, 751, 756

Physeter catodon, 51

Phytophthora spp.:

characteristics of, 746

ramorum, 747

sojae, 747

Phytophthora Functional Genomics

Database, 747

PI/Mw server, 399

Pichia angusta, 716

PicTar, 293, 295

PIK3CA, 869

PileUp, 202

PipMaker, 674

PIRSF, 201, 390

Pixels, microarray analysis, 318

PKA, 397

Plant genomes/genomics, 530,

534–535, 748–756

Plant globins, 7, 188

Plant kingdom, 697

PlantProm, 670

Plants, invading viruses, 572

Plasmids, 802

PlasmoDB, 739, 754

Plasmodium spp.:

berhei, 739–740

chabaudi, 739–740

characteristics of, 732

falciparum, 110, 289, 530, 536, 552,

556, 661, 666, 714, 738–742,

754, 757, 764, 784, 848

malariae, 738, 764

ovale, 738, 764

vivax, 738, 740, 764

yoelii yoelii, 536, 661, 739–740

Plastid genomes, 739, 745–746

Plastocyanin, 223

Platyhelminthes, 21

Plexin, 817

Plink, 866

Ploidy, significance of, 675

Pneumocystis carinii, 716

Pneumonia, 626, 844

Poaceae, 753

Point:

accepted, 58–63, 217

mutations, 840

substitutions, 162

Poisoning, 845

Poisson:

correction, 52, 247–249,

252–253, 258

distribution, 247

POLE, 424

Poliomyelitis, 571

Poliovirus, 572

pol protein, 36, 102, 123, 129–134,

153, 170

POL II promoters, 670

poly(A), 300, 316, 321, 484

Polyacrylamide gel electrophoresis

(PAGE), 382–383

Polyadenylated RNA, 300–301

Polycystic kidney disease, 854

Polygalacturonases, 680

Polymerase chain reaction (PCR), 22,

310, 321, 477, 480, 486–487,

543, 672

Polymerases, viral, 571

Polymorphisms, see Single nucleotide

polymorphisms (SNPs)

advanced database searches, 142

eukaryotic chromosomes, 677

human disease, 855, 862

human genome, 821

inversion, 678

Polypeptides, 391, 394, 425

Polyploid organisms, 539, 602,

675, 753

Polyvinylidene fluoride (PVDF)

membrane, 381

P1-derived artificial clones (PACs),

804

Pongo pygmaeus, 51, 166, 778–779

Poplar, 755

PopSet (Population Data Study Sets),

201–202

Population biology studies, 755

Population shadowing, 553–554

Populus spp.:

characteristics of, 753

trichocarpa, 755

Porphyra purpurea, 530

Porphyria variegata, 877

Porphyromonoas gingivalia, 600

Position-based scoring matrices

(PSSM):

advanced database searches,

146–154, 157, 174

database searches, 111, 129, 174

multiple sequence alignment,

195, 199

Positive selection, 224, 227–230,

478, 737, 777, 780

Position-specific iterated BLAST

(PSI-BLAST). See PSI-BLAST

Postgenomic era, 559

Posttranslational modification, 390,

397–399, 401, 410, 439

Potato virus X, 566

PowerAtlas, 348

Power law distribution, 504

Pox viruses, 567, 592

PP1 g, 224

PP2 b, 224

ppsearch, 412

Prader-Willi syndrome, 853, 856

PRALINE, 184, 190–191

PRATT, 396, 412

Precision, in microarray data analysis,

344–345

Prediction of Apicoplast Targeted

Sequences (PATS), 740

Prediction software, 667, 688

Predictive accuracy, 367–368

PredictProtein server, 414, 429, 450

PREFAB, 184, 195

Pregnancy, research studies, 845, 855

Prenyl group, 398

Preservation of Favoured Races in the

Struggle for Life (Darwin), 215

Primate(s):

genomes, 778–781

research studies, 107, 227–228, 231,

583, 878

Primer extension strategy, 544

Primers, functions of, 310, 322,

547, 552

Principal components analysis (PCA),

198–199, 332–333, 355, 361,

364–367, 740

PRINTS database, 34, 200–201,

390

Prion proteins, 397, 454, 568

Pristionchus pacificus, 761

Probabilistic consistency

transformation, 194–195

Probability applications:

advanced database searches, 163

genomic sequencing, 551

hidden Markov models, 156–158

matrices, 65

mutations, 63, 65

odds ratio, 59, 62, 69

phylogenetic analysis, 246–247,

264–266
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Probability distribution, 158–159,

265

ProbCons, 184, 192, 194–195

Probes:

eukaryotic chromosome analysis,

645

microarray analysis, 316–318, 337,

345–346

PROCHECK, 450

Prochlorococcus marinus, 154

Procrustes, 558

ProDom, 201, 203, 390, 394–395

Profile, protein families, 391

Profile HMMs, 157–160, 197, 199

ProfileScan Server, 412

Profile searches, using advanced

databases, 144, 146

Progenitors, 748

Progenote, 518, 521

Progeny, 572

Prokaryotes:

Prokaryotes:

classification of, 599

epicellular, 609

gene-finding programs, 556–557

genome analysis, see Prokaryotic

genomes

genomic annotation, 556–557

large-scale, culture-independent,

610

Prokaryotic genes, 664

Prokaryotic genomes:

analysis:

functional annotations, 622–625

lateral gene transfer, 620–622

nucleotide composition, 615–620

characteristics of, 56, 398, 402, 518,

520, 524–525, 539, 567

comparison of:

MUMmer, 628–629

significance of, 625–626

TaxPlot, 626–628

pitfalls of, 630

Prolactin, 223

Proline, 54, 61, 63, 152, 229, 427–428

Promoter 2.0 Prediction Server, 670

Promoters, functions of, 294, 478,

670, 672

Propagation, 297

PROSCAN (PROSITE SCAN), 412

PROSITE, 34, 181, 201–202, 394,

396, 507, 618

Proteases, molecular evolution, 223

Proteasomes, 409

Protein(s):

annotations, 33

discovery of, 12

eukaryotic, 170

families, 388–390

folding, 424

functional classifications, 410

functional genomics, 493

histones see Histone proteins

homologous, 151, 180

kinases, 398, 703

lipocalins, see Lipocalins

measle virus, 589–590

microarrays, 493

molecular evolution, 224

networks, 501–508

replication, 680

in RNA analysis, 320–321

sequences:

accession numbers, 26–27

advanced database searches,

113–114, 125, 145

BLAST search, 102–103, 106

direct, 381–382

ExPASy, 34–35, 39

GenBank database, 14–15

molecular evolution, 225–226

percent similarity, 53

phylogenic analysis, 217–218

phylogenetic trees, 235–236

repetitive, 111

structure:

disease and, 453–454

domain structures, 443–446

hierarchy of, 423–424

historical perspectives, 420

intrinsically disordered proteins,

453

overview of, 8, 421–423, 454

pitfalls of, 455

prediction, 184, 429–430,

447–453

primary, 423–425

principles of, 423–434

resources, 446–447

secondary, 423–430, 437

structural genomics, 432–433

taxonomic system, 441–443

tertiary, 423–424, 430–431

three-dimensional, 125-126,

432–433

superfamilies, 59

synthesis, 813 Protein analysis:

characteristics of, 379–380, 411

Gene Ontology (GO) Consortium,

388–389, 402–403

historical perspectives, 380

modular nature of proteins, 389–394

multidomain proteins, 394–395

perspectives on proteins, 388–389

physical properties of proteins,

397–402

pitfalls of, 411–412

protein alignment, 47–54

protein function, 407–411, 493

protein identification techniques,

381–388

protein localization, 406–407, 493

protein patterns, 394–397

web resources, 412–414

Protein-based trees, 240–243

Protein-coding genes, 557, 559, 605,

620, 662–664, 668–669, 673,

688, 701, 704, 706, 720–721,

737, 743, 755, 763, 775,

781–782, 793, 796, 814

Protein complexes, 499–500

Protein Data Bank (PDB):

accessing entries at NCBI website,

437–441

annotations, 454–455

contents of, 18, 23, 25, 27, 33,

106–107, 195, 422, 434

protein folds, 441–446

protein structure, 432

viral structures, 592

Protein databases, 23, 380–381

Protein Domain Parser, 446–447

Protein disulfide isomerase (PDI),

388, 401

Protein Family (Pfam). See Pfam

Protein Information Resource (PIR),

18, 27, 33, 35, 93, 106, 201

PROtein MUMmer (PROmer), 629

ProteinPilot, 288–387

Protein–protein interactions, 103, 399,

493–496, 498–508

Protein Research Foundation (PRF),

27, 33, 106

Protein Structure Initiative (PSI),

433–434

Proteobacterium, 150, 528, 600, 610,

612, 622, 732

Proteomes, 5, 224, 687, 763, 814–816

Proteomics:

applications, 493–508, 701, 741

overview of, 379–380

research standards, 381
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Proteomics Standards Initiative (PSI),

381, 499

Proteotyping, 577

Proto-oncogenes, 251

Protobacterium, 749

Protoctists, 697

Protozoans, 403, 541, 731–735, 855

Protozoology, 596

PRRP, 196

PRSS, 89, 93

Pseudocoelomata, 758

Pseudocounts, 148

Pseudogenes, 162, 226, 242, 292,

653–657, 659, 662, 708, 710,

736, 796

Pseudomonas aeruginosa, 534–535, 608

p17, 39

p7, 39

psi (c), 426–427

c-BLAST. See PSI-BLAST

PSI-BLAST:

advanced searches, 110

algorithms, 152

characteristics of, 126, 135,

145–149, 174, 434

errors, types of, 152–153, 174

eukaryotic genomes, 736, 740

human genome, 819

measle virus, 590–591

multiple sequence alignment, 200

performance assessment of,

151–152

profile searches, 149

progressive alignment, 191

protein structure, 449, 451

PSSM, 148–151

target frequencies, 148

PSIPRED, 429

PSORT, 414

PubChem database, 281

PubMed:

accessing sequencing data, example

of, 38–39

access to, 40

Central, 40

contents of, 14, 23–24, 39–41, 368

HIV heading, 587

links to, 30

Medical Subject Headings (MeSH),

41–42

sample search, 41–42

tutorials, 39

Puccinia graminis, 717

Pufferfish, 765, 768–770, 792

Pulmonary disease, 872

Pulsed-field gel electrophoresis, 738

Purines, 281, 617, 761

p value, 121–122, 349–351

Pycnogonida, 761

Pygmy introns, 745

Pylaiella littoralis, 530

Pyrimidines:

functions of, 250, 281

nucleotides, 242

Pyrococcus spp.:

abyssi, 536, 601

horikoshii OT3, 533

Pyrophosphates (PPi), 545–546

Pyrosequencing, 541, 545–547, 573

Q3, 430

Quantile normalization, 344, 346

Quantitative trait locus (QTL), 851

Query sequences:

advanced database searches, 155,

162

genomic DNA searches, 162

Query sequences, BLAST searches:

advanced, 143, 145–148

characteristics of, 100, 111–120, 135

q value, 352

Rabies virus, 570

RAD, 754

Radial trees, phylogenetic analysis, 267

Radioactivity, 247, 316–318

Ramachandran plots, 427–428

RAN, 224

Random effects, microarray data

analysis, 354

Random insertional mutagenesis,

483–485

Ras gene, 702, 817, 874

RasMol, 437–438

Rat genome, 774–778, 877. See also

Rattus spp.; Rodent studies

Rat Genome Database (RGD), 403,

754

Rat Genome Sequencing Project

Consortium, 778

Ratios, in microarray data analysis, 340

Rattus spp.:

genome analysis, 403

norvegicus, 17, 22, 30, 51, 57, 105,

554, 775

rbcL gene, 752

RCN1 gene, 707

Reactome database, 403, 502, 504

ReadSeq servers, 246, 265

Rearrangements:

genome-wide, 745

implications of, 6

human disease, 854

Reassortment viruses, 577

Receiver operating characteristic

(ROC), 111, 683

Reclinomonas americana, 530

Recombinant Identification Program

(RIP), 587

Recombination:

human genome, 808, 827, 830

human disease, 854

Red algae, 535, 747

Reference pools, microarray analysis,

315–316

Reference Sequence (RefSeq) Project,

27–29, 37–39, 52. See also RefSeq

Reformatting, BLAST search, 114

RefSeq:

accession numbers, 282, 294, 526,

707, 735, 776

advanced database searches, 146,

154

annotations, 368, 666

bacterial and archaeal genomes, 622

coding sequence, 814

eukaryotic chromosomes, 646

eukaryotic genome, 776

Genes, 302

genome sequencing, 165, 531

human disease, 870

human genome, 794, 796, 818, 830

multidomain proteins, 394

noncoding RNAs, 296

nucleotide sequences, 107

protein searches, 106, 112,

129–130, 160, 380, 386, 501

repetitive DNA, 656

retransposition, 653

RNA sequences, 289, 299,

301–302

transcription, 322

viral genome, 583, 586

RefSNPs, 685, 793

Regulatory Sequence Analysis Tools

(RSAT), 670

RegulonDB database, 466

Relatedness-odds matrix, 69

Relative entropy, 91–92

Renal disease, 873, 875

Renal tubular acidosis, 875

REP, 412

SUBJECT INDEX 943



Repeat-induced point (RIP) mutations,

720

Repeated-measures ANOVA, 353

RepeatFinder, 654

RepeatMasker, 653–657, 768, 807

Repeats:

interspersed, 164, 652–653, 810

protein families, 300, 303, 392, 394

simple sequences, 811

Replication, human genome, 830

Resequencing, 538, 542, 869

Resourcerer, 368

Respiratory diseases, 844–845

Restriction enzymes, 548

RET gene, 650, 673

Retinol, 7

Retinol-binding protein (RBP/RBP4),

7–8, 32–33, 49, 89, 94, 105,

125–128, 146, 149–150,

154–155, 189, 304, 407–408,

422, 442–443, 501, 552, 796

Retransposons, 652, 809–810

Retropseudogene, 652

Retrotransposons, 704

Retroviral gene expression, 130

Retroviral sequences, BLAST

searches, 134

Retroviruses, 297, 572, 585

Rett syndrome (RTT), 62, 319, 464,

807, 846, 848–850, 861, 882

Reverse genetics, 473–491, 508

Reverse position-specific BLAST. See

RPS-BLAST (reverse position-

specific BLAST), 153

Reverse proteomics, 494–495

Reverse transcriptase, 36, 38, 130, 152,

297, 394, 656

Reverse transcriptase-polymerase chain

reaction (RT-PCR), 297, 323, 666

Rfam:

characteristics of, 282, 292

database, noncoding RNAs,

283–285

eukaryotic chromosomes, 663

microRNA and, 293

phylogenetic analysis, 244

R groups, protein structure, 425–426

Rhesus Macaque Genome Sequencing

and Analysis Consortium, 780,

878

Rhesus monkey studies.

See Macaca mulatta

Rhesus rhadinovirus (RRV), 579

Rheumatoid arthritis, 867–868

Rhinovirus, 572

Rhizophydium spp., 530

Rhizopus spp.:

nigricans, 698

oryzae, 717

Rhodopsins, 127, 397, 759

RibAlign software, 612

Riboflavin synthesis, 761

Ribonuclease, pancreatic, 223

Ribonucleic acid (RNA):

amplification, 315

analysis interpretation, 320–322

ancient, 543

ancient viruses, 571

-based trees, 240–243

characteristics of, 279, 323

circular molecules, 568

complementary DNA (cDNA),

relationship with, 302–309,

322–323

composition of, 281

-dependent DNA polymerase, 297

double-stranded, 570, 572–573, 579

functional genomics, 493, 662

gene expression studies, 323

historical perspectives, 521–522

hybridization, 337

interference (RNAi), 294, 489–491,

760

messenger, see Messenger RNA

(mRNA)

micro (miRNA), 293–295, 313,

322, 622

microarray analysis, 316–317,

322–323, 335–337

-multiprotein complex, 406

nuclear ribosomal, 680

overview of, 279–282

polymerases, 224, 613

RefSeq identifiers, 28

ribosomal (rRNA), see Ribosomal

RNA (rRNA)

self-replicating, 574

single-stranded, 568, 570,

575, 579

small interfering (siRNA), 294

small nuclear (snRNA), 291–292,

300, 812

small nucleolar (snoRNA),

292–283, 812

splicing, 816

structure of, 280, 294

surveillance system, 300

synthesis, 590, 607

transcription, 3–5, 130, 301,

321–322, 336, 462, 538, 558

transfer (tRNA), see Transfer RNA

(tRNA)

web resources, 323

Ribonucleoproteins (RNPs), 290, 590,

813

Ribosomal Database, 234, 244

Ribosomal DNA (rDNA), 289

Ribosomal RNA (rRNA), 282,

288–291, 611–612, 622, 662,

698, 704, 731, 812–813, 825

Ribosome Data Project, 291

Rice, 729, 753–755

Rickettsia spp.:

conorii, 609

prowazekii, 533, 600, 604, 609

rif genes, 740–741

RIKEN:

Genomic Sciences Center, 803

Mouse Gene Encyclopedia

Project, 876

R language, 251–252, 340–342, 367

RMSD-APDB, 195–196

RNAdb, 282

RNA-inducing silencing complex

(RISC), 294, 489

RNAmmer, 291

RNAWorld website, 323

Robertsian translocation, 675–676

Robust Multiarray Analysis (RMA),

340, 342, 344–346

Rodentia, 107, 732

Rodent studies:

disease in, 876–878

functional genomics, 472–473

genomic sequencing, 536, 552,

774–778

malaria parasites and, 739

molecular evolution, 231

phylogenetic trees, 239

protein complexes, 499

protein structure, 422

viruses, 577

Root mean square database (RMSD),

441, 451

Rooted phylogenetic trees, 233–235,

257

ROSE software, 162, 183–184

Rosetta Stone, 451–452, 500–501

Rotavirus, 570–571

Rotroelements, 652

Roundworm genomes, 758–761

RPB1/RPB2, 699
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RPS-BLAST (reverse position-specific

BLAST), 153, 199–200

R software, 334

R-statistical package, 358

r-test, 331

Rubella virus, 569–571

Rubisco protein, 749, 752

S-PLUS, 334, 339, 349, 357, 361,

363, 367

SABmark, 184, 195

Saccharomyces spp.:

bayanus, 714

castellii, 712–714

cerevisiae,

characteristics of, 529–530, 532,

556, 622, 675

chromosome exploration,

704–708

common domains, 701, 703

eukaryotic genomes, 719,

721–722, 763

features of, 697, 700–707, 722

gene duplications/genome

duplication, 708–711

gene nomenclature, 707

hemiascomycetes, comparative

analysis, 712–715

human disease studies,

842, 870

human proteins compared

with, 814

molecular evoluation, 224, 242

proteome comparisons, 818

protein analysis, 394, 401, 403,

462, 466, 469, 481, 493,

496–498, 504

protein families, most common,

702

RNA analysis, 289, 321

sequence analysis, 57, 81, 86, 105,

171, 203, 394, 701

Saccharomyces Genome Database

(SGD), 144, 402–403, 466–468,

473, 493, 498, 504–506, 645,

705–707, 709, 722, 754

Saccharum spp., 753

SAGA, 196

Salmonella spp:

enterica, 608, 611

typhi, 611

Salmon salar, 305

SAM-T02, 429

SAM-T98, 152

Sampling, microarray data analysis,

337

Sanger Centre, 803

Sanger Institute, 471, 646

Sanger sequencing, 544–545, 701, 804

SAPS, 412

Sarcopterygii, 769

SARS, 571–572

SAS, 349

Satellite DNA, 652, 661

Scalable Vector Graphics (SVG), 744

Scaled phylogenetic tree, 232, 253

Scan, BLASTalgorithms, 115

Scanner, microarray data analysis, 337

ScanProsite, 396, 412

ScanPS (Scan Protein Sequence), 144

Scatter plots, 314, 331, 335, 337–342,

370

Scavenger decapping, 500

Schistosoma japonica, 388

Schizaphis gramium, 609

Schizophrenia, 130, 847, 852

Schizosaccharomyces pombe, 57, 530,

535–536, 715–716, 719–721,

738, 754, 870, 874–875

Scoaffold, 549

Scoring matrices:

advanced database searches, 145

BLAST searches, 109–110,

121, 129

BLOSUM, see BLOSUM matrices

Dayhoff model, accepted point

mutations, 58–63, 217

detection limits, 74–75

development of, 57

log-odds, 69–70, 72

PAM, see PAM matrices

significance of, 57, 92

SDS-PAGE, 383–384, 499

Sea spiders, 761

Sea urchin, 766–767

Sea Urchin Genome Sequencing

Consortium, 758, 767

Sea urchins. See also Strongylocentrotus

purpuratus

Search Tool for the Retrieval of

Interacting Genes/Proteins

(STRING), 502, 504

Seattle Biomedical Research Institute

(SBRI), 737

SEC1 gene, 475

Sedimentation coefficient, 280, 397

SeedGenes, 753

Seed models, PatternHunter, 163

SEG, 152

Segmental duplications, 676, 681

Segmented genomes, 567

Selenomonas sputigena, 596

Self-organizing maps, 332, 361,

363–364, 740

Selfish DNA, 651

Semaphorin, 817

SeneSpring, 349

Sensitivity:

advanced database searches, 148,

151, 154, 162–163

alignment algorithm, 87

bacterial and archaeal genomes, 629

BLASTalgorithms, 117–118

eukaryotic chromosomes, 667,

671–672

multiple sequence alignments, 204

phosphorylation, 401

significance of, 38, 70, 92

transcription, 321–322

types of, 181

Sensory system, birth-and-death

evolution, 680

Septicemia, 844

Sequence Alignment and Modeling

Software System (SAM),

160–161, 174

Sequence Retrieval System (SRS), 14,

34, 38, 394–395

Sequence reversal, 628

Sequence similarity, BLAST searches,

124

Sequence-tagged sites (STSs):

BLAST searches, 106–107

characteristics of, 20, 22

organisms obtained, 22

Sequencher, 551

Sequencing technology, in human

genome, 801

Serial Analysis of Gene Expression

(SAGE), 298–299, 309–312,

323, 493, 538

Serial homology, 50

Serine, 51, 54–55, 59, 61–65, 401,

428

Serum albumin, 59, 223, 378

Seven-transmembrane-domain

(7TM), 759

Severe combined immunodeficiency

disease, 877

Sex Chromosomes and Sex-Linked Genes

(Ohno), 729

Sex pheromones, 680
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Sexually transmitted diseases, 601

SGP, 668

Shine–Dalgarno sequence, 617–618

Short-chain dehydrogenase/reductase

(SDR), 817

Short interspersed nuclear elements

(SINEs), 203, 652–655, 755,

771–772, 780, 792, 809–810

Shotgun sequencing, 548, 550,

802–803. See also Whole genome

shotgun (WGS)

Shotgun single-pass, 302

“Shuffled” genes, 216

Sickle cell anemia, 423, 454, 477,

847–850, 852, 859

Sickle cell disease, 861

Signal detection, 156

SignalP, 402, 414

Signaling molecules, 758

Signal-to-noise ratio, 348, 354

Signal transduction, 758

Signature:

advanced database searches,

154, 174

microarray data analysis, 332

protein families, 389–390

sequences, 613–614

Significance analysis of microarrays

(SAM), 351–353

Silenced genes, 294, 486, 489–491,

675, 678

Silkworm, 765

Silurian period, 748

SILVA database, 291

SIM, 93

Sim4, 167, 169

Simian(s), retrotransposition, 653.

See also Primates

Simian immunodeficiency virus (SIV),

574, 583, 586

Simian T-cell lymphotropic virus type 1

(STLV), 586

Simian virus 40 (SV40), 527, 572

Similarity:

homologous sequences, 48–49

matrix, 357, 361

scores, multiple sequence align-

ments, 185

search:

advanced databases, 144, 163

multiple sequence alignment, 189

Simple Molecular Architecture

Research Tool (SMART) data-

base, 129, 156, 199

Simulations, 120, 683

Single-gene diseases/disorders, 843,

847, 849, 851, 859, 866, 881

Single linkage clustering, 358–361

Single nucleotide polymorphisms

(SNPs):

advanced database searches,

145, 162

bacteria and archaea, 628

characteristics of, 26

eukaryotic genomes, 646, 755,

777, 780

human disease databases, 863, 867,

869

human genome, 793, 796, 826–831

microarray analyses, 683–687,

867, 869

molecular evolution, 230–231

multiple sequence alignment, 181

nonsynonymous, 827

synonymous, 827

Singletons, 303

Sinorhizobium meliloti, 536

Sister chromatids, 681

Size-fractionation RNA, 293

Size of genome, significance of,

539–540, 602–604

Skeletal disease, 873

Skew/skewness, implications of:

BLAST statistics, 118–119

microarray data analysis, 344, 370

phylogenetic analysis, 251

Skin disease, 845

SKY/M-FISH & CGH Database,

646, 868

Sleeping sickness, 735

Slime genomes, 756–757

Small-insert libraries, 548

Small interfering RNA (siRNA), 294

Small nuclear ribonucleoproteins

(SNRNPs), 292

Small nuclear RNA (snRNA),

291–292, 300, 812

Small nucleolar RNA (snoRNA),

292–283

Smallpox, 569, 571

Small subunit rRNA (SSU rRNA),

520–521, 524

SMART database, 129, 390–391,

396, 412

Smith–Magenis syndrome, 853, 856

Smith–Waterman algorithm:

advanced database searches,

144–145, 152, 159

applications, generally, 101–102,

653, 709, 743

BLAST searches, 122

components of, 81–84

rapid, 84–85

Smith–Waterman alignments, 122

SNAP-25 protein, 398, 400, 469, 496

SNC1/SNC2 genes, 711

Snc1p, 711

snoRNABASE, 295

Sodalis glossinidius, 608, 735

Sodium dodecyl sulfate (SDS), 383.

See also SDS-PAGE

Solexa, 299, 547, 672, 826

Solibacter usitatus, 604

Somatic cells, 464, 675

Somatic mutations, 538, 869

Somatotropin, 223

Sorangium cellulosum, 604

SOSUI, 414, 429

Sotos syndrome, 856

Soudan Mine Red Sample project, 544

Southern blotting, 477

SP-TrEMBL, 199–200

Speciation, 49–50, 219, 782

Species:

distribution, 198

trees, 238–240

Specificity:

advanced database searches,

154, 162

alignment algorithm, 87

defined, 38

eukaryotic chromosomes, 671

functional genomics, 469

pairwise alignment, 92

phosphorylation, 401

significance of, 38

Spectroscopy. See Mass spectrometry

Speech detection, 156

Spiders, 761

Spinal muscular atrophy, 854

Spinocerebellar ataxaia, 875

Spirochaetales, 600

Spliceosomal RNAs, 292

Spliceosomes 300, 813

Splicing, 102, 291, 301, 312, 398,

765, 840

Sporozoites, 738, 740

Spotfire, 334, 349

Spreadsheet applications, 251, 331,

334, 339, 346

SPSS, 349

Spurious matches, 111
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Spurious sequences, 174

Sputnik, 752

SRP46, 653

SSAHA (Sequence Search and

Alignment by Hatching

Algorithm), 167, 169

SSAP algorithm, 444–445

SSEARCH, 93

SSO1 gene, 711, 713

Standard deviation, 348

Standardization and Normalization of

Microarray Data (SNOMAD),

344

Stanford Genome Technology Center,

803

Stanford HIV Drug Resistance

Database, 592

Stanford HIV RTand Protease

Sequence Database, 591

Stanford Human Genome Center, 803

Stanford Online Universal Resource for

Clones and ESTs (SOURCE),

368

Stanford University, genome projects,

738

Staphylococcus aureus, 601, 625

STATA, 334

Statistical analysis, 298

Statistical significance, 87–92, 108,

111, 121, 146, 355, 683

Statistics applications, 332. See also

Descriptive statistics; Inferential

statistics

Statistics of Extremes (Gumbel), 100

Statistics software packages, 334

Step matrices, 243

Sterkiella histriomuscorum, 742, 745

Stochastic context-free grammars

(SCFG), 287, 291, 294

Stoichiometry, 500

Stokes radius, 389, 397

Stramenopila, 729, 746–747

Strasbourg Bioinformatics

Platform, 81

Streptavidin beads, 310–311

Streptococcus spp.:

agalactiae, 625

pyogenes, 601

pneumonaie, 536, 600, 611, 625

pyogenes, 536, 625

Streptomyces spp.:

avermitilis, 81–82

coelicolor, 539, 556, 604

Streptophyta, 21

Stress-induced protein (SRP1/TIP1),

702

Stretcher, 92

Stroke, 844

Stronglyocentrotus purpuratus, 17, 758,

766–767

Structural classification of proteins

(SCOP) database, 152, 422, 435,

441–444, 446

Structural genomics, 422, 432–434,

448, 591

Structural Genomics Consortium, 432

Structure Prediction Meta Server, 450

Substitution(s):

amino acids in protein sequences,

60, 62–63

eukaryotic genomes, 737, 776

evolutionary, 879

human disease, 864, 870

human genome, 816

in molecular evolution, 222–225,

231

matrices, 103, 118, 121, 148,

158, 197

pairwise alignment, 94

phylogenetic analysis, 247–251, 732

phylogenetic trees, 240, 252

significance of, 51, 55, 94

Subtrees, 237–238

Suicide, 844

Sulfation, 399

Sulfinator, 413

Sulfolobus spp.:

solfataricus, 536

tokodaii, 536

Sum-of-pairs score (SPS), multiple

sequence alignment algorithms,

182–183, 190

Superfamilies, 128, 141, 189, 201, 392,

702–703, 817

SUPERFAMILY, 201, 390

Superoxide dismustase (SOD), 388,

507–508

Support vector machines, 368

Supt4h2, 653

Surface plasmon resonance, 495

Surface proteins, 736

Surfactants, gene expression, 312

Survival rates, 227

Sus scrofa, 17, 20, 51, 57

S values, BLASTalgorithms, 120, 122

Swiss Institute of Bioinformatics (SIB),

33–34, 39, 86

Swiss-Model, 423, 450

SwissPDB viewer, 437

Swiss-Prot:

database, 18, 23, 25, 27, 33–34,

38–39, 106, 199–200, 368,

380, 386, 394, 453, 662, 796

website, 62

Symmetric matrix, 67

Synapsin, 397

Synaptobrevin proteins, 506, 711

Syndrome, defined, 840

Synechocystis spp., 532, 600

Synonymous Non-synonymous

Analysis Program (SNAP),

230, 587

Syntaxin binding protein 1 (stxb1), 474

Syntaxin proteins, 496, 506, 711

Synteny, 673, 737, 740, 776–777, 796

Synthetic genetic array (SGA) analysis,

482

Systematics, historical perspectives,

518, 520

TAA, 32

Tachyzoites, 742

TAG, 32

Tagged proteins, 499

Tags, SAGE database, 311–312

Tajima’s relative rate test, 226–228

Takifugu spp.:

characteristics of, 768–769

rubripes, 471, 664, 768

Tandem affinity purification coupled to

mass spectrometry (TAP-MS),

499–500

Tandem mass spectrometry (MS/MS),

386–387

Tandemly repeated sequences,

661–662

Tandem repeats, 628, 809

TargetDB, 431

Target frequencies, 59, 110

TargetP, 414

TargetScan, 293

TargetScanS miRNA Regulatory

Sites, 295

target2k program, 161

Taste receptors, 680

TATA box, 663, 668

Taxonomy, 524–525

Taxonomy identifier (txid), 107, 128

TaxPlot, 626–628, 718

Tay-Sachs disease, 857

tblastn, 103–106, 122, 133, 170–172

tblastx, 103–106
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T cells:

functions of, 230

receptors, 680, 796

TCF7l2, 867

T-Coffee, 159, 183–184, 195–196,

202

TEIRESIAS, 412

Telomeric repeats, 660–661

Template-free modeling, 450–453

Templates, homology modeling,

448–449

Termite Gut Metagenome project, 544

Terpenes, 756

TESS (Transcription Element Search

System), 670

Tetanus, 611

Tetrahymena spp.:

characteristics of, 661, 743

thermophila, 282, 742–743

Tetraodon nigroviridis, 471, 554,

768, 770

Tetraploidy, 709

Tetratricopeptide (TPR-1), 817

TFAM, 288

TGA, 32, 105

Thalassemias, 423, 477, 854,

848–849, 859, 864

Thalassiosira pseudonana, 746–747

The Arabdopsis Information Resource

(TAIR), 470, 707, 753–754

The Institute for Genomic

Research (TIGR):

BLAST, 144

completed genomes, 532

eukaryotic genomes, 754

Gene Indices, 144

eukaryotic chromosomes, 666

information resources, 525

Rice Genome Project, 755

The Memrane Protein Data Bank, 402

Theileria spp.:

annulata, 739, 741

parva, 739, 741

Thermophiles, 520

Thermoplasma spp:

acidophilum, 534–535

volvanium GSS1, 533, 601

Thermotogales, 600

Thermotoga maritima, 533, 600, 608

Thogotovirus, 575

Thomsen disease, 875

Threaded Blockset Aligner (TBA)

program, 204, 206

Threading, 450

3dee, database, 447

3D-JIGSAW, 450

3D-PSSM, 450

3-Finger venom toxins, 680

Threonine, 51, 54–55, 59, 61, 63–64,

92, 401, 428

Threshold:

BLAST search parameters:

algorithms, 115, 117–118

E values, 122

implications of, 123

scores, 115

Thrombospondin, 817

thy-1 gene, 397

Thymidine:

characterized, 281

kinase, 477

Thymine, 110, 242

Thyrotropin beta chain, 223

Ticks, 741, 761

TIGR Database, Trypanosome

genomics, 736

TIGRFAMs, 201, 390

Tiling microarrays, 321, 672

TIM barrel, 444

Time of divergence, 225

Tissue microarrays, 494

T-lymphocytes, 679, 741

TM4 suite, 334

TMHMM, 402

Tmpred, 414

Tobacco plant, 566

Toll-like receptors, 767

Tomato bushy stunt virus, 572

“Top down” clustering, 355

Topoisomerase, 501

Topology:

CATH database, 443–444

guide tree, 187

phylogenetic trees, 231, 236, 240,

252, 263

TopPred2, 414

Total RNA, 538

ToxoDB, 742

Toxoplasma spp.:

characterized, 732

gondii, 529–530, 739, 741–742

Toxoplasmosis, 741

TPTE gene, 824

Trace-back procedure, 83

Trachoma, 626

Trans-NIH Mouse Initiatives, 472

Transcription:

components of, 20, 27, 164,

eukaryotic chromosomes, 650

human diseases and, 881

mRNA expression, 300

nature of, 321–322

phylogenetic trees, 241–242

protein analysis, 389

RNA analysis, 297, 321–322, 330

Transcriptional profiling, 321, 367

Transcriptional regulation, 671

Transcriptional Regulatory Element

Database (TRED), 670

Transcription factor(s):

databases, 659–600, 669–672

DNA-binding, 671

Transcriptome, 538

Transcripts:

characteristics of, 551, 740

full-length, 538

human genome, 796

microarray data analysis, 338–339

TRANSFAC, 670

Transferases, 409

Transfer RNA (tRNA), 14, 282–289,

544, 625, 662, 664, 812–813,

825, 858

Transition probability, hidden Markov

models, 158–159

Transitions, phylogenetic trees,

242, 250

Transitive catastrophe, 503

Translocations, 161, 205, 609,

675–676

Transmembrane domain, in proteins,

397, 401–402

Transport proteins, 170, 408, 737

Transposition, 628

Transposon:

-derived repeats, 652–653, 809–810

evolution, 810

functions of, 704, 706

-tagged proteins, 407

Transversions, phylogenetic trees,

242, 250

Traumatic injury, 846–847

Tree bisection reconnection

(TBR), 237

Tree of life:

fungi, 697

history of life on earth, 521–523

illustration of, 516

molecular sequences as basis of,

523–524

nature of, 5, 7, 56, 130, 216, 599

reconstruction of, 520
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unrooted, 613

viruses, 591

Web Project, 525

Tree rooting, 172

TREE-PUZZLE, 254–255,

263–264

TreeView software, 267, 361–363

TrEMBL, 25, 33

Treponema pallidum, 533, 608

Tribolium castaneum, 762

Trichomonas spp.:

characteristics of, 732–733

vaginalis, 732–733

Triose phosphate isomerase, 444

TRIPLES database, 487–488

Triple X syndrome, 853

Tripsacum dactyloides, 530

Trisomies:

impact of, 338–339, 346, 355, 460,

462–463, 465, 473, 644–645,

676, 686, 710, 824, 847,

852–853

Triticum aestivum, 305, 752

tRNAscan, 618

tRNAscan-SE, 285–287, 662

Trophozoites, 740

Troponin C, 223

True tree, defined, 216

Truncation, 40

Trypanosoma brucei Genome

Project, 736

Trypanosoma cruzi Genome Initiative

Information Service, 736

Trypanosoma spp.:

brucei, 735, 737, 754

cruzi, 735, 737

Trypanosomes, 731, 735–736

Trypsin, 59, 223, 388, 401

Tryptophan, 54, 58, 61, 63, 65,

68–70, 148, 428

Tsetse flies, 735. See also Malaria

t statistic (test statistic),

348–351, 354

t-test, 333, 348–350, 353–354

Tuberculosis, 609, 611

Tuberous sclerosis:

characteristics of, 847,

874, 877

gene (TSC2), 879

Tubulin, 224, 305

Tumor suppressor genes, 869

Tumorigenesis, 869

Tumors, 362

Tupaia glis, 51

Turkey rhinotracheitis virus, 591

Turku, 752

Turner syndrome, 853

Twilight zone, pairwise alignment,

74–75

TWINSCAN, 668

Twin studies, 852

Two-dimensional bacterial genomic

display (2DBGD), 616

Two-dimensional gel electrophoresis,

383–386, 411, 493

Two-dimensional SDS-PAGE, 384

Two Sequence Alignment Tool, 93

Two-way clustering, 361

Type II errors, 348

Typhoid, 611

Tyrosine:

functions of, 54, 61, 401, 428

kinase, 398

UBC4, 224

Ubiquitins, 223–224, 305, 680

Ultraconserved coding, 672–673

UNAIDS, 583

Uncultured Human Fecal Virus

Metagenome project, 544

Unfinished sequence, in genome

sequencing, 550–551

UniGene:

accessing sequence data, example

of, 38

blastx search, 105

clusters, 22, 304–305

components of, 20, 22,

303–304, 368

Entrez Gene compared with,

32–33

express data in cDNA libraries, 308

human genome, 794

human diseases, 862

links to, 30

mRNA sequences, 299

organisms represented in, 21

pairwise alignment, 113

UniParc, 34

Uniparental disomy, 676

UniProt:

access to, 34

Archive (UniParc), 34

components of, 23, 380, 399

development of, 33

Knowledgebase (UniProt KB),

33–34, 39, 380

organization of, 33–34

Reference Clusters (UniRef ), 34

repetitive DNA, 656

UniProtKB/Swiss-Prot, 201, 395

UniProtKB/TrEMBL, 201

UniRef, 34

Unité de Recherche Génomique Info

(URGI), 752

U.S. Department of Energy:

functions of, 720

Joint Genome Institute (DOE JGI),

548, 747, 767–768, 803

U.S. Food and Drug Administration,

733

U.S. Naval Medical Research Center

(NMRC), 738

Universal Mutation Database,

863–864

Universal Protein Resource (UniProt).

See UniProt

University of California, Santa Cruz

(UCSC):

characteristics of, 289, 862

ENCODE project, 793

GENES, 656

Genome Bioinformatics website,

168, 646, 798

Genome Browser, 11, 14, 35–36,

162, 164–165, 204–206,

294–296, 301–302, 476–478,

485, 525, 645–649, 653–654,

656–659, 669–672, 706, 715,

798, 805–808, 822, 828, 830,

865–866

Saccharomyces Genome Database

(SGD), 705–707, 709,

722, 754

Table Browser, 35, 294–296,

525, 646, 653–654, 706,

807, 822

University of Oklahoma, Advanced

Center for Genome Technology,

803

University of Texas Southwestern

Medical Center, 803

University of Washington Genome

Center, 654, 803

UNIX platform 159, 291, 619

Unpaired t-test, 353

Unrooted phylogenetic trees,

233–235, 259

Unscaled phylogenetic tree, 232

Untranslated regions (UTRs),

mRNA sequences, 302–303,

309
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Unweighted pair group method of

arithmetic averages (UPGMA):

distance-based phylogenetic trees,

255–258

implications of, 187, 191

microarray data analysis, 358

UPTAG, 480

Uracil, 64, 281, 286

Ureaplasma urealyticum, 534, 556,

604, 608

Uromodulin, 397

Urydylation, 398

Usher syndrome, 877

Ustilago maydis, 717

Vaccines/vaccinations, 569, 570–571,

574, 587–588, 731, 737

Vaccinia, 570

Valine, 54, 61, 63, 428

Value u, BLAST search, 119

var genes, 740–741

Variant surface glygoprotein (VSG)

genes, 736–737

Varicella, 571

Varicellovirus, 578

Variegate porphyria, 875

Vasopressin, 221

VAST, 438

Vector Alignment Search Tool (VAST),

25, 438–441

Vector NTI Suite 7, 93

Venn diagrams, 41

v-erb-B, 128

VERIFY3D, 450

Vertebrata, 107

Vertebrate Genome Annotation

(VEGA) project, 144, 380, 471

Vertebrate genomes, 35

Vesicle-associated membrane protein

(VAMP), 400, 469, 711

ves1 gene, 741

V genes, 145

Vibrio cholerae, 534, 601, 608

Vienna RNA, 287

Viral Genome Database (VGDB), 591

Viral Genome Organizer, 592

Viral genomes, 5, 527, 539, 568

Viral (MHV3) hepatitis, 876

Virginia Bioinformatics Institute, 81

Viridiplantae, 16, 107, 748–750

Viroids, 568

Virology, problems in, 574

Viruses, see Viral genomes

BLAST searches, 134

characteristics of, 518, 520, 525,

548, 567–568, 591

classification of, 568–571

diversity, 571–573

evolution of, 571–573, 591

metagenomics, 573

microarray analysis, 381

molecular evolution, 216

mosaic, 566

RNA, 294

sequence analysis, 7, 16, 25–26

types of, 130, 574–591

web resources, 591–592

VIrus Particle ExplorER (VIPER), 592

VISTA (Visual Tools for Alignments),

674

Visual Molecular Dynamics (VMD),

437

Vitamin A. See Retinol

Vitis vinifera, 17, 755–756

VizX Labs, 334

VRML, 437

WAK-like kinase, 680

Wards’s method, 358

Washington University Genome

Sequencing Center, 548, 803

WebGene, 666

WebMol software, PDB, 422, 427,

434–437

Weizmann Institute, 81

Wellcome Trust Case Control

Consortium, 867–868

Wellcome Trust Sanger Institute

(WTSI), 15–16, 36, 41, 142–143,

201, 295, 403, 464, 540, 548,

654, 721, 736–379, 768, 800,

869, 883

Wernicke–Korsakoff syndrome, 875

West Nile virus disease, 764

WGKV, 50

WHATIF, 450

White papers, 539

Whitehead Institute for Biomedical

Research, MIT, 803

Whole-genome duplication (WGD),

675–676, 709, 712–714,

743–744, 752

Whole-genome sequencing, 538, 551

Whole-genome shotgun (WGS)

sequence, 15, 172–173, 380, 539,

548–549, 553, 651, 658, 701,

733, 735–736, 738, 761, 805

Whole Mouse Catalog, 876

Whooping cough, 616

Wigglesworthia glossinidia, 608, 735

Wilcoxon test, 349

Wild-type alleles, 707

Williams–Beuren syndrome, 823, 856

Williams syndrome, 463

Wilson disease, 875

Within-subject design, 350

Wolbachia spp., 608, 761

WoLF PSORT, 406–407, 414

Word pairs, BLASTalgorithms,

115–116

Word size:

advanced database searches, 144

BLAST search, 107–110

MegaBLASTapplications, 166–167

pairwise alignment, 50

World Health Organization, 583,

732–733, 736, 844–845

WormBase, 403, 470–471, 707,

754, 760

Worms, 731, 759–761. See also

Silkworms

WPL228W gene, 713

WU BLAST 2.0, 144

X chromosome inactivation center

(XCI), 678

X chromosomes, 685, 729, 759, 761,

773, 776–777, 780, 797, 799,

807, 813, 823, 825, 830,

849–851

Xenopus spp., 17, 20, 305, 679

Xeroderma pigmentosa, 875

X inactivation center (XIC), 772–773

XIST gene, 772–773

X-linked retinoschisis gene (RS1), 878

Xpound, 666

X-ray:

crystallography, 6, 8, 48, 145, 152,

182, 185, 217, 430, 433, 566

diffraction, 420, 435

irradiation, 471

x2:

analysis, 879

distribution, 253

test statistic, 227

Xylella fastidiosa, 534

XYY syndrome, 853

Yaks, 202

Yarrowia lipolytica, 712, 716

Y chromosome, 708, 729, 776, 797,

799, 814, 823–825, 850
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Yeast, see Saccharomyces spp.

functional genomics, 466–470,

473, 487

genome, 86

nature of, 292, 363, 368,

381, 407, 535, 544,

666

reverse genetics, 480–483

two-hybrid system, 411, 462,

496–500, 503

unicellular, 719

Yeast artificial chromosomes (YAC),

20, 22, 794

Yeast Gene Order Browser, 713

Yellow fever virus, 570, 764

Yersinia pestis, 608

YinOYang 1.2, 413

YKL159c gene, 707

YLR106c gene, 707

YPL230W gene, 713

Zalophus californianus, 173

Zea mays, 17, 20, 23, 530,

554, 652, 673, 752

Zebrafish, nature of, 768.

See also Danio rerio

Zebrafish Information

Network (ZFIN), 403, 471

Zellweger syndrome, 875

Zinc, 221

Zoophytes, 790

Z scores, 88–89, 119, 446

Zygotes, 473
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